Document Type

Article

Publication Date

2019

Publication Title

Biophysical Journal

Abstract

Motor proteins are nanoscale machines that convert the energy of ATP hydrolysis into the mechanical motion of walking along cytoskeletal filaments. In doing so, they transport organelles and help maintain sub-cellular organization. We previously developed a DNA origami-based calibration approach to extract protein copy number from super-resolution images. Using this approach, we show here that the retrograde motor protein dynein is mostly present as a single motor in the cytosol, whereas a small population of dynein along the microtubule cytoskeleton forms higher-order multimers organized into nano-sized domains. We further demonstrate, using dynein as a test sample, that the DNA origami-based calibration data we previously generated can be extended to super-resolution images taken under different experimental conditions, enabling the quantification of any GFP-fused protein of interest. Our results have implications for motor coordination during intracellular trafficking as well as for using super-resolution as a quantitative method to determine protein copy number at the nanoscale level.

Volume

116

Issue

11

First Page

2195

Last Page

2203

DOI

doi.org/10.1016/j.bpj.2019.04.026

Rights

© the authors

Comments

Author’s submitted manuscript.

Accepted Manuscript Version of published article will be available after June 3, 2020

Included in

Biology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.