Document Type

Article

Publication Date

2023

Publication Title

Aquatic Microbial Ecology

Abstract

Though historically understudied, due in large part to most species being uncultivable, microbial eukaryotes (i.e. protists) are abundant and widespread across diverse habitats. Recent advances in molecular techniques, including metabarcoding, allow for the characterization of poorly known protist lineages. This study surveys the diversity of SAR (Stramenopila, Alveolata, and Rhizaria), a major eukaryotic clade that is estimated to represent about half of all eukaryotic diversity. SAR lineages use varied metabolic strategies like mixotrophy in dinoflagellates (Alveolata), parasitism in apicomplexans (Alveolata) and labyrinthulids (Stramenopila), and life cycle stages that include encystment and attachment (e.g. in ciliates, Alveolata) to survive in highly dynamic habitats. Using metabarcoding primers designed specifically to target a portion of the 18S small subunit ribosomal RNA (SSU-rRNA) gene of SAR lineages, we compare protist community composition from tide pools in Acadia National Park, Maine, USA. We characterize over 500 lineages, here operational taxonomic units (OTUs), many of which are found abundant in the tide pool environment. We also find that communities vary by month sampled and exhibit patterns by size (i.e. macro-, micro-, and nano-sized). Taken together, these data allow us to further catalog protist diversity in extreme environments (e.g. those subject to extreme fluctuations in temperature and salinity during tidal cycles). Such data are critical in the explorations of biodiversity patterns among microorganisms on our rapidly changing planet.

Keywords

Protist, Metabarcoding, Community analysis, 18S rRNA, Stramenopila, Alveolata, Rhizaria

Volume

89

First Page

143

Last Page

155

DOI

10.3354/ame02003

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Rights

Licensed to Smith College and distributed CC-BY 4.0 under the Smith College Faculty Open Access Policy.

Comments

Peer reviewed accepted manuscript.

Included in

Biology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.