Masthead Logo

Smith ScholarWorks

Mathematics and Statistics: Faculty Publications

Mathematics and Statistics

6-28-2014

Counting Edge-Kempe-Equivalence Classes for 3-Edge-Colored Cubic Graphs

Sarah-Marie Belcastro University of Massachusetts Amherst, smbelcas@toroidalsnark.net

Ruth Haas Smith College, rhaas@smith.edu

Follow this and additional works at: https://scholarworks.smith.edu/mth facpubs

Part of the Mathematics Commons

Recommended Citation

Belcastro, Sarah-Marie and Haas, Ruth, "Counting Edge-Kempe-Equivalence Classes for 3-Edge-Colored Cubic Graphs" (2014). Mathematics and Statistics: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/mth_facpubs/1

This Article has been accepted for inclusion in Mathematics and Statistics: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu

Counting edge-Kempe-equivalence classes for 3-edge-colored cubic graphs

sarah-marie belcastro and Ruth Haas Department of Mathematics and Statistics Smith College, Northampton, MA 01063 USA smbelcas@toroidalsnark.net, rhaas@smith.edu

September 11, 2012

Abstract

Two edge colorings of a graph are *edge-Kempe equivalent* if one can be obtained from the other by a series of edge-Kempe switches. This work gives some results for the number of edge-Kempe equivalence classes for cubic graphs. In particular we show every 2-connected planar bipartite cubic graph has exactly one edge-Kempe equivalence class. Additionally, we exhibit infinite families of nonplanar bipartite cubic graphs with a range of numbers of edge-Kempe equivalence classes. Techniques are developed that will be useful for analyzing other classes of graphs as well.

1 Introduction and Summary

Back in the frosts of time, Alfred Bray Kempe introduced the notion of changing colorings by switching maximal two-color chains of vertices (for vertex colorings) [4] or edges (for edge colorings). The maximal two-color chains are now called *Kempe chains* and *edge-Kempe chains* respectively; switching the colors along such a chain is called a *Kempe switch* or *edge-Kempe switch* as appropriate. This process is of interest across the study of colorings. It is also of interest in statistical mechanics, where certain

dynamics in the antiferromagnetic q-state Potts model correspond to Kempe switches on vertex colorings [8], [9]. In some cases, these dynamics also correspond to edge-Kempe switches [7].

In the present work we are concerned with understanding when two edgecolorings are equivalent under a sequence of edge-Kempe switches and when not. We allow multiple edges on our (labeled) graphs; loops are prohibited (and will mostly be excluded by other constraints such as 3-edge colorability).

A single edge-Kempe switch is denoted by -. That is, if coloring c_i becomes coloring c_j after a single edge-Kempe switch, then $c_i - c_j$. If coloring c_j can be converted to coloring c_k by a sequence of edge-Kempe switches, then c_j and c_k are equivalent; we denote this by $c_j \sim c_k$. Because \sim is an equivalence relation, we may consider the equivalence classes on the set of colorings of a graph G edge-colored with n colors. In this paper we focus on the *number* of edge-Kempe equivalence classes and denote this quantity by K'(G, n). (In other work this has been denoted Ke(L(G), n) [6] and $\kappa_E(G, n)$ [5].)

Note that any global permutation of colors can be achieved by edge-Kempe switches because the symmetric group S_n is generated by transpositions. Thus two colorings that differ only by a permutation of colors are edge-Kempe equivalent.

Recall that $\Delta(G)$ is the largest vertex degree in G and that $\chi'(G)$ is the smallest number of colors needed to properly edge-color G. When more colors are used than possibly needed to edge-color the graph, then there is but a single edge-Kempe equivalence class, i.e., when $n > \chi'(G) + 1$ then K'(G, n) = 1 [6, Thm. 3.1]. More is known if $\Delta(G)$ is restricted; when $\Delta(G) \leq 4, K'(G, \Delta(G) + 2) = 1$ [5, Thm. 2] and when $\Delta(G) \leq$ $3, K'(G, \Delta(G) + 1) = 1$ [5, Thm. 3]. For bipartite graphs there is a stronger result: when $n > \Delta(G), K'(G, n) = 1$ [6, Thm. 3.3]. Little is known about $K'(G, \Delta(G))$.

This paper focuses on cubic graphs, particularly those that are 3-edge colorable. Mohar suggested classifying cubic bipartite graphs with K'(G, 3) = 1[6]; we provide a partial answer here. Mohar also points out in [6] that it follows from a result of Fisk in [1] that every planar 3-connected cubic bipartite graph G has K'(G, 3) = 1. We show (in Section 4) that for G planar, bipartite, and cubic, G has K'(G, 3) = 1.

The remainder of the paper proceeds as follows. Section 2 introduces decompositions of cubic graphs along 2- or 3-edge cuts that preserve planarity and bipartiteness. The theorems in Section 3 use the edge-cut decompositions

to combine and decompose 3-edge colorings. We also show that any edge-Kempe equivalence can avoid color changes at a particular vertex. Then, in Section 4 we compute K'(G, 3) in terms of the edge-cut decomposition of G, and exhibit infinite families of simple nonplanar bipartite cubic graphs with a range of numbers of edge-Kempe equivalence classes.

2 Decompositions of Cubic Graphs

Any 3-edge cut of a cubic graph may be used to decompose a cubic graph Ginto two cubic graphs G_1, G_2 as follows. For 3-edge cut $E_C = \{(s_{11}s_{21}), (s_{12}s_{22}), (s_{13}s_{23})\}$ where vertices s_{1j} are on one side of the cut and s_{2j} on the other, let the induced subgraphs of $G \setminus E_C$ separated by E_C be G'_1, G'_2 . Then for i = 1, 2 define G_i by $V(G_i) = V(G'_i) \cup v_i$ and $E(G_i) = E(G'_i) \cup E_{C_i}$ where $E_{C_i} = \{(v_i s_{ij}) | j = 1, 2, 3\}$, as is shown in Figure 1. This decomposition will be written as $G = G_1 \vee G_2$.

Figure 1: Decomposing a graph over a 3-edge cut.

A similar decomposition is defined analogously for a 2-edge cut of a cubic graph. Here G has 2-edge cut $E_C = \{(s_{11}s_{21}), (s_{12}s_{22})\}$ and for i = 1, 2 we define G_i by $V(G_i) = V(G'_i)$ and $E(G_i) = E(G'_i) \cup e_i$ where $e_i = \{(s_{i1}s_{i2})\}$. This decomposition will be written as $G = G_1 \pm G_2$.

For both of these decompositions, we say the edge cut is nontrivial if both G_1 and G_2 have fewer vertices than G. Using nontrivial edge cuts, we may decompose a cubic graph G into a set of smaller graphs $\{G_i\}$ where each G_i has no nontrivial edge cuts (but may have additional multiple edges).

Notice that these decompositions are reversible, though not uniquely so. Consider two cubic graphs G_1, G_2 . Form $G_1 \\ightarrow G_2$ by distinguishing a vertex on each $(v_1, v_2 \text{ respectively})$ and identifying the edges incident to v_1 with the edges incident to v_2 . A priori, there are many ways to choose v_1, v_2 and many ways to identify their incident edges. We will abuse the notation $G_1 \\ \\earrow G_2$ by using it to denote a particular one of these many choices. Similarly, $G_1 \\earrow G_2$ can be formed by choosing an edge $e_i = (s_{i1}s_{i2})$ from each G_i , deleting e_i , and then adding the edges $\{(s_{11}s_{21}), (s_{12}s_{22})\}$. Note that constructing $G_1 \\earrow G_2$ is equivalent to cutting an edge of G_2 and inserting it into a single edge of G_1 .

Lemma 2.1. Let G be a cubic graph. If $G = G_1 \lor G_2$ or $G = G_1 \ddagger G_2$, then G is planar if and only if G_1 and G_2 are planar.

Proof. Suppose that G has a cellular embedding on the sphere. Then the removal of an edge cut E_C separates G into two subgraphs, G'_1, G'_2 embedded on the sphere, each of which is contained in one of two disjoint discs D_1, D_2 . Note that the resulting degree-1 and degree-2 vertices of each subgraph are on its outer face (relative to D_i) as in Figure 2. If E_C was a 2-edge cut, edges

Figure 2: A sample configuration of planar G'_1, G'_2 .

may be added on the outside face that join these vertices to create planar G_i . If E_C was a 3-edge cut, add vertices v_1, v_2 on the outside faces of discs D_1, D_2 respectively, and join v_i to the degree-1 and degree-2 vertices in D_i to create planar G_i .

Conversely, spherical embeddings of G_1 and G_2 may be converted to planar drawings with distinguished vertices v_1, v_2 or edges e_1, e_2 on the outside faces of discs D_1, D_2 respectively. Removing v_1, v_2 (resp. e_1, e_2) produces Gwith three edges (resp. two edges) of a cut missing. Any desired pairing of the vertices may be completed on a sphere without edges crossing by using judicious placement of D_i (and perhaps flipping one over). This will result in $G_1 \vee G_2$ (resp. $G_1 \pm G_2$).

Lemma 2.2. Let G be a cubic graph. If $G = G_1 \pm G_2$, or $G = G_1 + G_2$, then G is bipartite if and only if G_1 and G_2 are bipartite.

Proof. If G is a cubic bipartite graph with nontrivial 2-edge cut, then let there be m_j vertices from part j on side 1; if both cut edges emanate from part 1 then $3m_1 - 2 = 3m_2$ which is impossible. Thus each cut edge must emanate from a different part on side i of the cut, so both removing the edge cut and placing edges on each side maintains bipartition.

Suppose G is a bipartite cubic graph with nontrivial 3-edge cut E_C and G'_1, G'_2 the induced subgraphs of $G \setminus E_C$. For a bipartition of G to descend naturally to bipartitions of G_1, G_2 , the edges of E_C must be incident only to vertices in G'_i that are in the same part of G. Therefore, assume this is not the case and (without loss of generality) that two of the edges of E_C are incident to one part of G'_1 and the remaining edge of E_C is incident to the other part of G'_1 . Let G'_1 have m_j vertices belonging to part j of G. There are $3m_1 - 1$ edges emanating from part 1 of G'_1 that must be incident to vertices of part 2 of G'_1 . On the other hand, there are $3m_2 - 2$ edges emanating from part 2, which is impossible.

Conversely, if G_1, G_2 are bipartite, with distinguished $e_1 = s_{11}s_{12}, e_2 = s_{21}s_{22}$ for the purpose of forming $G_1 \pm G_2$, then the bipartition of G_1 extends to $G_1 \pm G_2$ by assigning s_{12} (resp. s_{22}) to the opposite part as s_{11} (resp. s_{21}). Similarly, if G_1, G_2 are bipartite, with distinguished v_1, v_2 for the purpose of forming $G_1 \pm G_2$, then use the bipartition of G_1 and assign v_2 to the opposite part as v_1 to induce a bipartition of $G_1 \pm G_2$.

Theorem 2.3. A cubic graph H that is 2-connected but not 3-connected may be decomposed via \pm into a set of cubic loopless graphs $\{H_i\}$ where each H_i is 3-connected.

Proof. The proof is inductive on the number of vertices of H. Because H is 2-connected but not 3-connected, there exists a 2-vertex separating set. Figure 3 shows the three possible edge configurations for a 2-vertex separating set of a cubic graph, along with (at top) associated 2-edge cuts. Each 2-edge cut can be used to form $H = H_1 \pm H_2$, and $|H_j| < |H|$ so the inductive hypothesis holds for H_j .

It is worth noting that while the decomposition can create multiple edges, any multiple edge in a cubic graph will be associated with a 2-edge cut. Thus

Figure 3: 2-vertex separating sets with associated 2-edge cuts (top) and 3-edge cuts (bottom).

the final set of H_j will be composed of theta graphs, and graphs with no multiple edges.

Corollary 2.4. The \pm decomposition of 2-connected cubic graphs given by Theorem 2.3 preserves both planarity and bipartiteness.

Proof. This follows from Lemmas 2.1 and 2.2.

An alternative decomposition using the γ product can also be found. This is because every 2 vertex separating set is also associated with a 3-edge cut as seen in Figure 3(bottom). This decomposition also preserves planarity and bipartiteness.

3 Manipulating and Composing Colorings

We begin by showing that we can fix the colors on the edges incident to a given vertex, and accomplish any sequence of edge-Kempe switches without changing the fixed colors. As a result, representatives of all edge-Kempe equivalence classes will be present in the set of colorings with fixed colors at a vertex. The following theorem holds for all base graphs G, not just cubic graphs, and all $n \ge \chi'(G)$.

Theorem 3.1. If $c \sim d$ are two proper edge colorings of a loopless graph G, and there exists a vertex v such that $c(e_i) = d(e_i)$ for all e_i incident to v, then there exists a sequence of edge-Kempe switches from c to d that never change the colors on the edges incident to v.

Recall that $o_i - o_{i+1}$ is the notation for two colorings that differ by exactly one edge-Kempe switch. It will be useful to have a further notation for the switch itself. Let $s_i = (\{p_{i_1}, p_{i_2}\}, t_i)$ where $\{p_{i_1}, p_{i_2}\}$ is the pair of colors to be switched on the chain t_i of G. Then write $o_i - s_i o_{i+1}$, if o_{i+1} is obtained from o_i by switching colors $\{p_{i_1}, p_{i_2}\}$ on chain t_i . Considering S_n as acting on the set of colors $\{1, \ldots, n\}$, let $\pi_i \in S_n$ be the transposition $\pi_i(p_{i_1}) = p_{i_2}, \pi_i(p_{i_2}) = p_{i_1}$.

The idea of the proof is as follows. Each time a switch $s_i = (\{p_{i_1}, p_{i_2}\}, t_i)$ affects an edge incident to v, replace it by making all other $\{p_{i_1}, p_{i_2}\}$ switches in the graph. This results in a coloring of the graph that is equivalent to the original, at the same stage, via a global color permutation. Therefore we need to track the colors to be switched on t_k , for k > i. Each switch s_k that does not affect an edge incident to vertex v will be replaced by a switch, on the same chain t_k , of the colors that are currently on that chain. Our proof gives this precisely as an algorithm.

Proof. Suppose that $c = o_0 - s_0 o_1 - s_1 \cdots - s_{n-1} o_m = d$, and there is at least one *i* such that $v \in t_i$. Let σ_0 be the identity permutation. For $0 \le i \le m-1$, replace s_i with a set of edge-Kempe switches \hat{s}_i as follows. Set $\hat{\pi}_i = \sigma_i \pi_i \sigma_i^{-1}$ so that $\hat{\pi}_i(\sigma_i(p_{i_1})) = \sigma_i(p_{i_2})$.

If $v \notin t_i$ then set $\hat{s}_i = \{(\{p_{i_1}, p_{i_2}\}, t_i)\}$ and $\sigma_{i+1} = \sigma_i$.

If $v \in t_i$ then for $\{t_j\}$ the edge-Kempe chains of o_i in colors $\{p_{i_1}, p_{i_2}\}$, set $\hat{s}_i = \{(\{\sigma_i(p_{i_1}), \sigma_i(p_{i_2})\}, t_j) | t_j \neq t_i\}$ and $\sigma_{i+1} = \sigma_i \pi_i$. Note that the set \hat{s}_i may be empty if t_i is the only $\{p_{i_1}, p_{i_2}\}$ chain in o_i .

Define \hat{o}_{i+1} to be the result of performing the sets of switches $\hat{s}_1, \ldots, \hat{s}_i$ to c. We show that \hat{o}_{i+1} and o_i are equivalent up to a global color permutation by σ_i . Recall that $o_i(e)$ is the color assigned to edge e by o_i . We must show that on each edge e, $\hat{o}_{i+1}(e) = \sigma_{i+1}o_{i+1}(e)$. We proceed by induction and so assume that for $k \leq i$, $\hat{o}_k(e) = \sigma_k o_k(e)$.

There are 5 cases.

First suppose $v \notin t_i$.

Case 1a. If $e \in t_i$ then $\hat{o}_{i+1}(e) = \hat{\pi}_i \hat{o}_i(e)$ because $\hat{\pi}_i$ is the action of switch \hat{s}_i . By definition of $\hat{\pi}_i$ and using the inductive hypothesis for \hat{o}_i , $\hat{\pi}_i \hat{o}_i(e) = (\sigma_i \pi_i \sigma_i^{-1})(\sigma_i o_i(e))$. Simplifying, we have $\sigma_i \pi_i o_i(e) = \sigma_i o_{i+1}(e)$ (by action of s_i on o_i), which, by definition of σ_{i+1} in this case, equals $\sigma_{i+1} o_{i+1}(e)$

as desired. Similar reasoning justifies the remaining cases so we present them in an abbreviated fashion.

Case 1b. If $e \notin t_i$ then $\hat{o}_{i+1}(e) = \hat{o}_i(e) = \sigma_i o_i(e) = \sigma_{i+1} o_{i+1}(e)$. Now suppose $v \in t_i$.

Case 2a. If $o_i(e) \notin \{p_{i_1}, p_{i_2}\}$ then $\hat{o}_{i+1}(e) = \hat{o}_i(e) = \sigma_i o_i(e) = (\sigma_i \pi_i) o_i(e) = \sigma_{i+1} o_{i+1}(e)$.

Case 2b. If $o_i(e) \in \{p_{i_1}, p_{i_2}\}$ and $e \in t_i$, then the color on e does not change from \hat{o}_i to \hat{o}_{i+1} while it did change from o_i to o_{i+1} . Thus, $\hat{o}_{i+1}(e) = \hat{o}_i(e) = \sigma_i \sigma_i(e) = \sigma_i \pi_i \pi_i o_i(e) = \sigma_{i+1} o_{i+1}(e)$.

Case 2c. If $o_i(e) \in \{p_{i_1}, p_{i_2}\}$ and $e \notin t_i$, then the color on e does change from \hat{o}_i to \hat{o}_{i+1} while it did not change from o_i to o_{i+1} . Thus, $\hat{o}_{i+1}(e) = \hat{\pi}_i \hat{o}_i(e) = (\sigma_i \pi_i \sigma_i^{-1})(\sigma_i o_i(e)) = (\sigma_i \pi_i) o_i(e) = \sigma_{i+1} o_{i+1}(e)$.

Finally, we consider \hat{o}_m and compare it to d. Note c and d have the same colors on v by hypothesis, and the total number of colors used in d is n. If $n \leq \deg(v)+1$, then at most one color is not represented at v and σ_m must be the identity permutation; thus $\hat{o}_m = o_m = d$. If $n > \deg(v)+1$, then it is possible that some colors that do not occur at v are globally permuted between o_m and \hat{o}_n . In this case, additional edge-Kempe switches that globally permute colors can be applied to \hat{o}_m so that the coloring now matches d.

This result shows when counting the number of edge-Kempe equivalence classes it is sufficient to consider only colorings of G that are different up to global color permutation. To make this observation precise requires careful definition of an *edge-Kempe-equivalence graph* of a graph. This will be done in [2].

Returning to cubic graphs, we next consider how combining graphs affects K'(G, n). Let G_1, G_2 be two 3-edge-colorable cubic graphs and distinguish a vertex on each (v_1, v_2) for the purpose of forming $G_1
ightarrow G_2$. Recall that in addition to the choice of v_1, v_2 , there are multiple ways their incident edges may be identified; by $G_1
ightarrow G_2$ we mean some particular set of these choices. Let $\{x_1, x_2, x_3\}$ and $\{y_1, y_2, y_3\}$ be the ordered sets of edges in G_1 and G_2 that will be identified in $G_1
ightarrow G_2$. Similarly, choose a distinguished edge in each graph $(x \in G_1, y \in G_2)$ for the purpose of forming $G_1 \pm G_2$. The following several results relate 3-edge colorings of G_1 and G_2 to those of $G_1
ightarrow G_2$ and $G_1 \pm G_2$.

Definition 3.2. Let c, d be proper edge colorings of G_1, G_2 respectively. There exists a proper coloring \hat{d} of G_2 such that $c(x_i) = \hat{d}(y_i)$ for i = 1, 2, 3, and such that d, \hat{d} are the same up to a permutation of the colors $(d \sim \hat{d})$. Define $(c \lor d)$ to be the proper coloring of $G_1 \lor G_2$ given by

$$(c \lor d)(e) = \begin{cases} c(e) & \text{if } e \in G_1 \\ \hat{d}(e) & \text{if } e \in G_2 \\ c(e) = \hat{d}(e) & \text{if } e \text{ is the } e \end{cases}$$

(c(e) = d(e)) if e is the edge resulting from identifying x_i and y_i . Similarly, there exists a proper coloring \tilde{d} of G_2 such that $c(x) = \tilde{d}(y)$ and such that d, \tilde{d} are the same up to a global permutation of the colors. Define $(c \pm d)$ to be the proper coloring of $G_1 \pm G_2$ given by

$$(c \pm d)(e) = \begin{cases} c(e) & \text{if } e \in G_1 \\ \tilde{d}(e) & \text{if } e \in G_2 \\ c(e) = \tilde{d}(e) & \text{if } e \text{ is one of the edges added after deleting } x \text{ and } y. \end{cases}$$

Two cases of the Parity Lemma ([3]) will be useful.

Lemma 3.3. Let E_C be an edge cut of a of a 3-edge-colorable cubic graph Gand c be any proper 3-edge coloring of G. Then (a) if E_C is a 2-edge cut, then $c(E_C)$ uses exactly one color, and (b) if E_C is a 3-edge cut, then $c(E_C)$ uses all three colors.

Theorem 3.4. Every 3-edge coloring f of $G = G_1 \lor G_2$ (resp. $G = G_1 \pm G_2$) can be written as $c_1 \lor d_1$ (resp. $c_1 \pm d_1$) where c_1 is some 3-edge coloring of G_1 and d_1 is some 3-edge coloring of G_2 .

Proof. Consider a 3-edge coloring f of $G = G_1 \vee G_2$. There is a 3-edge cut E_C corresponding to the decomposition $G_1 \vee G_2$. By Lemma 3.3(b), each $e_i \in E_C$ must be a different color in c. Therefore considering f on the edges of G_1 (and particularly at v_1), it is still a proper coloring c_1 , and likewise f considered on G_2 is a proper coloring d_1 . The result for \pm is similarly an immediate corollary of Lemma 3.3.

Implicit in the preceding results is the following.

Corollary 3.5. If $G = G_1 \vee G_2$ or $G = G_1 \pm G_2$, then G is 3-edge colorable if and only if G_1 and G_2 are 3-edge colorable.

Next we note how edge-Kempe equivalences on the colorings of G_1 and G_2 transfer to edge-Kempe equivalences in combinations of these graphs.

Lemma 3.6. Let 3-edge colorings $c_1 \sim c_2$ in G_1 and $d_1 \sim d_2$ in G_2 . Then $(c_1 \lor d_1) \sim (c_2 \lor d_2)$ in $G_1 \lor G_2$ and $(c_1 \ddagger d_1) \sim (c_2 \ddagger d_2)$ in $G_1 \ddagger G_2$.

Proof. Using the notation from Definition 3.2, let $c'_2 \sim c_2$ by global color permutation such that $c'_2(x_i) = c_1(x_i)$ for i = 1, 2, 3. By Theorem 3.1, there exists a sequence of edge-Kempe switches in G_1 that exhibits $c_1 \sim c'_2$ and that never changes the color of any edge incident to v_1 . Similarly, define $\hat{d}'_2 \sim \hat{d}_2 \sim d_2$ such that there is a sequence of edge-Kempe switches in G_2 that exhibits $\hat{d}_1 \sim \hat{d}'_2$ and that never changes the color of any edge incident to v_2 . Then $(c_1 \vee d_1) = (c_1 \vee \hat{d}_1) \sim (c'_2 \vee \hat{d}_1) \sim (c'_2 \vee \hat{d}'_2) \sim (c_2 \vee \hat{d}_2) = (c_2 \vee d_2)$.

For the \pm composition, assume without loss of generality that $c_1(x) = d_1(y)$. Let $c''_2 \sim c_2$ by global color permutation such that $c''_2(x) = c_1(x)$ and $d''_2 \sim d_2$ by global color permutation such that $d''_2(y) = d_1(y)$. By Lemma 3.3, the two edges created after deleting x, y will be assigned the same color in any proper 3-coloring of $G_1 \pm G_2$, so fixing the color on one will also fix the color on the other. Hence, $(c_1 \pm d_1) \sim (c''_2 \pm d'_1) \sim (c''_2 \pm d''_2) \sim (c_2 \pm d_2)$.

Lemma 3.7. Let G_1, G_2 be 3-edge colorable cubic graphs with $G_1 \lor G_2$ and $G_1 \pm G_2$ particular compositions of the two. If $(c_1 \lor d_1) \sim (c_2 \lor d_2)$ in $G_1 \lor G_2$ (resp. $(c_1 \pm d_1) \sim (c_2 \pm d_2)$ in $G_1 \pm G_2$) then $c_1 \sim c_2$ in G_1 and $d_1 \sim d_2$ in G_2 .

Proof. It is sufficient to show this when $(c_1 \vee d_1) -_s (c_2 \vee d_2)$ and $(c_1 \pm d_1) -_s (c_2 \pm d_2)$, where s = (p, t) with p a pair of colors and t an edge-Kempe chain. If $t \subset G_1$ or $t \subset G_2$, then the lemma holds. Otherwise, $t \cap E_C \neq \emptyset$, and t must use exactly 2 edges of E_C because every edge-Kempe chain of a proper 3-edge coloring of a cubic graph is a cycle. The decomposition $G_1 \vee G_2$ (resp. $G_1 \pm G_2$) over E_C will decompose t into an edge-Kempe chain t_1 of G_1 and t_2 of G_2 . Then $c_1 - (p,t_1) c_2$ in G_1 and $d_1 - (p,t_2) d_2$ in G_2 .

Theorem 3.8. Let G_1, G_2 be cubic graphs. If $K'(G_1, 3) = a$ and $K'(G_2, 3) = b$, then $K'(G_1 \lor G_2, 3) = K'(G_1 \ddagger G_2, 3) = ab$.

Proof. Choose colorings c_1, \ldots, c_a , one from each of the *a* edge-Kempe-equivalence classes of G_1 , and likewise choose colorings d_1, \ldots, d_b , one from each of the *b* edge-Kempe-equivalence classes of G_2 . Every 3-edge coloring *f* of $G_1 \\infty G_2$ can be written as $f = \hat{c} \\infty \hat{d}$ by Theorem 3.4. $\hat{c} \\infty c_i$ for some $c_i \\infty \{c_1, \ldots, c_a\}$, and $\hat{d} \\infty d_j$ for some $d_j \\infty \{d_1, \ldots, d_b\}$, so by Lemma 3.6 $f \\infty c_i \\infty d_{j_1} \\infty c_{i_2} \\infty d_{j_2} \\infty d_{j_1} \\infty c_{i_2} \\infty d_{j_2} \\infty d_{j_1} \\infty c_{i_2} \\infty d_{j_2} \\infty d_{j_2} \\infty d_{j_1} \\infty c_{i_2} \\infty d_{j_2} \\infty d_{j_1} \\infty c_{i_2} \\infty d_{j_2} \\infty d_{j_1} \\infty c_{i_2} \\infty d_{j_2} \\infty d_{j_2} \\infty d_{j_1} \\infty c_{i_2} \\infty d_{j_2} \\infty d_{j_2} \\infty d_{j_1} \\infty d_{j_2} \\infty d_{j_2} \\infty d_{j_2} \\infty d_{j_2} \\infty d_{j_2} \\infty d_{j_2} \\infty d_{j_1} \\infty d_{j_2} \\infty d_{j_1} \\infty d_{j_2} \\infty$

4 **Results on** K'(G,3)

Theorem 3.8 can be extended to compose several graphs, or alternatively to decompose a graph into many smaller pieces. We will use the theorem below in both contexts to get results about possible numbers of edge-Kempe equivalence classes for cubic graphs.

Theorem 4.1. Let G be a 3-edge colorable cubic graph. Then $K'(G,3) = \prod_i K'(G_i,3)$ where $\{G_i\}$ is a decomposition of G along nontrivial 2-edge cuts or 3-edge cuts.

Proof. This follows from multiple applications of Theorem 3.8.

4.1 Planar, cubic, bipartite graphs

The following theorem answers a question from [6, Section 3].

Theorem 4.2. Let H be a 2-connected, but not 3-connected, planar bipartite cubic graph. Then K'(H, 3) = 1.

Proof. By Theorem 2.3, H may be decomposed into $\{H_i\}$ where all H_i are 3-connected. By Lemmas 2.1 and 2.2, all H_i are planar and bipartite. As pointed out in [6], it follows from [1] that all 3-connected planar bipartite cubic graphs G have K'(G, 3) = 1 so for all $H_i, K'(H_i, 3) = 1$. It then follows from Theorem 4.1 that K'(H, 3) = 1.

Recall that if G is cubic and bipartite then it must be bridgeless. Thus we get the following result.

Corollary 4.3. Let H be a planar bipartite cubic graph. Then K'(H,3) = 1.

4.2 Nonplanar, cubic, bipartite graphs

Matters are quite different for *nonplanar* bipartite cubic graphs. It is well known that $K_{3,3}$ has two different edge-colorings (shown in Figure 4). In each of these colorings, each color-pair forms a Hamilton cycle. Therefore, any edge-Kempe switch results in a permutation of the colors and neither coloring of Figure 4 can be obtained from the other. Thus, there are two edge-Kempe equivalence classes, i.e. $K'(K_{3,3}, 3) = 2$.

Figure 4: The two colorings of $K_{3,3}$.

Lemma 4.4. Every simple bipartite nonplanar cubic graph B with $n \leq 10$ has K'(B,3) > 1.

Proof. Every simple bipartite nonplanar cubic graph is a subdivision of $K_{3,3}$. To maintain the bipartition and avoid multiple edges, $K_{3,3}$ must be subdivided with at least 4 vertices, two on each of two edges. These edges may be independent or may be incident.

Figure 5: The two possible colorings around subdivided independent or incident edges.

Any coloring of the original graph extends to either one or two new (edge-Kempe equivalent) colorings, as is shown in Figure 5. If a coloring had three Hamilton cycles before subdivision (as is true for both colorings of $K_{3,3}$), at most it gains an isolated edge-Kempe cycle after subdivision of this sort. Thus when subdividing $K_{3,3}$ with a single 4-vertex subdivision, there still exist two colorings that are not edge-Kempe-equivalent.

Further examples of nonplanar cubic bipartite graphs with K'(G,3) > 1will be given in Section 4.3. In contrast, Figure 6 shows a bipartite nonplanar cubic graph U with 12 vertices and K'(U,3) = 1. K'(U,3) was computed manually and verified using custom *Mathematica* code. We can use U to produce an interesting infinite class of graphs.

Figure 6: A nonplanar bipartite cubic graph that has a single edge-Kempe equivalence class.

Theorem 4.5. There exists an infinite family of simple nonplanar 3-connected bipartite cubic graphs U_k with 2 + 10k vertices and $K'(U_k, 3) = 1$.

Proof. Let $U_k = U \lor \cdots$ (k copies) $\ldots \lor U$. By Theorem 3.8, $K'(U_k, 3) = 1$. Graphs U_2, U_3 , and U_4 are shown in Figure 7.

Figure 7: Three members of an infinite family of bipartite nonplanar cubic graphs U_k , each member of which has a single edge-Kempe equivalence class.

By \leq composition of U with a planar cubic bipartite graph with n - 10 vertices we get the following more general result.

Theorem 4.6. For any $n \ge 18$ there is a simple, nonplanar, bipartite, 3connected, cubic graph G with n vertices and K'(G,3) = 1.

Notice that similar results can be obtained for graphs that are only 2connected as well by using the \pm composition.

4.3 Cubic graphs with K'(G,3) > 1

We can form $K_{3,3} \\ightarrow G$ with any 3-connected cubic graph G to obtain a 3-connected nonplanar cubic graph. By Theorem 3.8,

$$K'(K_{3,3} \circ G, 3) = K'(K_{3,3}, 3)K'(G, 3) = 2K'(G, 3).$$

Theorem 4.7. For every even $n \ge 8$, there exists a 3-connected nonplanar cubic graph G with n vertices and exactly 2 edge-Kempe equivalence classes.

Proof. Form $K_{3,3} \\ightarrow G$ with any 3-connected planar cubic graph G on n-4 vertices to obtain a 3-connected nonplanar cubic graph with n vertices and $K'(K_{3,3} \\ightarrow G, 3) = 2$.

Corollary 4.8. For every even $n \ge 12$, there exists a 3-connected nonplanar bipartite cubic graph G with n vertices and exactly 2 edge-Kempe equivalence classes.

Proof. Form $K_{3,3} \\\forall G$ with any 3-connected planar cubic bipartite graph G on n-4 vertices. The smallest 3-connected planar cubic bipartite graph has 8 vertices.

More generally, once we have one example with k edge-Kempe equivalence classes then there will be an infinite family of them with the same number of classes.

Theorem 4.9. If \hat{G} is a cubic graph on \hat{n} vertices with k edge-Kempe equivalence classes then for every even $n \ge \hat{n} + 6$, there exists a cubic graph on n vertices with exactly k edge-Kempe equivalence classes. Further, if \hat{G} is planar then a planar family exists, if \hat{G} is bipartite then a bipartite family exists and if \hat{G} is 3-connected then a 3-connected family exists.

Proof. Compose \hat{G} with any cubic planar bipartite graph on $n+2-\hat{n}$ vertices using the γ operation. The result follows from Theorem 3.8.

We can make graphs with increasingly large numbers of edge-Kempe equivalence classes this way as well.

Theorem 4.10. For every $k \ge 1$, there exists a 3-connected nonplanar bipartite cubic graph G with 4k + 2 vertices and 2^k edge-Kempe equivalence classes.

Proof. For $k \geq 1$, take $K_{3,3} \vee \cdots \vee (k \text{ copies}) \ldots \vee K_{3,3}$, which has 2 + 4k vertices. By Theorem 3.8, it has 2^k edge-Kempe equivalence classes. This produces the desired graph.

Theorem 4.11. For every simple nonplanar (bipartite) cubic graph G with n vertices, there exists an infinite family of nonplanar (bipartite) cubic graphs G_k such that G_k has 6k + n vertices and $2^k K'(G,3)$ edge-Kempe equivalence classes.

Proof. Take $G \pm K_{3,3} \pm \ldots \pm K_{3,3}$.

5 Computations of K'(G,3)

Computing K'(G, 3) for particular G, or for families of graphs, is surprisingly difficult. A single computation can be done by brute force by computer, but constructing a proof is another matter. As examples of the kinds of arguments needed to determine K'(G, 3), we analyze Möbius ladder graphs, prism graphs, and crossed prism graphs.

Theorem 5.1. Let ML_k be the Möbius ladder graph on 2k vertices, let Pr_k be the prism graph on 2k vertices, and let CPr_k be the crossed prism graph on 4k vertices.

- 1. $K'(ML_k, 3) = 1$ when k is even and $K'(ML_k, 3) = 2$ when k is odd.
- 2. $K'(Pr_k, 3) = 1.$
- 3. $K'(CPr_k, 3) = 1$.

Note that Pr_k is planar, and bipartite exactly when k is even; ML_k is toroidal.

Proof. Our arguments are inductive.

First, consider the edge coloring of ML_k given at left in Figure 8, and note that it only exists for k odd. Every edge-Kempe chain in this coloring is a Hamilton circuit, so this coloring represents a edge-Kempe-equivalence class of of ML_k . Now consider any other 3-edge coloring of ML_k . If it has a square colored as shown at right in Figure 8, then the square may be removed (and the remaining half-edges glued together) to produce a 3-edge coloring

Figure 8: A tri-Hamiltonian edge coloring of ML_k for k odd (left) with a square from some other colorings of ML_k (right).

Figure 9: Colorings of squares from ML_k that are edge-Kempe-equivalent to a removable colored square of ML_k .

of ML_{k-2} . If there is no such square in the coloring, then every square must be colored as one of the options shown in Figure 9. In either case, we can do a single edge-Kempe switch to produce an edge-Kempe-equivalent coloring that contains a removable square. Therefore $K'(ML_k, 3) = K'(ML_{k-2}, 3)$. To complete the proof, it suffices to show (which direct computation does) that $K'(ML_4, 3) = 1$ and $K'(ML_3, 3) = 2$.

Next consider any 3-edge coloring of Pr_k . The same argument as for ML_k applies, so by removing a square we see that $K'(Pr_k, 3) = K'(Pr_{k-2}, 3)$. Because $K'(Pr_3, 3) = K'(Pr_4, 3) = 1$ by direct computation, it then follows that $K'(Pr_k, 3) = 1$.

Finally, consider any 3-edge coloring of CPr_k . Any crossed square must have one of the local colorings shown in Figure 10. For the leftmost two

Figure 10: The possible colorings of a crossed square of CPr_k .

colorings of Figure 10, the crossed square may be removed (and the remaining half-edges glued together) to produce a 3-edge coloring of CPr_{k-1} . If there are only crossed squares with coloring type of the rightmost coloring in Figure 10, we can do a single edge-Kempe switch to produce an edge-Kempe-equivalent coloring that contains a removable crossed square. (A parity argument shows that there must be at least two edge-Kempe chains in a relevant color pair.) Because $K'(CPr_2, 3) = 1$ by direct computation, it then follows that $K'(CPr_k, 3) = 1$.

6 Areas for future work

Two major questions remain about K'(G) for cubic, nonplanar, bipartite graphs. First, while we have shown that there are nonplanar cubic bipartite graphs with K'(G,3) = 1 and also some with K'(G,3) > 1, there is as yet no characterization for when each is true. Second, using *Mathematica* we have found bipartite cubic graphs where K'(G,3) = 1, 2, 3, 4, 6, 8, 9, 15, 17, 35, 131. Which natural numbers, and in particular which primes, k are achievable as K'(G,3) = k for G a cubic nonplanar bipartite 3-connected graph, with no nontrivial edge cuts? These same questions can be asked for cubic 3-colorable graphs more generally: which have K'(G,3) = 1, and what possible K'(G,3)values can occur?

Beyond just examining the number of edge-Kempe connected components, what is the structure of the edge-Kempe-equivalence Graph of G, whose vertices represent colorings of G and whose edges represent single edge-Kempe switches? This is the topic of [2].

References

- S. Fisk. Geometric Coloring Theory. Advances in Math. 24 (1977), 298– 340.
- [2] s.m. belcastro, R. Haas. Edge-Kempe equivalence graphs of cubic graphs. In preparation.
- [3] R. Isaacs. Infinite families of nontrivial trivalent graphs which are not Tait colorable. Amer. Math. Monthly, 82:221–239, 1975.

- [4] A. B. Kempe. On the geographical problem of the four colours, Amer. J. Math. 2:3 (1879), 193–200.
- [5] J. McDonald, B. Mohar, and D. Scheide. Kempe equivalence of edgecolorings in subcubic and subquartic graphs. J. Graph Theory, to appear; DOI: 10.1002/jgt.20613.
- [6] B. Mohar. Kempe Equivalence of Colorings. in Graph Theory in Paris, Proceedings of a Conference in Memory of Claude Berge, J. A. Bondy, J. Fonlupt, J.-C. Fournier, and J. Ramirez Alfonsin eds., Birkhäuser, 2006, 287–297.
- Salas. [7] B. Mohar and J. On the non-ergodicity of the SwendsenWang-Kotecký algorithm on the kagomé lattice. http://arxiv.org/abs/1002.4279v2
- [8] J.-S. Wang, R.H. Swendsen, and R. Kotecký, Antiferromagnetic Potts models. Phys. Rev. Lett. 63 (1989), 109–112.
- [9] J.-S. Wang, R.H. Swendsen, and R. Kotecký, Three-state antiferromagnetic Potts models: A Monte Carlo study. Phys. Rev. B 42 (1990), 2465–2474.