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New principles for auxetic periodic design

Ciprian S. Borcea and Ileana Streinu

August 9, 2016

Abstract

We show that, for any given dimension d ≥ 2, the range of distinct pos-
sible designs for periodic frameworks with auxetic capabilities is infinite.
We rely on a purely geometric approach to auxetic trajectories developed
within our general theory of deformations of periodic frameworks.

Keywords: periodic framework, auxetic deformation, mechanism design.

AMS 2010 Subject Classification: 52C25, 74N10

1 Introduction

New digital manufacturing techniques have vastly expanded the possibilities of
generating complex three-dimensional structures, across length scales, and have
opened up new opportunities for kinematic and geometric design to address
functional desiderata. This paper is concerned with periodic structures and
metamaterials with auxetic capabilities, a challenging and fast evolving topic
at the intersection of mathematics, mechanical design and materials science
[7, 13, 17, 5]. Our contribution is to derive new principles for auxetic design
from the geometric theory of auxetic deformations recently introduced in [5].

Auxetic behavior. When stretched, most materials will shrink laterally.
Auxetic behavior is the rather counter-intuitive property exhibited by some ma-
terials that widen laterally upon stretching. In elasticity theory, such materials
are said to have negative Poisson’s ratios [9]. The promise of various applica-
tions and increased interest in obtaining synthetic structures or metamaterials
with this type of response to tensile loading has led to a sequence of studies,
with emphasis on cellular and periodic structures [12, 8, 14, 11, 10, 15, 16, 18, 6].
However, the repertory of auxetic designs proposed in the literature remained
confined to a few dozen examples in dimension two and much less in dimension
three [7]. The authors of [13] remark on p.4792 that “it has been a challenge to
design 3D auxetic micro-/nano-structured materials”.
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New foundations for periodic auxetics. In [5], we introduced a purely
geometric approach to auxetic deformations for crystalline materials and man-
made mechanical structures modeled as periodic bar-and-joint frameworks. This
approach, reviewed in Section 2 below, presents a number of distinct advantages
over the conventional route through Poisson’s ratios. First of all, as a rigorous
mathematical theory, the model can be applied to a wide range of structures,
across length scales, provided that a periodic bar-and-joint framework organi-
zation is the dominant feature. There is no need for experimental or simulated
determinations of Poisson’s ratios, since auxetic capabilities can be recognized
by strictly geometric criteria. In fact, our mathematical theory works in ar-
bitrary dimension. Moreover, the geometric approach clarifies the analysis of
flexible structures with several degrees of freedom. In this case, certain defor-
mation trajectories may be auxetic, while many other trajectories would not be
auxetic. Thus, the notion of auxetic behavior must refer only to a certain type
of one-parameter deformations of a periodic structure.

Auxetic design. The ascendancy of the geometric approach is probably most
conspicuous in matters of design. We have shown in [2, 4] that the stronger no-
tion of expansive behavior, when all distances between joints increase or stay
the same, can be completely elucidated in dimension two in terms of a class of
periodic structures called periodic pseudo-triangulations (and kinematic equiva-
lence classes of refinements to pseudo-triangulations). An example is presented
in Figure 1.

Figure 1: A planar periodic pseudo-triangulation.

We have also shown that expansive implies auxetic, hence this leads to an infinite
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gallery of planar auxetic periodic mechanisms, by virtue of the fact that all
periodic pseudo-triangulations have exactly one degree of freedom to deform.
While periodic pseudo-triangulations are easy to generate (see [5] section 5(i) for
a description and illustration of the procedure), proving their stated properties
is not so elementary. Interested readers can find the full treatment in [4].

The expansive implies auxetic principle is valid in arbitrary dimension, but
the structure of expansive periodic frameworks in three or higher dimensions
is only partially understood [3]. In [5], we have relied on the suggestive value
of necessary conditions for expansiveness for a couple of new designs of three
dimensional periodic frameworks with auxetic capabilities.

Main contribution. In the present work, we formulate and prove, in arbi-
trary dimension d ≥ 2, a general principle for converting a finite linkage with
adequate prerequisites on d pairs of unconnected joints into a periodic framework
with auxetic capabilities. From the standpoint of geometric auxetics [5] these
prerequisites are natural, elementary and easily satisfied. This implies endless
possibilities for auxetic design in arbitrary dimension.

Overview. In order to control the number of degrees of freedom, we start
with a finite linkage in Rd without self-stress, that is, with infinitesimally inde-
pendent edge constraints. If the linkage has d pairs of vertices which provide, as
free vectors, a basis of Rd, we adopt the lattice generated by these vectors as pe-
riodicity lattice and obtain an associated periodic framework by replicating the
finite piece via all translations in the periodicity lattice. This basic construction
converts the finite linkage into a periodic framework with the same number of
(periodic) degrees of freedom, or, more precisely, with the same smooth local
deformation space. Thus, in order to obtain auxetic capabilities for the periodic
framework we have to require adequate deformations for the finite linkage. It
will be seen, as we unfold this scenario, that the resulting requirement is simply
an expression of the defining property of auxetic trajectories and can be satisfied
by an infinite gallery of finite linkage designs. We emphasize the fact that both
the simplicity of the principle and the unlimited variety of possible examples
come from our geometric theory of auxetic deformations [5].

After reviewing in Section 2 the essential ingredients of this geometric ap-
proach, we describe the passage from finite linkages to periodic frameworks in
Section 3. The design requirement for obtaining periodic frameworks with aux-
etic capabilities is stated in Section 4 and then construction techniques for finite
linkages with appropriate features are developed in Section 5. Proceedures for
reducing the number of degrees of freedom to one and obtaining auxetic periodic
mechanisms are described next. In Section 7 we show that affine transformations
of a periodic framework preserve the infinitesimal auxetic cone. This result is
relevant for classification criteria. A gallery of examples in Section 8 presents an
infinite series of auxetic periodic mechanisms in dimension three. We mention
some topics worthy of further investigation in our concluding Section 9.
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2 The geometric theory of periodic auxetics

In this section, we review the essential notions of our geometric theory of auxetic
one-parameter deformations of periodic frameworks. For more background and
full details, we refer to [1, 5].

Periodic graph. A d-periodic graph is a pair (G,Γ), where G = (V,E) is a
simple infinite graph with vertices V , edges E and finite degree at every vertex,
and Γ ⊂ Aut(G) is a free Abelian group of automorphisms which has rank d,
acts without fixed points on vertices and edges and has a finite number of vertex
and orbits. The group Γ is isomorphic to Zd and is called the periodicity group
of the periodic graph G. Its elements γ ∈ Γ ' Zd are referred to as periods of
G.

Periodic placement of a periodic graph. A periodic placement of a d-
periodic graph (G,Γ) in Rd is defined by two functions:

p : V → Rd and π : Γ ↪→ T(Rd)

where p assigns points in Rd to the vertices V of G and π is an injective ho-
momorphism of Γ into the group T(Rd) of translations in the Euclidean space
Rd, with π(Γ) being a lattice of rank d. These two functions must satisfy the
natural compatibility condition: p(γv) = π(γ)(p(v)).

Periodic framework. A placement which does not allow the end-points of
any edge to have the same image defines a d-periodic bar-and-joint framework
in Rd, with edges (u, v) ∈ E corresponding to bars (segments of fixed length)
[p(u), p(v)] and vertices corresponding to (spherical) joints. Two frameworks
are considered equivalent when one is obtained from the other by a Euclidean
isometry.

Periodic deformation. A one-parameter deformation of the periodic frame-
work (G,Γ, p, π) is a (smooth) family of placements pτ : V → Rd parametrized
by time τ ∈ (−ε, ε) in a small neighborhood of the initial placement p0 = p,
which satisfies two conditions: (a) it maintains the lengths of all the edges
e ∈ E, and (b) it maintains periodicity under Γ, via faithful representations
πτ : Γ → T(Rd) which may change with τ and give an associated variation of
the periodicity lattice of translations πτ (Γ).

After choosing an independent set of generators for the periodicity lattice Γ,
the image πτ (Γ) is completely described via the d × d matrix Λτ with column
vectors given by the images of the generators under πτ . The associated Gram
matrix is given by:

ωτ = ω(τ) = ΛtτΛτ .
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Auxetic path. A deformation path (G,Γ, pτ , πτ ), τ ∈ (−ε, ε) is called auxetic
when the curve of Gram matrices ω(τ) defined above has all its tangents in the
cone of positive semidefinite symmetric d × d matrices. When all tangents are
in the positive definite cone, the deformation is called strictly auxetic.

This form of the auxeticity criterion, established in [5], Thm. 3.1, will be con-
venient for our present purposes. We note that the auxetic character of a one-
parameter deformation is determined by the curve of Gram matrices of a basis
of periods and strict auxeticity at one instance implies strict auxeticity in a
neighborhood.

3 From finite to periodic

We assume a given dimension d ≥ 2. A linkage in Rd is a pair L = (G, p), where
G = (V,E) is a simple connected graph with n = |V | vertices and m = |E| edges
and p : V → Rd is a placement of the vertices in Rd. Edges are then conceived as
rigid straight bars between the corresponding vertices, which serve as spherical
joints for the linkage. It is assumed here that all edges correspond to non-zero
segments. Linkages which differ by an isometry of Rd are considered equivalent,
that is T ◦ p and p are equivalent placements for any Euclidean isometry T .
Simply put, equivalent linkages are identified.

The kinematics of linkages is a classical topic and we mention here only
aspects and results directly relevant for our constructions. In particular, we use
only linkages with infinitesimally independent edge constraints. In other words,
the rows of the rigidity matrix are linearly independent. By the implicit function
theorem, the local deformation space will be smooth, of dimension

f = nd−m−
(
d+ 1

2

)
(1)

where
(
d+1

2

)
is the dimension of the Euclidean isometry group E(d). We will

need f ≥ 1, when f is also called the number of degrees of freedom of the linkage.

For the construction we are about to describe, we assume that d pairs of
vertices {vi(k), vj(k)} ⊂ V , k = 1, ..., d, have been given, with the property that
the vectors

λk = p(vj(k))− p(vi(k)) ∈ Rd, k = 1, ..., d (2)

form a basis of Rd. Note that, while in each pair vi 6= vj , different pairs may
share one vertex.

Let Λ = {λ =
∑d
k=1 nkλk | nk ∈ Z}, be the rank d lattice generated by

this basis. This lattice will play the role of periodicity lattice for the periodic
framework associated to our linkage with marked pairs.

We observe first that when we identify in G all vertices which appear in
one of the given pairs, that is, if we put vik ≡ vj(k), k = 1, .., d and maintain
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all edges (some possibly converted into loops), we obtain a quotient multigraph
with exactly ñ = n− d vertices and m̃ = m edges.

Let V ⊂ V be a complete set of representatives for the n − d vertices of
the quotient multigraph. Then, the vertices Ṽ of the periodic graph will be
recorded as symbols v + λ, v ∈ V, λ ∈ Λ and placed by p̃ : Ṽ → Rd at
p̃(v + λ) = p(v) + λ. The edge set Ẽ of the periodic graph G̃ = (Ṽ , Ẽ) is made
of all (formal) Λ translates of E (with V seen as included in Ṽ ). For periodicity
group Γ we have Λ itself, with the natural action on G̃. The resulting periodic
framework (G̃,Γ, p̃, π), where π is the identification Γ = Λ, does not depend on
the choice of representatives V.

Figure 2 illustrates the procedure for d = 2. The planar linkage is a four-
bar mechanism configured as a pseudo-triangle. The chosen pairs of vertices
correspond to the diagonals. The associated periodic framework is a periodic
pseudo-triangulation described as a “double arrowhead” pattern.

Figure 2: A planar four-bar mechanism with a marked pair of vertices and the
associated “double arrowhead” periodic framework.

We summarize the general procedure as follows.

Theorem 1 Let L = (G, p) be a connected linkage in Rd, with n vertices and
m ≤ nd−

(
d+1

2

)
edges, such that:

(a) the m edges impose infinitesimally independent constraints,
(b) there are d marked pairs of vertices, with the corresponding vectors (2)

providing a basis of Rd.

Then, there is a unique periodic framework L̃ = (G̃,Γ, p̃, π), with the follow-
ing four properties:

(i) the periodicity group Γ is identified with the lattice generated by the given
basis,
(ii) the linkage L is contained in the framework L̃,
(iii) the edges of L provide a complete set of representatives for the edge orbits
of L̃ under periodicity,
(iv) every vertex orbit of L̃ has at least one representative in L.

This unique associated periodic framework L̃ has ñ = n−d vertex orbits and
m̃ = m edge orbits and the local deformation spaces of L and L̃ can be identified.
Their common dimension is
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f = nd−m−
(
d+ 1

2

)
= ñd− m̃+

(
d

2

)
(3)

The claim on preservation of degrees of freedom follows immediately from [1],
p.2641. The last term in (3) is the dimension formula for periodic deformations
when edge constraints are infinitesimally (and hence locally) independent.

The reader may observe that the planar framework in Figure 1 can also be
obtained (in two ways) by a passage from finite to periodic.

4 The main auxetic design principle

The correspondence described in Theorem 1 turns a finite linkage L = (G, p) into
a periodic framework L̃ = (G̃,Γ, p̃, π) with the same local deformation space.
Thus, a one-parameter local deformation (G, pτ ) for L turns into a (periodic)
one-parameter local deformation (G̃,Γ, p̃τ , πτ ) for L̃. If we want the latter to
be an auxetic path, the criterion of [5], Thm. 3.1, recalled above at the end of
Section 2, requires the generators of the periodicity lattice to give a curve of
Gram matrices ω(τ) with tangent directions dω

dτ (τ) in the positive semidefinite
cone. Obviously, this curve is determined by the effect of the linkage deformation
pτ on the d pairs of vertices marked on the linkage at the outset.

The essence of our auxetic design principle can be stated already.

Theorem 2 The periodic framework L̃ has a non-trivial auxetic deformation
path if and only if the finite linkage L has a local one-parameter deformation with
the following property: the Gram matrix of the basis given by the d marked pairs
of vertices evolves (in the space of d× d symmetric matrices) as a non-constant
curve with all its tangents in the positive semidefinite cone.

An important case, which involves only infinitesimal considerations, is when
the tangent direction dω

dτ (0) at the initial moment τ = 0 is actually in the
positive definite cone. By continuity, this is enough to guarantee an interval
τ ∈ (−ε, ε) where the tangent remains in the positive definite cone and the
periodic deformation is strictly auxetic.

For explicitness, we unfold the more formal details.

With notations introduced above in (2), the variation with τ of the marked
basis is given by

λk(τ) = pτ (vj(k))− pτ (vi(k)) ∈ Rd, k = 1, ..., d (4)

The d × d matrix with these column vectors is denoted Λ(τ), hence the Gram
matrix of the marked basis is

ω(τ) = Λt(τ)Λ(τ). (5)
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The velocity vector at moment τ for this parametrized curve is

dω

dτ
(τ) =

dΛt

dτ
(τ)Λ(τ) + Λt(τ)

dΛ

dτ
(τ). (6)

The auxeticity requirement is that all velocity vectors (6) for τ in a small neigh-
borhood of 0 belong to the positive semidefinite cone. At moment τ = 0, we
have Λ(0) = Λ and

dω

dτ
(0) =

dΛt

dτ
(0)Λ + Λt

dΛ

dτ
(0). (7)

with the derivative dΛ
dτ (0) depending only on the infinitesimal deformation cor-

responding to pτ . As noticed above, when (7) is in the interior of the positive
semidefinite cone, that is dω

dτ (0) is positive definite, strict auxeticity follows for
small enough τ . We state explicitly this corollary, since this form of the principle
implicates only infinitesimal deformations of L and is most useful for construct-
ing examples.

Corollary 3 If, for some infinitesimal deformation of L, the corresponding
infinitesimal variation dω

dτ (0) of the Gram matrix is positive definite, the periodic

framework L̃ has a strictly auxetic deformation path.

For a simple illustration, we revisit the example given in Figure 2. The
quadrilateral has one degree of freedom and the obvious local deformation for
our symmetric configuration, shown in Figure 3, increases the lengths of the
two diagonals, while maintaining their orthogonality. This means that dω

dτ (0)
is a diagonal 2 × 2 matrix with positive diagonal entries. Hence, the double
arrowhead periodic framework is a strictly auxetic one degree of freedom pe-
riodic mechanism (as long as the quadrilateral remains concave i.e. remains a
pseudo-triangle).

Figure 3: Deforming the quadrilateral in Figure 2.

5 Construction techniques

In this section we discuss construction techniques for obtaining finite linkages
L which satisfy the auxetic requirement formulated in Theorem 2, or rather
the strict auxetic criterion of Corollary 3. It will soon become apparent that
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examples can be constructed ad libitum in any dimension d ≥ 2. The general
construction ideas surveyed here offer wide opportunities for applications, since
additional specifications can be met by ingenuity and refinement in the finite
linkage design.

We begin with an examination of the case when all d pairs of vertices marked
on the linkage L = (G, p) have a common vertex v0. Thus, convenient labeling
will have our basis expressed as

λk = p(vk)− p(v0), k = 1, ..., d (8)

with the Gram matrix ω = (〈λi, λj〉)ij , 1 ≤ i, j ≤ d. Thus, we aim at de-
signing L, so that it has an infinitesimal deformation making the corresponding
infinitesimal variation ω̇ = dω

dτ (0) of the Gram matrix positive definite.

We may assume, without violating the condition on infinitesimally inde-
pendent edge constraints, that L contains a rigid part (e.g. a d-dimensional
simplex) and we shall refer to it as the “scaffold”. Then, we can attach to this
scaffold, without any redundancy of new bars, other elements of the linkage,
with adequate control on the possible motion of certain “vertices of interest”.
In our case, the vertices of interest are those labeled v0, ..., vd, and we may con-
nect them to the scaffolding as follows: v0 is rigidly connected, while each vk,
k = 1, ..., d is attached via a “hinge connection”, to be described in the next
lemma, which allows only one degree of freedom relative to the scaffold, namely
the rotation of vk around that hinge.

Lemma 4 Suppose we have a (spanning and minimally) rigid linkage in Rd,
referred to as a “scaffold”. Suppose we have a new vertex v and we want to
connect it to the scaffold in such a way that it has only one degree of freedom
with prescribed direction for its infinitesimal motion relative to the scaffold.
Then, we choose a (d − 2)-simplex, referred to as a “hinge” and position it in
the hyperplane through v with normal direction prescribed by the infinitesimal
motion allowed for v (but away from v). We connect this hinge rigidly (and
without redundancy) to the scaffold and connect v to the (d− 1) vertices of the
simplex. The resulting linkage allows only a rotation of v around the hinge as
relative motion and the infinitesimal direction of motion is the one prescribed.

Remark. In more suggestive terms, this lemma may be called “the trapdoor
principle”, since v and the hinge form a panel (codimension one “trapdoor”)
and this panel can only rotate around its fixed hinge. In Figure 4 we show the
result of applying this principle to obtain a linkage in R3 with controlled motion
for three vertices relative to a (fixed) tetrahedral scaffold. The three marked
arrows would be λk, k = 1, 2, 3 and this shows that their infinitesimal variation
can be arranged to yield a positive definite ω̇, as argued in the next lemma.

Lemma 5 Suppose p0, p1, ..., pd are points in Rd with
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Figure 4: Paneled simplex

λk = pk − p0, k = 1, ..., d

a basis of Rd. The point p0 is assumed fixed and may be taken as the origin.
The points pk are subject to infinitesimal displacements µk 6= 0 which have the
direction of the corresponding altitude from pk in the simplex [p0...pd] and are
all pointing outwards. Then, the resulting infinitesimal variation ω̇ of the Gram
matrix ω = (〈λi, λj〉)ij is positive definite.

Proof. Let us assume that only one point, say pk, moves infinitesimally by
µk 6= 0, with the other points fixed. Then ω̇ is positive semidefinite of rank one,
with the only non-zero entry at (k, k). The lemma follows by linear combination
(with all coefficients one).

In summary, the trapdoor principle (Lemma 4) shows how to design a linkage
with prescribed infinitesimal motions for marked vertices v0, ...vd. When these
prescriptions are as in Lemma 5 (with pi = p(vi)) we obtain a positive definite
infinitesimal variation of the Gram matrix of periods, hence strictly auxetic
capabilities for the associated periodic framework. Figure 5 illustrates this type
of construction for d = 2.

Figure 5: A finite linkage with two degrees of freedom with auxetic capabilities
for the associated periodic framework. The deployed configuration on the right
can be reached via an auxetic path.
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Figure 6 shows the three-dimensional version of the same scheme.

Figure 6: The d = 3 version of the planar scenario in Figure 5. The finite linkage
is a paneled tetrahedron, as in Figure 4. Only one ‘in depth’ translate is shown.

Note that these constructions lead to linkages with d degrees of freedom. In
Section 6 we describe a simple reduction procedure to one degree of freedom
and strictly auxetic motion for the associated periodic framework.

It is fairly transparent by now that similar scenarios apply for other patterns
of d pairs of vertices in the finite linkage L. If we consider, for instance, the case
of no common vertex for any two pairs, we may label the pairs (vk, wk), with
basis

λk = p(wk)− p(vk), k = 1, ..., d.

We may design L with all vk, k = 1, ..., d fixed to the scaffold and λk mutually
orthogonal and each wk, constrained by hinge connections to move infinitesi-
mally along λk. Again, we obtain associated periodic frameworks with strictly
auxetic capabilities.

For other patterns of d marked pairs one may use orthogonal splittings of Rd

and maintain orthogonality for adequate partitions of the d pairs. We dispense
with further inventory pursuits here and consider instead a type of structure
which will be useful for deriving an explicit infinite series of non-isomorphic
d-periodic graphs underlying auxetic periodic mechanisms for d ≥ 3.

Let d ≥ 3 and consider the finite linkage in Rd with n = d + 2 vertices
and m = 2d edges which corresponds to the case shown in Figure 7 for d = 3.
For a more suggestive description, we adopt the following language. There
is a hyperplane, to be called ‘floor’, which contains d of the placed vertices,
configured as a regular (d − 1)-simplex, but not connected by edges. The two
remaining vertices lie above the center of the (d − 1)-simplex and both are
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connected by edges to all d points on the floor. As a result, all bars from one
or the other of the two points are of equal length and the line through the two
points is orthogonal to the floor (and will be called ‘vertical’). The vectors given
by d marked pairs of vertices are: the vertical vector between the two points
above the floor and the (d− 1) ‘horizontal’ vectors from one point on the floor
to the remaining (d− 1) points on the floor.

Figure 7: A finite linkage in R3, with 5 vertices, 6 edges and 3 pairs of vertices
marked by arrows. A fragment of the associated periodic framework is shown
nearby. It has 2 orbits of vertices and 6 orbits of edges modulo periodicity.

The indicated vectors become periods and generate the periodicity lattice for
the associated periodic framework. We see that, when using horizontal periods,
the floor goes to itself and gives a floor for the periodic framework. Repeated
translations by the vertical period will generate an infinite array of such floors.
Floors do not contain edges. In Figure 7, replicas of the floor (d − 1)-simplex
are highlighted.

There are
(
d
2

)
degrees of freedom and a natural set of parameters for the

deformations of the finite linkage would be the (squared) distances between the
vertices of the floor simplex. A strictly auxetic deformation trajectory for the
periodic framework can be immediately proposed based on a dilation motion for
the floor simplex. The vertical vector remains orthogonal to the floor since the
two end-points project to the circumcenter of the floor simplex. The end-point
closer to the floor approaches faster than the remote one, resulting in a (squared)
length increase for the vertical period vector. Thus, ω̇ is clearly positive definite
for this kind of local deformation trajectory. Other auxetic trajectories (with
ω̇ semipositive definite of rank two) will be described in the next section, in
connection with ways of reducing from

(
d
2

)
degrees of freedom to one.
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6 Reduction to one degree of freedom

In this section we show first that the periodic frameworks with d degrees of free-
dom obtained when using our auxetic design principle in the manner described
in Section 5 can be turned into periodic frameworks with a single degree of
freedom which are locally strictly auxetic.

More precisely, let us assume that we have constructed a finite linkage L =
(G, p) in Rd, with d pairs of vertices marked as (v0, vk), k = 1, ..., d. We assume
at the same time, that the rigid part of L called scaffold is fixed and includes
v0, which is placed at the origin. The linkage has d degrees of freedom due to
the hinge connections of the d vertices vk, k = 1, ..., d, to the scaffold.

We let pk = p(vk), k = 1, ..., d denote the initial positions and consider
a deformation path with infinitesimal displacements ṗk for the vertices vk, as
needed when satisfying a strictly auxetic prerequisite. In particular, this is the
setting illustrated above in connection with Figures 5 and 6.

Lemma 6 The linkage L can be turned into a linkage L∗ which has a single
degree of freedom and a deformation path with the same infinitesimal displace-
ments ṗk for the vertices vk, k = 1, ..., d.

Proof. We introduce a new vertex w with a sufficiently general position q. We
connect w with all vk, k = 1, ..., d. Then, the infinitesimal displacement q̇
of w which is compatible with the infinitesimal displacements ṗk is uniquely
determined by the linear system:

〈ṗk − q̇, pk − q〉 = 0, k = 1, ..., d (9)

Now, we may apply the ‘trapdoor principle’ (Lemma 4) and construct a hinge
connection for w to the scaffold, with q̇ as the allowed direction of infinitesimal
displacement. This yields the desired linkage L∗ with one degree of freedom.

Figure 8: The planar linkage in Figure 5 has two degrees of freedom but can
be converted to a single degree of freedom mechanism which retains the desired
infinitesimal deformation on the vertices v0, v1, v2.
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We illustrate in Figure 8 a simple conversion of the linkage used earlier in
Figure 5 into a linkage with just one degree of freedom. Obviously, this kind of
operation has considerable leeway.

Remark. For the associated periodic framework we obtain strict auxeticity (i.e.
ω̇ positive definite) at the initial moment, hence a strictly auxetic deformation
path defined on some interval (−ε, ε).

A somewhat different procedure will be described presently for the type of
frameworks related to Figure 7. In this setting, d ≥ 3 and the task is to reduce
the degrees of freedom from

(
d
2

)
down to one. For simplicity and the benefit of

figures, we conduct our discussion in dimension three. The arguments in higher
dimensions are completely analogous.

The main idea is illustrated in Figure 9. We operate in the associated peri-
odic framework, where we want to introduce

(
d
2

)
−1 new edge orbits, that is (for

d = 3) two new edge orbits. Recall that highlighted triangles belong to stacked
floors. Floors do not contain edges, but are organized by horizontal periodicity.
The figure shows three triangles in one floor and one triangle in the floor above.
The representatives TN and TC of the two new edge orbits are shown as darker
segments.

Figure 9: Two new edge orbits in the associated periodic framework.

Note that the three edges from the top vertex to the triangle in the upper floor
belong, by periodicity, to the original periodic framework, which has six edges
incident to every vertex. Recall that we assumed an initial configuration with
equilateral floor triangles and the vertical periods positioned over the centers of
floor triangles. With the two new edge orbits, we obtain a periodic framework
with the same periodicity lattice, but with eight edges incident to every vertex.
In the figure, only the top vertex shows all eight bars incident to it. With these
caveats taken into account, we proceed with the arguments which prove the
auxetic character of the resulting periodic mechanism.

The triangle TAC is determined by the two edges TA and TC, together
with the median TB. This means that the horizontal period AB has deter-
mined length. Since MN is the same period, the triangle TMN is completely
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determined. Thus, the periodic mechanism can only open up the dihedral angle
of the planes TAB and TMN which have a common line with the direction of
the period AB. Since T remains on the perpendicular bisector of AB, so does
M . Thus, N remains on the perpendicular bisector of BC. We have argued
earlier that the vertical period remains vertical (i.e. perpendicular on the floor)
and increases in length. All in all, the infinitesimal variation of the Gram ma-
trix of periods has two positive diagonal entries (corresponding to the vertical
period and AM) and zero elsewhere. Hence the motion is auxetic.

Remark. For a suggestive reading of Figure 9 in higher dimension d, the AB
part of the floor triangle should be conceived as a facet of the floor simplex. The
vertex T will be connected to all but one of the vertices and edge-midpoints of
the duplicated simplex in the lower floor. All edges incident to T in the resulting
one degree of freedom periodic framework are contained in two hyperplanes
(‘roofs’), which play the role of the two planes TAC and TMN in the figure.
The auxetic mechanism may be fancied as a periodic array of (crisscrossing and
interlaced) opening roofs as proposed in Figure 10.

Figure 10: Auxetic mechanism. The fragment shows three floors. Alternative
view as “breathing stacked roofs”. Inhaling is auxetic. The one degree of
freedom deformation can be parametrized by the dihedral angle of a roof. The
floors vary accordingly. The framework edges are all contained in roof planes.
Floors contain no edges but must respect periodicity constraints.

We may observe at this point that there are other ways of introducing new
edge orbits for a reduction to one degree of freedom mechanisms. If we fol-
low the pattern indicated in Figure 11, we obtain a series of non-isomorphic
periodic graphs with framework realizations which are auxetic periodic mech-
anisms. Since the roof planes are the same in this series, the resulting auxetic
mechanisms are kinematically equivalent, although structurally distinct. This
shows that equivalence criteria in periodic auxetics must be introduced with
some care. Another aspect deserving attention when attempting classifications
is affine equivalence, discussed in the next section.
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Figure 11: Alternative way for introducing new edge orbits (in the same roof
planes).

7 Affine transformations

In this section we show that the infinitesimal auxetic cone of a periodic frame-
work is preserved under affine transformations, that is, the natural isomorphism
of the corresponding vector spaces of infinitesimal deformations [1], Prop. 3.7,
pg. 2639, takes one auxetic cone to the other. While this fact is not directly
intuitive, it has a straightforward and short proof in our geometric theory of
periodic auxetics.

We adopt the following notations and setting: F = (G,Γ, p, π) is a periodic
framework in Rd, with n vertex orbits and m edge orbits. After a choice of
independent generators for Γ, the lattice of periods π(Γ) of the framework is de-
scribed by a d×d matrix Λ, with columns given by the images of the generators.
We denote by pi, i = 1, ..., n the positions of a complete set of representatives
for the vertex orbits. An infinitesimal deformation of the framework F is deter-
mined by the infinitesimal variation ṗi of the positions pi and the infinitesimal
variation Λ̇ of the periodicity matrix Λ.

Since the effect of translations is trivial, we assume our affine transfor-
mation to be a linear map A : Rd → Rd. Then the transformed framework
A(F) has vertex representatives at Api and periodicity matrix Λ1 = AΛ. The
natural isomorphism between infinitesimal deformations takes (ṗi, Λ̇) for F to
((At)−1ṗi, (A

t)−1Λ̇) for A(F). Thus, Λ̇1 = (At)−1Λ̇ and Λ̇t1 = Λ̇tA−1.

Auxetic deformations for F are those with positive semidefinite Λ̇tΛ + ΛtΛ̇
and the isomorphism gives

Λ̇t1Λ1 + Λt1Λ̇1 = Λ̇tΛ + ΛtΛ̇ � 0 (10)

confirming the preservation of the auxetic cone.

Remark. When interpreted in the context of our auxetic design principles, this
result says that if a finite linkage L in Rd satisfies the strict auxetic prerequisites
for d pairs of vertices, then any affine transform of L will satisfy those prerequi-
sites for the corresponding d pairs. Nevertheless, the intervals where an auxetic
path for the associated periodic frameworks would be defined may well differ.
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8 An infinite gallery

Our gallery is dedicated to new examples in dimension three. We show that
our main auxetic design principle can be applied to an infinite series of finite
linkages in R3 of a rather elementary nature. We use minimally rigid linkages
with one edge removed and adequate marking of three pairs of vertices.

Let k ≥ 3 be an integer and consider a regular polygon with 3k edges inscribed
in the unit circle. The plane of the circle will be called horizontal. We mark
as v0, v1, v2 three vertices which have from one to another exactly n edges and
form an equilateral triangle. Then, we take two points w1, w2 on the vertical axis
through the center of the circle. The linkage denoted Mk has n = 3k+2 vertices
and m = 9k edges and is obtained from the regular polygon by connecting w1

and w2 to all its vertices. When w1 and w2 are on opposite sides of the horizontal
plane, we have the one-skeleton of a convex polyhedron with triangular faces.
By Cauchy’s theorem, the linkage is minimally rigid. By reflecting one part
of the structure to the other side of the horizontal plane, we see that minimal
rigidity holds as well, hence Mk is minimally rigid either way. We’ll need the
case with w1 and w2 on the same side, say above the horizontal plane, and we
assume w1 closer to the plane. The linkage to be used for obtaining a periodic
framework is denoted Lk and is derived from Mk by deleting an edge from
the polygonal chain between v1 and v2 and marking the three pairs of vertices
(w1, w2), (v0, v1) and (v0, v2). Figure 12 shows L3 next to the planar diagram
used for describing its motion.

Figure 12: The finite linkage L3 with a diagram for the deformation effect in
the horizontal plane.

The deformation mechanism of Lk is easily represented since the vertices of
the horizontal polygon must remain coplanar: they are equally distanced from
w1, respectively w2, hence on the circle of intersection of two spheres. When
following the deformation trajectory in the direction of an augmenting radius
for this intersection circle, the vector from w1 to w2 remains orthogonal to the
circle plane and locally increases in length. Thus, for strict auxeticity, we have
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to examine only the variation of the 2× 2 Gram matrix of the two vectors, say
λ1, λ2, corresponding to the pairs (v0, v1) and (v0, v2). This is an elementary
computation. With the radius r of the circle as parameter, we find:

λ1,2 = r(1− cos θ,± sin θ) (11)

where the expression of θ as a function of r is given by

θ = θ(r) = 2k arcsin (
1

r
sin

π

3k
) (12)

For the Gram matrix ω(r) = (〈λi, λj〉), 1 ≤ i, j ≤ 2, it follows that dω
dr (1) is

positive definite. We conclude (via Corollary 3) that the one degree of freedom
periodic framework associated to Lk is a strictly auxetic periodic mechanism in
a neighborhood of the initial position. Thus, with k ≥ 3, we obtain an infinite
series of distinct auxetic periodic structures.

Remark. Considering that a small enough change in the placement of the
vertices will maintain strict auxeticity, the self-crossing resulting in the periodic
framework from the planarity of the polygonal vertices in Lk can be avoided by
starting with a slightly distorted version of Lk.

9 Conclusion

The mathematical design principles presented here are based on the geometric
foundations of periodic auxetics introduced in [5]. We have shown that, in spite
of a rather conspicuous sparsity of auxetic designs in the existing literature,
there are unlimited possibilities for generating periodic frameworks with auxetic
capabilities in any dimension. The main procedure discussed in this paper
converts any finite bar-and-joint mechanism in Rd with adequate motion for d
marked pairs of joints into an auxetic periodic framework mechanism.

This work has brought to higher visibility a number of topics and features
which deserve further investigation. We propose them as open problems.

(1) Identify the class of periodic graphs obtained by the passage from finite to
periodic described in Section 3.

(2) Formulate precise and useful criteria for equivalence/non-equivalence of aux-
etic periodic mechanisms.

(3) Determine and control the interval where a deformation path remains aux-
etic.
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