Document Type


Publication Date


Publication Title

The Astrophysical Journal


We present a survey of optical [O I] emission at 6300 Å toward 65 T Tauri stars at the spectral resolution of ∼7 km s−1 . Past work identified a highly blueshifted velocity component (HVC) tracing microjets and a less blueshifted low-velocity component (LVC) attributed to winds. We focus here on the LVC kinematics to investigate links between winds, jets, accretion, and disk dispersal. We track the behavior of four types of LVC components: a broad and a narrow component (“BC” and “NC,” respectively) in LVCs that are decomposed into two Gaussians which typically have an HVC, and single-Gaussian LVC profiles separated into those that have an HVC (“SCJ”) and those that do not (“SC”). The LVC centroid velocities and line widths correlate with the HVC EW and accretion luminosity, suggesting that LVC/winds and HVC/jets are kinematically linked and connected to accretion. The deprojected HVC velocity correlates with accretion luminosity, showing that faster jets come with higher accretion. BC and NC kinematics correlate, and their blueshifts are maximum at ∼35°, suggesting a conical wind geometry with this semi-opening angle. Only SCs include n13–31 up to ∼3, and their properties correlate with this infrared index, showing that [O I] emission recedes to larger radii as the inner dust is depleted, tracing less dense/hot gas and a decrease in wind velocity. Altogether, these findings support a scenario where optically thick, accreting inner disks launch radially extended MHD disk winds that feed jets, and where inner disk winds recede to larger radii and jets disappear in concert with dust depletion.


circumstellar matter, ISM: jets and outflows, protoplanetary disks, stars: pre-main sequence, stars: winds, outflows






Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Licensed to Smith College and distributed CC-BY under the Smith College Faculty Open Access Policy.


Peer reviewed accepted manuscript.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.