Document Type

Article

Publication Date

2-13-2017

Publication Title

Geophysical Research Letters

Abstract

Recent investigations have provided new and significantly revised constraints on the subsurface structure of the Ventura-Pitas Point fault system in southern California; however, few data directly constrain fault surfaces below ~6 km depth. Here, we use geometrically complex three-dimensional mechanical models driven by current geodetic strain rates to test two proposed subsurface models of the fault system. We find that the model that incorporates a ramp geometry for the Ventura-Pitas Point fault better reproduces both the regional long term geologic slip rate data and interseismic GPS observations of uplift in the Santa Ynez Mountains. The model-calculated average reverse slip rate for the Ventura-Pitas Point fault is 3.5 ± 0.3 mm/yr, although slip rates are spatially variable on the fault surface with > 8 mm/yr predicted on portions of the lower ramp section at depth.

Volume

44

Issue

3

First Page

1311

Last Page

1319

DOI

10.1002/2016GL072289

Rights

Licensed to Smith College and distributed CC-BY under the Smith College Faculty Open Access Policy.

Included in

Geology Commons

Share

COinS