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Abstract. There is an increasing demand for assessment of

water provisioning ecosystem services. While simple mod-

els with low data and expertise requirements are attractive,

their use as decision-aid tools should be supported by un-

certainty characterization. We assessed the performance of

the InVEST annual water yield model, a popular tool for

ecosystem service assessment based on the Budyko hydro-

logical framework. Our study involved the comparison of 10

subcatchments ranging in size and land-use configuration, in

the Cape Fear basin, North Carolina. We analyzed the model

sensitivity to climate variables and input parameters, and the

structural error associated with the use of the Budyko frame-

work, a lumped (catchment-scale) model theory, in a spa-

tially explicit way. Comparison of model predictions with ob-

servations and with the lumped model predictions confirmed

that the InVEST model is able to represent differences in land

uses and therefore in the spatial distribution of water provi-

sioning services. Our results emphasize the effect of climate

input errors, especially annual precipitation, and errors in the

ecohydrological parameter Z, which are both comparable to

the model structure uncertainties. Our case study supports

the use of the model for predicting land-use change effect on

water provisioning, although its use for identifying areas of

high water yield will be influenced by precipitation errors.

While some results are context-specific, our study provides

general insights and methods to help identify the regions and

decision contexts where the model predictions may be used

with confidence.

1 Introduction

The interactions between hydrology and land-use and land-

management decisions have received increased attention in

recent years. The International Association of Hydrological

Sciences (IAHS) recently declared this decade Panta Rhei

– everything flows – to focus on the changing dynamics of

the water cycle in connection with changing human systems

(Montanari et al., 2013). Socio-hydrology has recently been

proposed as a “use-inspired” discipline to focus on under-

standing the human-modified water cycle (Sivapalan et al.,

2014). The quantification of water services, or the value that

humans derive from natural processes, is also increasingly

seen a means of elucidating the interactions between peo-

ple and water. Examples of this approach abound globally:

through its Grain-to-Green program, China, incentivizes land

owners to convert annual crops to perennial species or natural

forests (Liu et al., 2008). In South America, there now exist

dozens of water funds, which invest in upstream conserva-

tion measures to ensure the downstream provision of clean

water (Martin-Ortega et al., 2013). In the United States, fed-

eral investments in water resources projects now require an

assessment of impacts to ecosystem services (Council on En-

vironmental Quality, 2013).

To quantify the impact of land-use and land-management

decisions on ecosystem services, a number of tools have been

developed by researchers and practitioners (Bagstad et al.,

2013). Typical applications of these tools include the de-

velopment of spatial planning policies, such as the delin-

eation of priority areas for conservation or for agricultural

development (Guswa et al., 2014). These applications often

(i) occur in data-scarce environments; (ii) require spatially

Published by Copernicus Publications on behalf of the European Geosciences Union.
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explicit information, at the scale of individual land holdings

and parcels; and (iii) integrate a range of ecosystem services

rather than focus on the precise quantification of a partic-

ular service. Accordingly, state-of-the-art models requiring

extensive data and expertise are generally not appropriate for

such applications. Instead, models for ecosystem-service val-

uation often focus on ease of use, using globally available

data, accepting spatially explicit input and producing spa-

tially explicit output, and limiting the model structure to key

biophysical processes involved in land-use change (Guswa et

al., 2014).

The InVEST annual water yield model was developed in

line with this philosophy (Sharp et al., 2014). It includes a

biophysical component, computing the provision of freshwa-

ter, or water yield, by different parts of the landscape, and

a valuation component, representing the benefits of water

provisioning to people. The biophysical module, the focus

of this paper, is based on the Budyko theory, which has a

long history and continues to receive interest in the hydro-

logical literature (Budyko, 1961; Zhou et al., 2012; Zhang

et al., 2001, 2004; Donohue et al., 2012; Xu et al., 2013;

Wang and Tang, 2014). The InVEST model applies a one-

parameter formulation of the theory (Zhang et al., 2004) in

a spatially explicit way. This raises two issues. First, appli-

cation of the model to ungauged basins or to future land-use

scenarios requires a methodology for determining the value

of the model parameter from known characteristics of the cli-

mate and basin, since it cannot be determined via calibra-

tion. Second, the Budyko approaches have been developed

for long-term water balances at the catchment scale, rather

than at the scale of individual land parcels, which is required

for ecosystem-service decisions. The effect of this change in

spatial scale is unclear, and calls for a rigorous analysis of

the model and its uncertainties.

Uncertainty analyses remain rare or incomplete in ecosys-

tem service assessments, where the focus is on analyzing

trade-offs and valuation of multiple services, often at the ex-

pense of characterizing uncertainty of individual modeling

components. For example, in reviewing the literature using

the InVEST annual water yield model, we found the follow-

ing common limitations: absence of or inadequate compar-

ison with observed data, calibration of the model without

prior identification of sensitive parameters, and lack of vali-

dation of the predictive capabilities in the context of land-use

and land-cover (LULC) change (Bai et al., 2012; Su and Fu,

2013; Terrado et al., 2014; Nelson et al., 2010). To varying

degrees, these limitations jeopardize the production of credi-

ble assessments of ecosystem services.

Recent work paved the way for understanding the uncer-

tainties in the InVEST model predictions. Sánchez-Canales

et al. (2012) analyzed the sensitivity of the model in their

case study of the Llobregat catchment, in Spain. They found

that the model was sensitive to climate variables, but less

so to the Z parameter (see model description). Similarly,

Boithias et al. (2014) and Terrado et al. (2014) reflect on

the sensitivity of the model to climate inputs and calibrate

the model based on the climate parameters and return flows.

The conclusions of these studies are often context-specific

and lack a quantitative estimate of the model’s structural un-

certainties. In particular, they assess the effect of the climate

variables’ uncertainty but do not examine the ability of the

model to represent land-use change.

This paper aims to extend this work by characterizing the

uncertainty in the InVEST annual water-yield model, and

assess its utility to inform ecosystem-service decisions. As

indicated above, the focus on water services implies a fo-

cus on decisions related to land use and land management,

thus requiring spatially explicit descriptions of the landscape

and associated hydrologic parameters (Guswa et al., 2014).

Ecosystem-service decisions may be based on spatially ag-

gregated output (e.g., which landscape scenario provides the

greatest water yield at the base of the catchment), or may

require spatially explicit output (e.g., which parcels in this

catchment are of highest priority for conservation). While the

proposed model is capable of providing output to inform the

latter, this paper focuses on the former, since typical mea-

surements of water yield (streamflow) are inherently aggre-

gated. Using a case study in the Cape Fear region of North

Carolina (NC), our study (i) quantifies the effect of param-

eter uncertainty on model outputs through sensitivity anal-

yses, (ii) compares the distributed application of the water

balance to the catchment-scale application, and (iii) quanti-

fies the accuracy of calibrated and uncalibrated versions of

the model by comparing model predictions to observations.

From a practical standpoint, this work helps InVEST model

users identify modeling uncertainties and proposes simple

and replicable methods that can be used to quantify the re-

liability of water-service decisions.

2 InVEST annual water yield model

2.1 Background theory

The Budyko curve is a unique empirical function that relates

the ratio of actual evapotranspiration to precipitation (aver-

aged over a catchment and over many years) to the ratio of

potential evapotranspiration to precipitation (Budyko, 1961).

The function is bounded by two limits – an energy limit in

which actual evapotranspiration is equal to potential, and a

water limit for which actual evapotranspiration is equal to

precipitation. Due to spatial and temporal variability in cli-

mate forcing, the asynchronicity of water supply (P ) and de-

mand (PET), the imperfect capacity of the root zone to buffer

that asynchronicity, and lateral redistribution of water within

the catchment, the Budyko curve lies below those two limits

(Fig. 1).

To describe the degree to which long-term catchment wa-

ter balances deviate from the parameterless Budyko curve, a

number of scholars have proposed one-parameter functions

Hydrol. Earth Syst. Sci., 19, 839–853, 2015 www.hydrol-earth-syst-sci.net/19/839/2015/
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Figure 1. Original Budyko curve (B) and its variations used in the

lumped model (Eq. 1), shown for ω values of 2, 4, and 6. Grey lines

represent the energy and water limits. Arrows illustrate the effect of

a change in the climate forcing (thick arrows) and a change in the

ω parameter, a function of Z, precipitation, and soil and vegetation

properties (thin arrow, see Eq. (3) for details).

that are similar (e.g., Fu, 1981; Choudhury, 1999; Zhang et

al., 2004; Wang and Tang, 2014). The InVEST water yield

model employs the formulation by Zhang et al. (2004), which

incorporates a catchment parameter, ω:

AET

P
= 1+

PET

P
−

[
1+

(
PET

P

)ω]1/ω

, (1)

where AET is the actual evapotranspiration (mm), P is pre-

cipitation (mm), and PET is the potential evapotranspira-

tion (mm). ω affects the partitioning of precipitation be-

tween evapotranspiration and runoff, and is a function of cli-

mate and physical factors. Larger values of ω indicate those

basins that are more “efficient” in converting precipitation to

transpiration, e.g., those with precipitation synchronous with

PET and/or with deeper root zones. Gentine et al. (2012) and

Troch et al. (2013) have shown that the natural coevolution

of vegetation, climate, and topography may lead to basins

for which the effects implicitly captured by ω counterbalance

each other, offering an explanation for the observed conver-

gence of data close to the original Budyko curve. The in-

tent of the InVEST model, however, is to predict the effects

of human-induced changes, i.e., to examine catchments for

which natural coevolution is disrupted.

2.2 Spatially explicit application to land-use change

Model overview

To represent parcel-level changes to the landscape, InVEST

represents explicitly the spatial variability in precipitation

and PET, soil depth, and vegetation. The model is GIS-based,

using rasters of climate and soil properties as inputs (see

Sharp et al., 2014, for full details).

For vegetated land uses, InVEST applies the Zhang formu-

lation in a spatially explicit way at the pixel scale (10–100 m

on a side):

AETi

Pi

= 1+
PETi

Pi

−

[
1+

(
PETi

Pi

)ωi
]1/ωi

. (2)

In contrast to Eq. (1), P , PET, ω, and AET are all functions

of the local position, indicated by the subscript i.

The parameter ω is further deconstructed to separate the

effects of soil depth, rainfall frequency, and other factors, fol-

lowing an approach proposed by Donohue et al. (2012):

ωi = Z
AWCi

Pi

+ 1.25, (3)

where AWCi is the plant-available water content (depth), and

Z is an empirical parameter. The constant, 1.25, in Eq. (2)

reflects the minimum value of ω corresponding to bare soil,

following Donohue et al. (2012). In this representation, dif-

ferences in land use and land cover affect both PET, through

changes to the crop factor, Kc, and Z, through changes to the

root depth and plant-available water content.

For open water, wetlands, and urban land uses, InVEST

computes AETi directly as a user-defined proportion of

PETi , with classical approaches such as the FAO 56 guide-

lines (Allen et al., 1998) or local knowledge used to deter-

mine the appropriate proportion (Sharp et al., 2014). The

simple representation of these LULCs, compared to the veg-

etated land uses modeled with Eqs. (2) and (3), reflects the

focus of the model on vegetation-dominated landscapes.

Total evapotranspiration from a catchment is computed as

the sum of AETi attributed to each cell, and water yield is ob-

tained by subtracting this value from the total precipitation.

Selection of the Z parameter

The empirical constant Z captures catchment-wide charac-

teristics of climate seasonality, rainfall intensity, and topog-

raphy that are not described by the plant-available water con-

tent (AWC) and annual P . Given the empirical nature of the

model, the value of the Z parameter remains uncertain. In

this work, we examine the three methods for the determina-

tion of Z that are proposed in the InVEST user’s guide (Sharp

et al., 2014). The first draws upon recent work that suggests

www.hydrol-earth-syst-sci.net/19/839/2015/ Hydrol. Earth Syst. Sci., 19, 839–853, 2015
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that Z is positively correlated with the average annual num-

ber of rain events per year, N , and that Z may be approx-

imated by N/5 (Donohue et al., 2012). This implies that Z

captures rainfall patterns, distinguishing between catchments

with similar annual precipitation but different intensity. The

second method relies on globally available estimates of ω

(Xu et al., 2013; Liang and Liu, 2014). Z is inferred from

these published values of ω by inverting Eq. (2) with val-

ues of AWC and P averaged over the catchment. In the third

method, Z is determined via calibration to streamflow data

(see Sect. 2.5).

3 Methods

The goal of the InVEST model is not to reproduce obser-

vations with a high degree of accuracy and precision, but to

provide reliable information to inform decisions. Therefore,

utility or acceptability of the model should be couched in

terms of relative uncertainty. That is, the uncertainty asso-

ciated with the model (due to its simple structure or chal-

lenge of parameter identification) should be on par with or

less than the irreducible predictive uncertainty that arises due

to uncertainty in the forcing variables – in this case, precipi-

tation and potential evapotranspiration. To assess the relative

importance of the three sources of error (structural error, pa-

rameter selection, climate variables), we applied the InVEST

annual model to 10 subcatchments in the Cape Fear basin,

NC. Their colocation implies a similarity in climate and sea-

sonality and facilitates a focus on variations in land use, size

and topography (Hrachowitz et al., 2013). In the following

sections, we describe the study area, the methods for the sen-

sitivity analyses and uncertainty assessment of input param-

eters and forcing variables, and our approach to assess the

structural error of the model: comparison with observations,

and with the (classical) lumped model predictions.

3.1 Cape Fear study area

The Cape Fear catchment is a 23 600 km2 area in North

Carolina. Its major land uses are forest (40 %), wetland

(15 %), grassland (14 %), and agriculture (12 %), mainly

in the lower parts of the catchment and including inten-

sive swine and poultry farms. Urban and agricultural de-

velopment has generated significant groundwater extraction

throughout the catchment.

The climate is humid subtropical, with a precipitation

average of ∼ 1200 mm over the 2002–2012 study period

(Table A1 in the Appendix). This period was used for

the analyses based on the longest period available for cli-

mate data, observed streamflow, and matching LULC map.

The available precipitation data comprise the PRISM data

set (Parameter-elevation Regressions on Independent Slopes

Model; Gilliland, 2003) and a network of eight rain gauges

maintained by the USGS (USGS, 2014). For our analyses,

we use the PRISM data and two additional rasters interpo-

lated from the USGS point data (rain gauges) via spline and

inverse-distance weighting (IDW). The three input rasters

(hereafter referred to as PRISM, IDW, and spline) were used

separately to compute the average precipitation over each of

the 10 subcatchments and assess the error introduced by the

input data selection. The variability in average annual precip-

itation among the PRISM, IDW, and spline rasters (averaging

1118, 975, and 966 mm, respectively; Table 1) represents the

uncertainty that may arise when precipitation data are lim-

ited, a situation that is common in many places around the

world (McGlynn et al., 2012).

Potential evapotranspiration is represented by reference

evapotranspiration (ET0) times a crop factor Kc (Sharp et

al., 2014). ET0 was obtained from three sources: FAO data,

representing a long-term average from 1961 to 1990 (FAO,

2001), MODIS (Moderate Resolution Imaging Spectrora-

diometer) data (Mu et al., 2012), and interpolation (IDW)

from a network of 13 weather stations maintained by the Cli-

mate Office of North Carolina (hereafter referred to as Cli-

mate Office; NCSU, 2014). These three sources indicate av-

erage annual PET for the Cape Fear region to be 1240 mm

(FAO), 1160 mm (MODIS), and 1310 mm (NCSU). These

climate data indicate an aridity index (P / PET) of approxi-

mately 0.9 for the Cape Fear catchment. A summary of In-

VEST inputs is given in the Appendix (Tables A1, A2).

Streamflow observations were obtained from the USGS

monitoring network (USGS, 2014). A total of 10 stations

with a minimum of 10 years of data were used for the analy-

ses (Fig. 2, Table 2). Subcatchments draining to each of these

points were delineated based on the 30 m DEM (digital ele-

vation model).

Water withdrawal data were obtained from governmental

agencies (NC Department of Environment and Natural Re-

sources, 2014). Due to the lack of spatially explicit informa-

tion for water withdrawals (reported by county, which do not

follow the subcatchment boundaries), and on the magnitude

of return flow, we represented their effect as homogeneous

over the entire catchment. We think this decision has a lim-

ited effect on model testing since the value of water with-

drawals is small compared to water yields (see Sect. 4). In

addition, we explicitly accounted for this uncertainty by ex-

amining the effect of a 50 % error on the water withdrawal –

a magnitude consistent with the variance among the county

withdrawals. The average withdrawal rate, 39 mm yr−1, was

subtracted from the predicted water yields for comparison

with observations.

3.2 Sensitivity analyses

Sensitivity to Z and Kc

Step one in our assessment of the InVEST model was a lo-

cal sensitivity analysis of water yield to the Z parameter and

Kc for forest – the dominant LU class. The sensitivity of the

Hydrol. Earth Syst. Sci., 19, 839–853, 2015 www.hydrol-earth-syst-sci.net/19/839/2015/
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Table 1. Precipitation and evapotranspiration in Cape Fear according to different data sources. Mean and standard deviation values are

obtained from the 10 subcatchments. The relative difference between baseline data (i.e., PRISM and FAO sources, respectively, for P and

ET0) and the alternative data sources is given as the mean and the range for the 10 subcatchments.

Annual P (mm) Annual ET0 (mm)

PRISM Spline IDW FAO Climate Office MODIS

Mean (±SD∗) 1118± 11 966± 81 975± 38 1200± 18 1189± 56 1459± 19

Relative difference from −14 % −13 % −1 % +22 %

baseline data (mean difference and range) (−23; 2)% (−17; −4)% (−8; 5)% (14; 24)%

∗ SD: standard deviation

Figure 2. Cape Fear catchment showing locations of the stream gauges and subcatchments used in the study. The Rockfish catchment,

discussed in the text, is indicated as “R”.

model to Z can also be interpreted as the sensitivity to AWC,

when the raster values are varied homogeneously over the

catchment, since these parameters play a similar role in the

model structure (Eq. 3).

As previously noted, large uncertainties surround the se-

lection of the Z parameter (Sharp et al., 2014). For what

we term the “baseline” case, we set Z equal to one-fifth of

the number of rain days per year (Z =N/5). Based on his-

toric precipitation data (SERCC, 2014), the average number

of rain days per year is approximately 110, yielding a Z value

of 22. We used this value as a baseline for all subcatchments,

and allowed the parameter to vary between 1 and 30 for the

sensitivity analyses. This range was estimated from Eq. (3)

used with extreme values of P and AWC found in our catch-

ments, and extreme values of ω (2.1 and 3.75) found in the

study by Zhang et al. (2004).

Forest was the dominant LULC in all basins, with its cover

ranging from 43 to 72 % of subcatchments. We therefore de-

cided to use the crop factor Kc-forest for the sensitivity anal-

yses, and a baseline value of 1 for Kc-forest was obtained

from the FAO 56 guidelines (Allen et al., 1998). Uncertain-

ties on this value are large since it remains difficult to pro-

vide accurate estimates of the actual evapotranspiration from

forests (McMahon et al., 2013). We set the upper bound to

1.1, because values greater than this are unlikely (McMahon

et al., 2013), and the lower bound to 0.7.

For the two parameters, we performed sensitivity analy-

ses with the ranges defined above. The results are presented

as a change in predicted water yield compared to the base-

line run, thus assessing absolute sensitivity. Precipitation and

reference evapotranspiration used for these runs were from

the PRISM (1118 mm) and the FAO (1240 mm) data sets, re-

spectively (see Sects. 2.5 and 5 for insights into the error in-

troduced by climate data).

www.hydrol-earth-syst-sci.net/19/839/2015/ Hydrol. Earth Syst. Sci., 19, 839–853, 2015
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Table 2. Summary of mean flow, precipitation, reference evapotranspiration, and land-use characteristics of the 10 study subcatchments.

LULC classes shrubland, swine farm, open water and barren represented ≤ 2 % and are not reported here. Predicted mean flow values are

results from the InVEST model with Z set to 22 (the difference with the calibrated run, with Z = 14, is shown in parentheses). P and ET0

are precipitation and reference evapotranspiration, respectively.

Area Observed Predicted P ET0 % % % % % %

ID Name (km2) flow (mm) flow (mm)1 (mm) (mm) Forest Grassland Agriculture Pasture Wetland Urban

2105769 Cape Fear 13 567 278 208 1112 1212 49 13 9 6 6 13

at Kelly (−31)

2105500 Cape Fear 12 535 265 218 1109 1207 51 13 9 6 3 14

at Tarheel (−32)

2102500 Cape Fear 8973 236 225 1110 1196 55 10 9 8 1 14

at Lillington (−29)

2104220 Rockfish CR 237 368 174 1118 1240 62 18 1 0 7 8

at Raeford (−53)

2102000 Deep River 3727 250 210 1113 1203 58 9 7 11 0 11

at Moncure (−39)

2097314 New Hope CR 197 357 322 1143 1199 49 5 2 2 3 39

at Blands (−14)

2100500 Deep River 913 289 287 1112 1177 43 9 9 10 0 27

at Ramseur (−27)

2096960 Haw River 3294 278 264 1110 1181 48 10 14 9 0 17

at Bynum (−23)

2097464 Morgan CR 22 177 176 1133 1198 72 7 10 5 0 5

at White Cross (−26)

2096846 Cane CR 20 202 163 1123 1192 71 6 11 6 0 4

at Orange CR (−20)

1 In parentheses, we report the difference in corrected water yield (mm) between the baseline and calibrated runs (Z = 22, and Z = 14, respectively)

Sensitivity to climate inputs

To provide a context for the uncertainty in the predictions

of water yield from the InVEST model, we compared the

prediction error to the uncertainty in water yield that arises

from uncertainty in climate (i.e., variability in the rasters of

P and ET0). Uncertainties in climatic data and their impact

on rainfall-runoff models are commonly cited in the litera-

ture (McMahon et al., 2013; McGlynn et al., 2012). To be

an effective decision-support tool, errors attributed to model

structure and parameter selection should be on par with or

less than the irreducible error associated with uncertainty in

the climate.

As illustrated in Table 1, the average precipitation dif-

fered significantly across subcatchments depending on the

data source: the mean differences between the PRISM and

USGS data sets with the spline or IDW interpolation meth-

ods, respectively, were −14 and −13 %. Catchment-by-

catchment differences were more spatially heterogeneous

with the spline method, with some subcatchments receiving

less precipitation relative to the baseline (PRISM data set)

and others receiving more. The reference evapotranspiration

data also showed significant differences across sources, al-

though the FAO and Climate Office sources showed good

agreement. The MODIS values were on average 22 % higher

than those from the other two sources (Table 1). Differences

between the Climate Office and FAO data were also spatially

variable, ranging from −8 to 5 % across catchments.

To assess the uncertainty in water yield due to variability

in climate inputs (precipitation and reference evapotranspi-

ration), we examined the sensitivity of the baseline model

results to spatially homogeneous increases and decreases in

climate forcing. We considered climate inputs that are 10 %

greater and 10 % less than the baseline, applied uniformly

across the landscape.

3.3 Comparison of spatially explicit and lumped

models

Although the InVEST annual water yield model is based on

the well-studied Budyko framework, it departs from its clas-

sical application by applying the partitioning model at the

pixel scale. To our knowledge, the effect of the pixel-by-pixel

calculation performed by InVEST has not been previously

studied. In such an application, three issues arise related to

lateral flows of water, the spatial variability in climate vari-

ables, and the covariance of climate and soil in the prediction

of the parameter ω.

In the catchment-scale application of Budyko-type mod-

els, lateral inflows and outflows across the catchment bound-

ary are presumed negligible, resulting in a simple water bud-

get based on catchment precipitation, evapotranspiration, and

water yield. This assumption will not hold for a parcel-based

application of Eq. (2). Thus, error in the catchment-scale wa-

ter balance will arise by ignoring the excess water generated
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at one spot that is later evaporated at a downgradient location.

Such explicit routing is not included in the InVEST model.

Additionally, even if lateral flows are negligible, applying

the nonlinear Budyko curve locally and aggregating the yield

will lead to different results than applying Eq. (2) to average

values of P and PET. The concave nature of the function in-

dicates that application over a range of climates will produce

an average water yield that is higher than what would be pre-

dicted if applied at the catchment scale (Fig. 1).

Finally, since local values of both available water content

and precipitation combine to affect the local values of omega

(Eq. 3), average values of omega from the spatially explicit

model will be different from what one would obtain if aver-

age values of AWC and P were used to compute an average

value of omega.

To investigate these effects, we compared the model pre-

dictions to those obtained by applying the lumped model

(Zhang et al., 2004) at the catchment scale. Application of

the lumped model requires a value of ω, which we derived

from Eq. (3) with average values of P and AWC and with Z

set to the baseline value of 22, as would be done in a typical

ungauged application. We thus obtained, for each subcatch-

ment, an estimate of areal AET and water yields for the vege-

tated areas. AET for urban areas and wetlands was calculated

separately, following the same method as InVEST, and total

water yield was calculated as the area-weighted average of

water yield from the vegetated and urban areas.

3.4 Testing the spatially explicit model with observed

data

To quantify the accuracy and precision associated with the

InVEST water yield model, we assessed model performance

by comparison with observed data for each of the 10 sub-

catchments in the Cape Fear area. Our method aims to mea-

sure the aggregated value of water yields at the subcatchment

scale, not to test whether the water yield predicted by each

pixel is accurate. We measured performance with the model

bias, i.e., the relative difference between predicted and ob-

served water yields, and with the subcatchment ranking by

water yields. The ability of the model to predict ranking is

important for applications where prioritization of areas of

low and high water yields is needed (Guswa et al., 2014).

Uncalibrated model

We first examined the performance of the model when Z was

determined without calibration. We calculated Z both from

the number of rain days and from a global value of ω, to eval-

uate the appropriateness of these recommended methods. In

addition to assessing overall model performance, we also as-

sessed the correlation between model performance and the

proportion of forest in the catchment. These analyses aimed

to identify a potential bias that may be corrected by modify-

ing the LULC-specific Kc.

Calibrated model

To separate the effects of error associated with model struc-

ture from error attributed to parameter estimation, we also

determined the value of Z via calibration. We calibrated to

individual subcatchments, identifying for each the Z value

that resulted in zero error in the water yield. We examined

the similarity of Z values across the 10 basins, allowing us

to assess the robustness of the model structure since we ex-

pect Z to depend on larger-scale climate and geology and

not on local-scale land use. We also considered the perfor-

mance of the model with a single value of Z applied to all

subcatchments, determined by minimizing the average bias

for all basins. This allowed us to assess the uncertainty in

prediction of water yield due to model structure, i.e., the in-

herent uncertainty to applying Eqs. (2) and (3) to different

basins when the parameter, Z, is chosen by best fit for the

entire region.

4 Results

In the baseline case, we applied Eqs. (2) and (3) in a spa-

tially explicit way with a precipitation field from the PRISM

data and potential evapotranspiration data from the FAO. The

value of Z in Eq. (3) was set to 22, as mentioned above. In

this baseline case, predicted water yields ranged from 163 to

322 mm across the 10 subcatchments. Results are presented

in Table 2.

4.1 Sensitivity analyses

Water yield predictions are very sensitive to climate inputs.

The sensitivity is higher for precipitation than ET0. Relative

to the baseline case, a 10 % increase in precipitation resulted

in a 30 % increase in water yield (Fig. 3), while the same

increase in ET0 resulted in a 15 % decrease in water yield.

In contrast to the climate variables, water yield is less sen-

sitive to values of Z: for example, a change in Z from the

baseline value of 22 to a value of 10 results in an increase in

water yield of approximately 27 % (Fig. 3). However, given

the large uncertainties in the Z parameter, potential errors

in water yield can be large: for example, the water yield is

155 % higher when Z is set to 1, relative to the baseline case

with Z = 22. The sensitivity to Z is catchment-specific, as

expected, since its effect on yield is modulated by AWC and

P , both of which are spatially variable. In addition, the rela-

tive sensitivity of water yield to Z decreased with increasing

values of Z and increased with increasing values of the arid-

ity index (PET /P , results not shown).

The model was found to be more sensitive to Kc (Fig. 3)

with a 30 % change in Kc resulting in a 41 % change in the

water yield. However, given the small range of Kc values, the

effect of parameter uncertainty on the water yield prediction

is lower than for Z.
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Figure 3. Sensitivity of the water yield output to the Z coefficient and crop coefficient for forest LULC (Kc). Changes are relative to the

baseline run (where Z = 22 and Kc = 1). On the left-hand-side plot, absolute Z values are plotted on the x axis to facilitate the discussion

on the Z coefficient. Each curve represents a subcatchment.

4.2 Comparison of spatially explicit and lumped

models

Across the 10 subcatchments, the water yields predicted by

the spatially explicit InVEST model were on average 10 %

lower than the outputs from the lumped model. For 8 of the

10 catchments, the spatially explicit model predicted lower

water yields than the lumped model, and differences ranged

from −24 to 14 % (Table 3). The two catchments for which

the lumped model predicted a lower water yield than the In-

VEST model were the Morgan Creek and Cane Creek catch-

ments, which have the highest proportions of forest and the

lowest proportions of urbanized area across the 10 catch-

ments (Table 2).

The ω values computed for the lumped model ranged from

4.29 to 6.25 across the 10 catchments. These values are in the

higher range of the values obtained by Zhang et al. (2004),

as discussed in Sect. 5.2.

4.3 Testing the spatially explicit model with observed

data

Uncalibrated model

Figure 4 shows the spatially explicit output from the InVEST

model. The figure is for illustrative purposes only; as indi-

cated above, we aggregate the pixel values of water yield to

the subcatchment scale to compare with observations. Such

comparison is presented in Fig. 5a, where the Z parameter

for the InVEST model is determined from the number of

rain days (Z = 22). Open triangles represent results from the

InVEST model. To contextualize the error, grey bars repre-

sent the uncertainty in predicted water yield due to a 10 %

uncertainty in precipitation and black bars represent the un-

certainty in water yield due to a 50 % uncertainty in water

withdrawals.

The performance of the model for this baseline run is fair.

Across all basins, predicted water yields range from 163 to

322 mm yr−1 versus an observed range of 177–368 mm yr−1.

The bias between predicted and observed values averages

−16 % across the 10 subcatchments, ranging from −53 to

−1 % (Table 3). This indicates that the model structure com-

bined with this choice of Z leads to a systematic underes-

timation of water yield. With the exception of one catch-

ment, the biases ranged from −25 to −1 %. The outlier

with an error of −53 %, Rockfish catchment, is relatively

small (237 km2), and the observed water yield is also an out-

lier, being the highest in the data set (367 mm). This area

is also characterized by sandy soils; the plant available wa-

ter content averages 0.11, compared to values between 0.17

and 0.20 for the other subcatchments. This suggests that the

catchment may exhibit a unique behavior, which we will

highlight in the following analyses.

Figure 5b presents the ranking of catchments in terms of

their observed and predicted water yields. Discarding the out-

lier catchment, the figure indicates that the model accurately

predicts the high- and low-ranking catchments, while there is

some dispersion in ranks for the five midrange water yields,

which vary from 236 to 289 mm yr−1.

When Z was determined from published values of ω, the

average value across the 10 catchments was 6 (compared to

22 for the baseline case). Model performance was not satis-

factory in this case and the model bias averaged 68 %.

Calibrated model

In the first approach to the calibration of Z, we determined

the value for which the predicted water yield exactly matched

the observations. In this case, values of Z range from 6 to 20

across the 10 catchments. Not including the Rockfish catch-

ment, the range is narrower (10–20) and the average across

the nine remaining catchments is 14.5. The narrow range of
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Table 3. Bias between the water yields obtained from the InVEST

model (baseline value Z =22), the lumped model, and observed

data. The average, minimum, and maximum bias values for all the

subcatchments are reported. Note that comparison with observa-

tions discards the Rockfish subcatchment which was identified as

an outlier (see text for details).

Average Min. Max.

InVEST/Lumped model −0.10 −0.24 0.14

InVEST/Observations −0.16 −0.53 −0.01

Lumped model/Observations 0.04 −0.36 0.29

variability translates into relatively small changes in water

yield – the average difference among the basins is 27 %.

In a second approach, we determined a single value of Z

for all 10 catchments by minimizing the average bias. This

gives a value of Z = 14, and the error in yield for all sub-

catchments ranges from −38 to 14 % with a median value of

−3 %. Predicted water yields range from 183 to 336 mm yr−1

versus an observed range from 177 to 368 mm yr−1. The

open circles in Fig. 5a present predictions from the calibrated

model of water yield versus the observed values.

Model bias is not correlated with forest cover (R2
= 0.01),

nor with any other LULC (Table 1). The absence of system-

atic bias suggests that Kc values are in a realistic range, with

no significant error due to LULC parameter selection. No

significant bias was detected with regard to catchment size,

suggesting that this characteristic did not systematically in-

fluence the model predictions either.

5 Discussion

5.1 Sensitivity analyses

Variability in the Z parameter, which is linearly related to ω,

results in a shift of the Budyko curve, which affects water

yield predictions (Fig. 1). Our results in Cape Fear suggest

that the sensitivity of water yield to Z is low compared to the

climate inputs, and decreases for larger values of Z (Fig. 3).

This is consistent with the lumped model for which the sen-

sitivity to ω decreases with increasing values of ω (Fig. 1).

Due to this low sensitivity, small errors in estimating Z are

likely to have limited impact on the reliability of water yield

predictions. In particular, we note that the range investigated

in the study (from 1 to 30) is greater than the typical un-

certainty associated with Z: irrespectively of the selection

method, values smaller than 5 are unlikely.

The sensitivity to Z also provides a sense of the sensitiv-

ity to AWC, which is a function of the local ecohydrologi-

cal properties: plant available water content, root depth and

soil depth (cf. Sharp et al., 2014 for details). Examination of

Eq. (3) suggests that a relative change in Z has the same ef-

fect as a relative change in these ecohydrological parameters.

The confidence interval for these physical parameters may be

large but is reducible by measurements.

When analyzing the model sensitivity to Kc, two things

are to be considered. First, the Kc value affects only the por-

tion of the landscape covered with forest and this reduces its

effect. Because total water yield is the sum of the yields from

the different parts of the landscape, parameters affecting only

a portion of the landscape will have a smaller effect. Second,

it is worth noting that the Kc coefficient directly affects PET

for a given LULC, since the latter is the product of Kc by

ET0. Examining the sensitivity of the model to Kc is there-

fore equivalent to a displacement along the Budyko curve,

rather than a shift of this curve (Fig. 1).

In summary, the sensitivity analyses showed that, for ex-

pected and reasonable ranges of parameter variability, pre-

cipitation and potential evapotranspiration have the greatest

influence on water yield. These are followed by Z and then

Kc.

5.2 Comparison of spatially explicit and lumped

models

Comparison of the model predictions with the classical

lumped model application suggests three insights. First, it

provides a sense of the effect of the pixel-by-pixel applica-

tion of the Budyko theory. Because of its nonlinear nature,

the average response of Eq. (2) applied across the landscape

in a spatially explicit way is not equivalent to the response of

the function applied to the entire catchment, characterized by

average parameters. Our results suggest that this discretiza-

tion effect is not large for the Cape Fear subcatchments, with

the difference between the lumped and explicit models rang-

ing from −24 to +14 %. This range is consistent with the

typical errors expected from the application of simple em-

pirical models. This point can be illustrated by the perfor-

mance of the lumped model when compared with the obser-

vations: bias ranges from −36 to 29 % (Table 3). It is worth

noting that the larger, positive biases (> 22 %), i.e., when the

lumped model largely overestimated observed water yields,

were obtained for the two subcatchments that had > 25 %

urban cover, and the three basins with the least urban cover

(Cane Creek, Rockfish, and Morgan Creek) had the largest

underestimates of water yield. These results suggest that the

contribution from urban areas was overestimated by the sim-

ple model.

The second point is related to the first one, focusing on

the observation that water yields predicted by the spatially

explicit model were consistently less than those predicted by

the lumped model. As stated in Sect. 3.3 (Methods) , this

difference can be expected from the differences in average

climate values or average ω values, due to the nonlinearity in

Eq. (2). In our case, the average ω values were high for the

lumped model (ranging from 4.29 to 6.25). This indicates

that the empirical expression for Z, developed for a lumped

application (e.g., Donohue et al., 2012), may give values of
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Figure 4. Spatially explicit output of the InVEST model, showing the water yield computed on a pixel scale. Model outputs are aggregated

at the subcatchment scale, delineated by black lines, to be compared with observations at the gauging stations (green circles).

Figure 5. (a) Comparison between modeled yields (corrected for water withdrawal) and observed yields, both for the baseline run (Z = 22),

and the calibrated run (Z = 14). Black error bars represent the uncertainty on the value for water withdrawal, while grey bars represent a

10 % error in the precipitation input. (b) Comparison of subcatchment ranks. The outlier (Rockfish) subcatchment is noted as “R” on each

figure (see text for details).

Z (and, therefore, ω) that are too large for our case study;

this effect is emphasized when used in a spatially explicit

model. Calibration of the model based on Z allows correct-

ing this error in the empirical expression, although further

studies would be necessary to gain insights into the extrap-

olation of the Z parameter to spatially explicit models like

InVEST.

Finally, the good agreement between the InVEST model

and the lumped model allows drawing from the large body

of work investigating the performance of the latter model.

For example, Zhou et al. (2012) report a bias of less than

20 % in a long-term study of 150 large basins worldwide;

similarly, Zhang et al. (2004) report a mean absolute error of

< 60 mm in their study of over 470 catchments worldwide,

corresponding to a bias of < 10 % for the majority of the

catchments. Other local examples may be drawn by users to

understand how the Budyko theory may apply locally (e.g.,

Yang et al., 2007, in China). Overall, there is a large ongo-

ing effort to improve the parameterization and predictive use

of the Budyko framework (Donohue et al., 2012; Xu et al.,

2013; Liang and Liu, 2014). Future progress may therefore

be used to refine the InVEST model interpretation in differ-
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ent geographic contexts. In particular, ongoing research on

linking patch-scale and catchment-scale hydrology should

provide critical insights into the effect of the simple spa-

tial disaggregation used in the InVEST model (Thompson et

al., 2011). We note, however, that the agreement between the

lumped model and the catchment model is context specific.

As illustrated in Table 2, the differences between the lumped

model and the InVEST model vary among the catchments,

such that extrapolation of the results from such studies will

need to be done cautiously.

5.3 Model performance with and without calibration

Calibrated model

Our results indicate a fair performance of the calibrated

model for multiple catchments ranging in size and LULC.

The bias ranged from −38 to 14 % for all subcatchments,

and from −14 to 14 % when discarding the Rockfish catch-

ment. This narrow range suggests that the calibrated model

was able to explain the variability in observed water yields.

While it is possible that such variability is explained by cli-

mate more than LULC, this is not the case in Cape Fear since

the average values of P and PET varied by less than 3 % be-

tween subcatchments (Table 2).

Further consideration of the Z values obtained by calibrat-

ing it for each subcatchment provides insights into the inter-

pretation of this parameter. With the exception of the Rock-

fish catchment, a value between 10 and 20 is able to char-

acterize the nine other subcatchments. This suggests that the

parameter captures the topography and climate of the area,

as intended by the model. The calibrated value of Z for the

Rockfish catchment was much lower (Z = 6), producing a

higher water yield. This difference could be due to the in-

adequacy of Eq. (3) to relate ω to soil characteristics (since

the soils in the Rockfish catchment are particularly sandy).

It could also be attributed to errors in the treatment of wa-

ter withdrawals and return flows, especially since the entire

subcatchment lies within Hoke County, which has minimal

water withdrawals.

Despite the uncertainties around the outlier, the multi-

catchment analyses allowed us to assess the model perfor-

mance in representing LULC change. Use of the model for

evaluation of LULC change is crucial in ecosystem service

assessments, where scenario analyses of LULC development

are common (Guswa et al., 2014). Validating the use of mod-

els in such contexts is extremely challenging since it is rare

for modelers to have sufficient pre- and post-LULC-change

data (Hrachowitz et al., 2013). In our study, the length of

the precipitation and streamflow data did not allow conduct-

ing such temporal analyses. Regional analyses where space

is substituted for time thus represent a powerful way to as-

sess the ability of the model to capture differences in LULC

configuration.

Uncalibrated model

Another important lesson from the analyses is that the cali-

brated Z value is relatively close to the baseline value, which

was derived independently from the average annual number

of rain events. Based on Fig. 3, using one value or the other

would result in a difference in water yield of approximately

10 %. This error is small compared to other model uncertain-

ties, suggesting that this method for determining Z is robust.

The underprediction of water yield for ungauged catchments

could be explained by errors in the precipitation raster, the

Z parameter, and the treatment of water withdrawals. Based

on Eq. (2), the negative bias implies the underestimation of

the precipitation data or overestimation of the Z coefficient.

As already noted, errors in precipitation data are difficult to

characterize. However, precipitation was more likely under-

estimated in this study since it did not include snowfall.

Conversely, the method relying on a constant ω value was

not found satisfactory for this case study, since it resulted

in large overestimation of the water yields. Using ω = 4, the

Z value found for individual subcatchments ranged from 4

to 8, averaging 6, a value that results in a large model bias

(averaging 68 %).

With regard to relative water yield values, the model was

able to predict subcatchment ranks fairly accurately (Fig. 4b),

which means that priority areas would be correctly identi-

fied. The uncertainties in ranking for medium water yield

catchments (ranking from 3 to 6) could be partly explained

by their similarity (observed water yields range from 236 to

278 mm) and the uncertainty in the water abstraction, as sug-

gested by the overlapping error bars in Fig. 4a. Interestingly,

although these results were obtained with the calibrated value

of Z, they are only slightly sensitive to the value of Z, since

the ranking of subcatchments is largely maintained when the

value of Z changes. The ranking of subcatchments based on

the baseline run, for example, was identical to the one with

Z = 14.

5.4 Practical implications

In this final section, we discuss the results with a focus on

practical implications for model users.

Our analyses suggest that the uncertainty introduced by

“variability in the precipitation inputs” is high, comparable

or higher than the uncertainty introduced by the parameter

Z and the use of the lumped model theory on a pixel-by-

pixel basis. Importantly, the sensitivity observed in Cape Fear

(e.g., that a 10 % change in precipitation may result in a 30 %

change in water yield) is specific to the climate; for example,

in arid climates where evapotranspiration is water limited,

an error in precipitation may have a lower effect on water

yield since the precipitation surplus or deficit will be mostly

converted to evapotranspiration. In Cape Fear, comparison

of three climate input data sources suggested that large er-

rors may occur when using point data or data sets obtained
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with different modeling assumptions. These results confirm

a wide body of research that highlights the importance of

precipitation inputs for rainfall runoff models (Zhou et al.,

2012; McGlynn et al., 2012) and in particular for the InVEST

model (Boithias et al., 2014; Sánchez-Canales et al., 2012).

Although it was outside the scope of this study to investi-

gate which climate data sets are less prone to errors, our re-

sults also draw attention to spatially heterogeneous errors. If

model users are interested in the relative ranking of subcatch-

ments, the spatial distribution of errors should be specifically

investigated (e.g., probability of a systematic bias in moun-

tainous areas).

The model is not very sensitive to “uncertainty in Z” over

a modest range (e.g., 14–22). This is consistent with the con-

clusions from Sánchez-Canales et al. (2012), who report a

low sensitivity to Z in a Mediterranean catchment, for which

Z varied between 7 and 9. Since the viable range of Z is

quite wide, however, it is possible that large uncertainties in

that parameter will translate to significant uncertainty in wa-

ter yield (Fig. 3). Our analyses provided further insights into

the methods for Z selection and highlighted that the sensitiv-

ity of the model to Z decreased with increasing values of Z.

Based on the examination of Eq. (2), this property will apply

generally. Therefore, in temperate climates where values of

Z are high (based on the interpretation of Z as the number

of annual rain events), the model outputs are likely to be less

sensitive to this parameter.

Our study also presented a method to detect a “bias re-

lated to the LULC parameters” when multiple observations

are available in a catchment. Because Kc values are LULC-

specific, the correlation between model performance and Kc

values can be used to identify a possible error in the param-

eter and rectify the values accordingly. No bias was found in

this study, bringing confidence in the ability of the model to

capture the differences in LULC. We note that these correla-

tion analyses rely on nested subcatchments that are not inde-

pendent from each other, which decreases the significance of

the relationship: five subcatchments are independent, while

the other five partially overlap. However, proportions of for-

est cover varied widely between all subcatchments (from 43

to 72 %), which justifies our interpretation of the analyses.

We conclude this section with a perspective on the model

performance assessment, highlighting key limitations in the

calibration/testing exercise. First, we note that some water

transfers are missing in the model, including irrigation and

water abstraction. The model represents agriculture in the

same way that it does natural vegetation, and irrigation is

not included explicitly. Second, in the Cape Fear catchment,

the magnitudes of the water withdrawals are small but this as-

pect of the modeling may be improved in future applications.

In particular, distinction between uses of groundwater (crop

irrigation or drinking water) are necessary to account for the

fate of water extraction: evapotranspiration in the case of irri-

gation water, or return flow to the river in the case of drinking

water (e.g., Terrado et al., 2014). Additionally, performance

was evaluated at the catchment scale. A potential benefit of

a spatially explicit model, however, is the ability to predict

patterns of water yield within a basin. To properly evaluate

that capability, further work should focus on comparing the

InVEST model to more sophisticated fully distributed mod-

els.

6 Conclusion

Our study aimed to assess the performance of the InVEST

annual water yield, a tool that is gaining interest in the

ecosystem services community. While such simple models

with low requirements for data and level of expertise are

needed for practical applications, greater attention should be

paid to characterizing the modeling uncertainties. Our as-

sessment of the potential input errors, sensitivity analyses

and comparison with observations in the Cape Fear catch-

ment add to this body of work. Key results of the analyses

are as follows.

– In the Cape Fear catchment, the InVEST model was

most sensitive to uncertainty in the precipitation forc-

ing.

– Errors in climate input data may be significant and non-

spatially homogeneous, resulting in uncertainties in the

assessment of zones of high and low water yields.

– The study supports the recommendations for setting the

Z parameter based on the number of rain events, or via

calibration with available observed data.

– Based on the average bias and the explained variance

in water yield among the subcatchments, the model per-

formance was fair to high, suggesting that the effects of

land use and land cover are adequately captured by the

model.

– The errors potentially introduced by a pixel-level appli-

cation of the Budyko theory will depend on catchment

configuration; in Cape Fear, they remained small, com-

parable to the climate and parameter errors of the em-

pirical model.

– Water abstractions and irrigation processes that are not

represented in simple models may confuse the cali-

bration exercise, especially in data-scarce environments

where the ecosystem services approach is gaining mo-

mentum.

Rigorous uncertainty analyses have not been the norm in

the ecosystem service community; however, such work is

essential to help users interpret models correctly to inform

land-management decisions appropriately.
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Appendix A

Table A1. Data sources and statistics for model inputs. Raster statistics are for the entire Cape Fear catchment delineated in Fig. 2.

Range for

Value sensitivity

Data Type (mean and range) Source analyses

Precipitation Raster 1180 mm

(1030; 1450) mm

PRISM∗ (Gilliland, 2003)

(USGS, 2014)

±20 %

Reference

evapotranspiration

Raster 1240 mm

(1160; 1310) mm

FAO, 2001∗

MODIS (Mu et al., 2012)

Climate Office (NCSU, 2014)

±10 %

DEM Raster 90

(0; 250) m

USGS, 2013a n/a

LULC Raster see Table A2 NASS, 2013 n/a

Soil depth Raster 1710 m

(0; 2110) mm

USGS, 2013b n/a

PAWC Raster 0.18

(0.07; 0.52)

USGS, 2013b n/a

Root depth Per LULC class see Table A2 Allen et al., 1998 n/a

Kc Per LULC class see Table A2 Allen et al., 1998 (−30 %; +10 %)

Z Constant 22∗ Sharp et al., 2014 (1; 30)

∗ Indicates the data source used for the baseline run (see Sect. 3.2)

Table A2. Biophysical table used for the baseline InVEST model

run, giving the root depth and Kc for each LULC class (values from

Allen et al., 1998; Ag – agriculture)

LULC Root depth (mm) Kc

Ag-corn 1500 0.75

Ag-other 1100 0.7

Grass 1100 0.9

Forest 5000 1

Wetland n/a 1.1

Urban n/a 0.4

www.hydrol-earth-syst-sci.net/19/839/2015/ Hydrol. Earth Syst. Sci., 19, 839–853, 2015
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