Document Type


Publication Date


Publication Title

Proceedings of the London Mathematical Society


Peterson varieties are a special class of Hessenberg varieties that have been extensively studied e.g. by Peterson, Kostant, and Rietsch, in connection with the quantum cohomology of the flag variety. In this manuscript, we develop a generalized Schubert calculus, and in particular a positive Chevalley-Monk formula, for the ordinary and Borel-equivariant cohomology of the Peterson variety Y in type An−1, with respect to a natural S1 -action arising from the standard action of the maximal torus on flag varieties. As far as we know, this is the first example of positive Schubert calculus beyond the realm of Kac-Moody flag varieties G/P.

Our main results are as follows. First, we identify a computationally convenient basis of HS1(Y ), which we call the basis of Peterson Schubert classes. Second, we derive a manifestly positive, integral Chevalley-Monk formula for the product of a cohomology-degree-2 Peterson Schubert class with an arbitrary Peterson Schubert class. Both HS1(Y ) and H (Y ) are generated in degree 2. Finally, by using our Chevalley-Monk formula we give explicit descriptions (via generators and relations) of both the S1 -equivariant cohomology ring HS1(Y ) and the ordinary cohomology ring H (Y ) of the type An−1 Peterson variety. Our methods are both directly from and inspired by those of GKM (Goresky-Kottwitz-MacPherson) theory and classical Schubert calculus. We discuss several open questions and directions for future work.





Peer reviewed post-print. Language included at the request of the publisher: this version differs from the final published version.

Included in

Mathematics Commons