Document Type

Article

Publication Date

4-2016

Publication Title

Pacific Journal of Mathematics

Abstract

Let G be a graph whose edges are labeled by ideals of a commutative ring. We introduce a generalized spline, which is a vertex labeling of G by el- ements of the ring so that the difference between the labels of any two adjacent vertices lies in the corresponding edge ideal. Generalized splines arise naturally in combinatorics (algebraic splines of Billera and others) and in algebraic topology (certain equivariant cohomology rings, described by Goresky, Kottwitz, and MacPherson, among others). The central question of this paper asks when an arbitrary edge-labeled graph has nontrivial gen- eralized splines. The answer is “always”, and we prove the stronger result that the module of generalized splines contains a free submodule whose rank is the number of vertices in G. We describe the module of generalized splines when G is a tree, and give several ways to describe the ring of gener- alized splines as an intersection of generalized splines for simpler subgraphs of G. We also present a new tool which we call the GKM matrix, an analogue of the incidence matrix of a graph, and end with open questions.

Keywords

splines, GKM theory, equivariant cohomology, algebraic graph theory

Volume

281

Issue

2

First Page

333

Last Page

364

DOI

dx.doi.org/10.2140/pjm.2016.281.333

Rights

Licensed to Smith College and distributed CC-BY under the Smith College Faculty Open Access Policy.

Included in

Mathematics Commons

Share

COinS