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Abstract

Pointed pseudo-triangulations are planar minimally rigid graphs embedded in the plane with
pointed vertices (adjacent to an angle larger than π). In this paper we prove that the opposite state-
ment is also true, namely that planar minimally rigid graphs always admit pointed embeddings, even
under certain natural topological and combinatorial constraints. The proofs yield efficient embed-
ding algorithms. They also provide - to the best of our knowledge - the first algorithmically effective
result on graph embeddings with oriented matroid constraints other than convexity of faces. These
constraints are described by combinatorial pseudo-triangulations, first defined and studied in this
paper. Also of interest are our two proof techniques, one based on Henneberg inductive constructions
from combinatorial rigidity theory, the other on a generalization of Tutte’s barycentric embeddings
to directed graphs.

1 Introduction

In this paper we bring together two classical topics in graph theory, planarity and rigidity, to answer
the fundamental question (posed in [42]) of characterizing the class of planar graphs which admit pointed
pseudo-triangular embeddings. Our main result is that this coincides with the class of all planar minimally
rigid graphs (planar Laman graphs). Furthermore we extend the result in several directions, attacking
the same type of question for other (not necessarily pointed) classes of pseudo-triangulations and for
combinatorial pseudo-triangulations, a new class of objects first introduced and studied in this paper.

Novelty. As opposed to traditional planar graph embeddings, where all the faces are designed to be
convex, ours have interior faces which are as non-convex as possible (pseudo-triangles). Planar graph
embeddings with non-convex faces have not been systematically studied. Our result links them to rigidity
theoretic and matroidal properties of planar graphs. To the best of our knowledge, this is the first result
holding for an interesting family of graphs on algorithmically efficient graph embeddings with oriented
matroid constraints other than convexity of faces. In contrast, the universality theorem for pseudo-line
arrangements of Mnëv [28] implies that the general problem of embedding graphs with oriented matroid
constraints is as hard as the existential theory of the reals.

1Department of Mathematics, Smith College, Northampton, MA 01063, USA, rhaas@math.smith.edu.
2Departamento de Matematicas, Estadistica y Computacion, Universidad de Cantabria, E-39005 Santander, Spain,

{ordend, santos}@matesco.unican.es. Supported by grant BFM2001-1153 of the Spanish Ministry of Science and Technology.
3Institut für Informatik, Freie Universität Berlin, Takustraße 9, D-14195 Berlin, Germany. rote@inf.fu-berlin.de. Partly

supported by the Deutsche Forschungsgemeinschaft (DFG) under grant RO 2338/2-1.
4Mathematics Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA. {bservat,

hservat}@math.wpi.edu.
5Department of Computer Science, Tufts University, Medford MA, USA. dls@cs.tufts.edu. Supported by NSF Grant

EIA-9996237.
6Department of Computer Science, Smith College, Northampton, MA 01063, USA. streinu@cs.smith.edu. Supported by

NSF grants CCR-0105507 and CCR-0138374.
7Department of Mathematics and Statistics, York University, Toronto, Canada. whiteley@mathstat.yorku.ca. Supported

by NSERC (Canada) and NIH(USA).

1

http://arXiv.org/abs/math/0307347v1


Proof Techniques and Algorithmic Results. We present two proof techniques of independent inter-
est. The first one is of a local nature, relying on incremental (inductive) constructions known in rigidity
theory as Henneberg constructions. The second one is based on a global approach making use of a directed
version of Tutte’s barycentric embeddings, which - to the best of our knowledge - is first proven in this
paper. Both proofs are constructive, yield efficient algorithms, emphasize distinct aspects of the result
and lead into new directions of further investigation: combinatorial versus geometric embeddings, local
versus global coordinate finding.

Laman Graphs and Pseudo-Triangulations. Let G = (V, E) be a graph with n = |V | vertices and
m = |E| edges. G is a Laman graph if m = 2n − 3 and every subset of k vertices spans at most 2k − 3
edges.1 An embedding G(P ) of the graph G on a set of points P = {p1, · · · , pn} ⊂ R2 is a mapping of
the vertices V to points in the Euclidean plane i 7→ pi ∈ P . The edges ij ∈ E are mapped to straight line
segments pipj . We say that the vertex i of the embedding G(P ) is pointed if all its adjacent edges lie on
one side of some line through pi. Equivalently, some consecutive pair of edges adjacent to i (in the circular
counter-clockwise order around the vertex) spans a reflex angle. An embedding G(P ) is non-crossing if
no pair of segments pipj and pkpl corresponding to non-adjacent edges ij, kl ∈ E, i, j 6∈ {k, l} have a point
in common. A graph G is planar if it has a non-crossing embedding.

A pseudo-triangle is a simple planar polygon with exactly three convex vertices. A pseudo-triangulation
of a planar set of points is a non-crossing embedded graph G(P ) whose outer face is convex and all interior
faces are pseudo-triangles. In a pointed pseudo-triangulation all the vertices are pointed. See Figure 1.

(a) (b) (c)
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Figure 1: (a) A pseudo-triangulation (necessarily non-pointed, since the underlying graph is a circuit, not
a Laman graph) and two embeddings of a planar Laman graph: (b) is a pointed pseudo-triangulation,
(c) is not: the faces 2876 and 1548 are not pseudo-triangles and the vertices 6 and 8 are not pointed.

Pseudo-triangulations are thus planar graphs with a special embedding. As shown in [41], the graphs
of pointed pseudo-triangulations are Laman graphs. They have very useful rigidity theoretic properties
and a wealth of combinatorial properties. They have emerged via several applications in Computational
Geometry, where they are used in Kinetic Data Structures for collision detection and in certain motion
planning problems.

1This is called the definition by counts of Laman graphs. An equivalent definition via Henneberg constructions will be
given in Section 2.
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Historical Perspective. Techniques from Rigidity Theory have been recently applied to problems such
as collision free robot arm motion planning [10, 41], molecular conformations [23, 51, 46] or sensor and
network topologies with distance and angle constraints [14].

Laman graphs are the fundamental objects in 2-dimensional Rigidity Theory. Also known as isostatic
or generically minimally rigid graphs, they characterize combinatorially the property that a graph, em-
bedded on a generic set of points in the plane, is infinitesimally rigid (with respect to the induced edge
lengths). See [25], [18], [52]. The most famous open question in Rigidity Theory (the Rigidity Conjecture,
see [18]) is finding their 3-dimensional counterpart.

Pseudo-triangulations are relatively new objects, introduced and applied in Computational Geometry
for problems such as visibility [34], [33], [39], kinetic data structures [4] and motion planning for robot
arms [41]. They have rich combinatorial, rigidity theoretic and polyhedral properties ([41], [38], [29]),
many of which have only recently started to be investigated ([35], [24], [3], [6], [1], [7], [2]). In particular,
the fact that they are Laman graphs which become expansive mechanisms when one of their convex hull
edges is removed, has proven to be crucial in designing efficient motion planning algorithms for planar
robot arms, see [41]. Finding their 3-dimensional counterpart, which is perhaps the main open question
about pseudo-triangulations and expansive motions, may lead to efficient motion planning algorithms
for certain classes of 3-dimensional linkages, with potential impact on understanding protein folding
processes.

Graph Drawing is a field with a distinguished history, and embeddings of planar graphs have received
substantial attention in the literature ([16],[48], [47], [9], [17], [43], [13]). Extensions of graph embeddings
from straight-line to pseudo-line segments have been recently considered (see e.g. [32]). It is natural to
ask which such embeddings are stretchable, i.e. whether they can be realized with straight-line segments
while maintaining some desired combinatorial substructure. Indeed, the primordial planar graph embed-
ding result, Fary’s Theorem [16], is just an instance of answering such a question. Graph embedding
stretchability questions have usually ignored oriented matroidal constraints, allowing for the free reori-
entation of triplets of points when not violating other combinatorial conditions. The notable exception
concerns the still widely open visibility graph recognition problem, approached in the context of pseudo-
line arrangements (oriented matroids) by [31]. In [40] it is shown that it is not always possible to realize
with straight-lines a pseudo-visibility graph, while maintaining oriented matroidal constraints.

In contrast, this paper gives the first non-trivial stretchability result on a natural graph embedding
problem with oriented matroid constraints. It adds to the already rich body of surprisingly simple and
elegant combinatorial properties of pointed pseudo-triangulations by proving a natural connection.

Main Result. We are interested in planar Laman graphs. Not all Laman graphs fall into this cate-
gory. For example, K3,3 is Laman but not planar. But the underlying graphs of all pointed pseudo-
triangulations are planar Laman. We prove that the converse is always true:

Theorem 1.1 (Main Theorem)
Every planar Laman graph can be embedded as a pointed pseudo-triangulation.

The following characterization follows then from well known properties of Laman graphs:

Corollary 1.2 Given a planar graph G, the following conditions are equivalent:

(i) G is a Laman graph

(ii) Generically, G is minimally rigid

(iii) G can be embedded as a pointed pseudo-triangulation

We prove in fact several stronger results, allowing the a priori choice of the facial structure (Theorem
3.1) and even of the combinatorial information regarding which vertices are convex in each face (Theorem
5.1). This last result needs the apparatus of combinatorial pseudo-triangulations, first defined and studied
in this paper.

3



Finally, we answer a natural question related to the underlying matroidal structure of planar rigidity
and extend the result to planar rigidity circuits, which are minimal dependent sets in the rigidity matroid
where the bases (maximally independent sets) are the Laman graphs. By adding edges to a pointed
(minimum) pseudo-triangulation while maintaining planarity, the graph has increased dependency level
(in the rigidity matroid) and can no longer be realized with all vertices pointed, but it can always be
realized with straight edges. Our concern is to maintain the minimum number of non-pointed vertices,
for the given edge count. For circuits, this number is one, and we show that it can be attained.

Organization. The paper is organized as follows. In Section 2 we give the basic definitions needed for an
independent reading of Section 3. For increased readability, additional technical definitions are later in-
cluded in the sections that use them. The first proof of the Main Theorem is presented in Section 3, which
is further devoted to all the proofs (combinatorial or geometric) making use of the inductive Henneberg
technique: planar Laman graphs, combinatorial pseudo-triangulations, pointed pseudo-triangulations and
Laman-plus-one combinatorial and geometric pseudo-triangulations. Section 4 is devoted to combinatorial
pseudo-triangulations and to the perfect matching technique for assigning combinatorial pseudo-triangular
labelings to plane graphs. Section 5 focuses on the second proof technique based on Tutte embeddings
and contains our most general result on plane graph embeddings compatible with given combinatorial
pseudo-triangulations. We conclude in Section 6 with a list of further directions of research and open
questions.

2 Preliminaries

For the standard graph and rigidity theoretical terminology used in this paper we refer the reader to [18]
and [53]. For relevant facts about pointed pseudo-triangulations, see [41]. In this section we continue
what we started in the Introduction and give most of the definitions needed for reading Sections 3 and
4. The technically denser Section 5 contains its own additional concepts.

Notation and Abbreviations. Throughout the paper we will abbreviate counter-clockwise as ccw.
To emphasize that a graph has n vertices we may denote it by Gn. We will occasionally abbreviate
combinatorial pseudo-triangulation as cpt and pointed combinatorial pseudo-triangulation as pointed cpt.

Plane Graphs. A non-crossing embedding of a connected planar graph G partitions the plane into faces
(bounded or unbounded), edges and vertices. Their incidences are fully captured by the vertex rotations:
the ccw circular order of the edges incident to each vertex in the embedding. A sphere embedding of a
planar graph refers to a choice of a system of rotations (and thus of a facial structure), and is oblivious
of an outer face. It is well-known (Whitney [54]) that a 3-connected planar graph induces a unique set
of rotations, but 2-connected ones may induce several. A plane graph is a spherical graph with a choice
of a particular face as the outer face. Every simple plane graph can be realized with straight-line edges
in the plane (Fary’s theorem [16]).

A (combinatorial) angle (incident to a vertex or a face in a plane graph) is a pair of consecutive edges
(consecutive in the order given by the rotations) incident to the vertex or face.

Pseudo-Triangulations. We have defined pseudo-triangles, pseudo-triangulations and pointed pseudo-
triangulations in the Introduction. In addition, we will use the following related concepts. The corners of
a pseudo-triangle are its three convex angles, and its side chains are the pieces of the boundary between
two corners (vertices and edges). The extreme edges of a pointed vertex are the two edges incident with
its unique incident reflex angle.

Minimally Rigid (Laman) Graphs and Henneberg constructions. Besides the definition by
counts given in the Introduction, Laman graphs can be characterized in a variety of ways. In particular,
a Laman graph on n vertices has an inductive construction as follows (see [21, 52]). Start with an edge
for n = 2. At each step, add a new vertex in one of the following two ways:

• Henneberg I (vertex addition): the new vertex is connected via two new edges to two old vertices.

4



• Henneberg II (edge splitting): a new vertex is added on some edge (thus splitting the edge into
two new edges) and then connected to a third vertex. Equivalently, this can be seen as removing
an edge, then adding a new vertex connected to its two endpoints and to some other vertex.

See Figure 2, where we show drawings with crossing edges, to emphasize that the Henneberg con-
structions work for general, not necessarily planar Laman graphs.

(a) (b)
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Figure 2: Illustration of the two types of steps in a Henneberg sequence, with vertices labelled in the
construction order. The shaded part is the old graph, to which the black vertex is added. (a) Henneberg
I for vertex 5, connected to old vertices 3 and 4. (b) Henneberg II for vertex 6, connected to old vertices
3, 4 and 5.

We will make heavy use of the following result, essentially stated by Henneberg [21], and of its proof,
due to Tay and Whiteley [45].

Lemma 2.1 A graph is Laman if and only if it has a Henneberg construction.

The proof of Lemma 2.1 proceeds inductively to show that there always exists a vertex of degree 2 or
3 which can be removed in the reverse order of a Henneberg step while maintaining the Laman property.
It is instructive to give a slightly more general proof. We will make use of it in Section 3.

Lemma 2.2 A Laman graph has a Henneberg construction starting from any prescribed subset of two
vertices. Moreover, if there exist three vertices of degree 3 mutually connected in a triangle, then we can
prescribe them as the first three vertices of the Henneberg construction.

Proof: Let Gn = (V, E) be a Laman graph on n = |V | vertices and let V2 ⊂ V be any subset of two
vertices. We show that as long as n > 2 we can always remove a vertex not in V2 in the opposite direction
of a Henneberg step. In the actual Henneberg construction this amounts to starting the induction from
this prescribed pair.

Vertices of degree 0 or 1 do not exist in Laman graphs, otherwise the Laman property would be
violated on a subset of n − 1 vertices. Since Gn has 2n − 3 edges, a simple count shows that there exist
at least three vertices of degree at most 3, hence either of degree 2 or 3. At least one of them (call it v) is
not in V2. This will be the vertex we choose to remove, in a backwards application of a Henneberg step.

If v has degree 2, we remove v and its incident edges: the resulting graph on n − 1 vertices and
2(n− 1)− 1 edges is clearly Laman. If v has degree 3, let its neighbors be v1, v2 and v3. The removal of
v and of its three adjacent edges produces a graph G′

n−1 with a deficit of one edge: n − 1 vertices but
only 2(n− 1)− 4 edges. We must put back one edge joining one of the three pairs of vertices in v1, v2, v3.

5



Consider the rigid components of G′
n−1: maximal subsets of some k vertices spanning 2k − 3 edges. The

three endpoints v1, v2 and v3 cannot belong to the same rigid component (otherwise the Laman count
would be violated in Gn on the subset consisting of this component and v). Two rigid components share
at most one vertex, otherwise their union would be a larger Laman subgraph. Suppose that v1 and v2

are in distinct rigid components. Then adding an edge between v1 and v2 doesn’t violate the Laman
condition on any subset and completes G′

n−1 to a Laman graph Gn−1.
If Gn contains a subset V3 of three degree 3 vertices connected in a triangle, then a similar counting

argument shows that there is an additional vertex of degree at most 3. This fourth vertex can be removed
in such a way that the invariant (of having three vertices of degree 3 connected in a triangle) is maintained.
Hence the vertices of V3 may be prescribed as the three starting vertices. To finish, let’s show that the
invariant is maintained. Let G′ be the subgraph induced on the vertices in V \ V3: if it contains more
than two elements, then it spans 2n − 3 − 6 = 2(n − 3) − 3 edges, hence it is Laman. Let N(V3) be the
neighbors of V3 in Gn: none of these vertices can be of degree 2, otherwise G′ would not be Laman. If
there is a vertex v′ of degree 3 in N(V3) which is removed at some Henneberg step, one must put back an
edge incident to two of its neighbors, and one of them must be in V3: otherwise, the induced subgraph G′

on V \ V3 (after performing the reverse Henneberg step) would violate the Laman counts. Since at any
reverse Henneberg step we remove either vertices of degree 2 (which are not incident to V3) or of degree
3, which do not change the degree of their neighbors in V3, it follows that the vertices in V3 maintain
their degrees and the property of being connected in a triangle throughout the construction (in fact, until
n = 5, from which point it is easy to see that V3 can still be prescribed). 2

Laman-plus-one Graphs and Rigidity Circuits. A Laman-plus-one graph is a Laman graph with
one additional edge. It has 2n − 2 edges and every subset of k edges induces at most 2k − 2 edges.
A rigidity circuit (shortly, a circuit) is a graph with the property that removing any edge produces a
Laman graph. It is therefore a special Laman-plus-one graph. In a rigidity circuit G with n vertices, the
number n of vertices is at least 4, the number m of edges is 2n − 2 and every subset of k vertices spans
at most 2k − 3 edges. Moreover, the minimum degree in a circuit is 3. It is straightforward to prove
that a Laman-plus-one graph contains a unique rigidity circuit: take the maximal subgraph satisfying the
circuit counts. It is unique, because otherwise the union of two circuits would violate the Laman-plus-one
counts.

These concepts are motivated by the matroid view of Rigidity Theory, see [18]: Laman graphs corre-
spond to bases (maximal independent sets of edges) in the generic rigidity matroid, while the circuits are
the minimally dependent sets.

It has been proven recently that 3-connected rigidity circuits admit an inductive (Henneberg-type)
construction (using only Henneberg II steps and starting from K4), where all intermediate graphs are
themselves circuits. All rigidity circuits are 2-connected, hence they can be obtained by making use of
Tutte’s Theorem on the structure of 3-connected graphs in terms of 2-connected components (see [49],
[50]).

We show now (and use later) that Laman-plus-one graphs also admit a simple Henneberg construction.
This proof structure (much easier than [5] because of a simpler inductive invariant) will be used in
Section 3 to show stretchability of planar Laman-plus-one graphs, and thus of planar rigidity circuits.

Lemma 2.3 A graph G is Laman-plus-one if and only if it has a Henneberg construction starting from
a K4.

Proof: The proof is similar to that of Lemma 2.1 and uses the 2n − 2 counts. There must be at least
two vertices in G of degree at most 3. Vertices of degree 2 are outside the circuit and are removed just as
in the Laman case. We now show how to handle a vertex v of degree 3. If there are no vertices of degree
2, there are at least four of degree 3.

Let C = (Vc, Ec) be the unique induced subgraph which is the circuit of G, Vo = V \ Vc the vertices
outside the circuit and Vb ⊂ Vc the boundary of Vc, i.e. the set of vertices in Vc incident to a vertex in
Vo. It is easy to see (from the 2n− 2 counts) that between Vb and Vo there must be at least two edges if
|V0| = 1 or three edges if |Vo| ≥ 2.
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If v ∈ Vo then its neighbors cannot all three belong to the circuit, because otherwise the subgraph
induced on Vc∪{v} would violate the 2n−2 counts. Remove (temporarily) an edge ab of G from inside C:
the resulting graph is Laman, containing C without this edge as a rigid block (subset on which the Laman
count is satisfied with equality). By Lemma 2.2 there is a well defined way of removing v and placing
back an edge to perform a Henneberg II step in reverse: the added edge is not between two vertices of
Vc. Therefore we can put back the temporarily removed edge ab to get a Laman-plus-one graph.

If v ∈ Vc, notice first that it cannot be on the boundary Vb, otherwise its degree in C would be at most
2, contradicting the fact that C is a circuit. So all its three neighbors v1, v2 and v3 are in Vc. Removing
v and its incident edges produces a Laman graph. Either all of the edges v1v2, v1v3, v2v3 are present in
G or not. If not (say, v1v2 is missing), then we add v1v2, get a Laman-plus-one graph and continue the
induction. Otherwise, the circuit was a K4. If there are no vertices outside the circuit, we are done.
Otherwise, there are at least two edges out of Vb, increasing the degree of at least one vertex in the circuit
K4. If there are no vertices of degree 2, then there must be at least one other vertex of degree 3 in Vo.
We will perform the Henneberg step on it (and thus not touch K4 until the end). 2

Combinatorial Pseudo-Triangulations. Let G be a plane connected graph 2. A combinatorial pseudo-
triangulation (cpt) of G is an assignment of labels big (or reflex) and small (or convex) to the angles of G

such that:

(i) Every face except the outer face gets three vertices marked small. These will be called the corners
of the face.

(ii) The outer face gets only big labels (has no corners).

(iii) Each vertex is incident to at most one angle labeled big. If it is incident to a big angle, it is called
pointed.

(iv) A vertex of degree 2 is incident to one angle labeled big.

By analogy with pseudo-triangulations, we also define extreme edges, side-chains and non-pointed
vertices of combinatorial pseudo-triangulations.

Combinatorial pseudo-triangulations share many combinatorial properties with pseudo-triangulations.
The following lemma follows easily from the definition.

Lemma 2.4 A combinatorial pseudo-triangulation on n vertices has at least 2n − 3 edges. If a cpt has
m ≥ 2n− 3 edges, then it contains exactly m − (2n − 3) non-pointed vertices.

Proof: Let VK be the set of non-pointed vertices. Let m be the number of edges, f the number of
faces, k the size of VK and dv the degree of a vertex v. We count the number of small angles in two
ways and apply Euler’s formula. Summing over the faces we get 3(f − 1). Summing over vertices we get∑

v 6∈VK
(dv − 1) +

∑
v∈VK

dv =
∑

v∈V dv − (n − k) = 2m − n + k. This solves to m = 2n − 3 + k and
proves the statement. 2

A cpt with exactly 2n − 3 edges will have all vertices pointed: we’ll call it a pointed combinatorial
pseudo-triangulation (pointed cpt). Another case of interest in this paper is when exactly one vertex is
combinatorially non-pointed, i.e. has no incident big angle: we call it a pointed-plus-one cpt. Notice that
in this case the non-pointed vertex has degree at least 3, is interior, i.e. not incident to the outer face
and that the cpt has 2n − 2 edges.

In Section 3 we will prove that all planar Laman graphs and all planar Laman-plus-one graphs have
cpt assignments. The previous lemma implies that such cpt assignments must be pointed for Laman
graphs, resp. pointed-plus-one for Laman-plus-one graphs (defined below).

Pointed-plus-one and Circuit Pseudo-triangulations. A pointed-plus-one pseudo-triangulation is a
pseudo-triangulation with exactly one non-pointed vertex. It is easy to see that it has 2n−2 edges, and is

2The definition is valid in a more general setting than what we use in this paper, and works even with multiple edges,
vertices of degree one and loops. In such a case, a vertex of degree one is incident to a unique angle, labeled big.
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in fact just a planar Laman-plus-one graph embedded as a pseudo-triangulation. A pseudo-triangulation
circuit is a planar rigidity circuit embedded as a pseudo-triangulation. A reminder that by a pseudo-
triangulation we mean any decomposition into pseudo-triangles, which may not be pointed. In fact,
any such pseudo-triangulation with more than 2n − 3 edges is necessarily non-pointed3, because pointed
pseudo-triangulations are maximal pointed sets edges on any planar set of points and must have exactly
2n − 3 edges (cf. [41]). See Figure 1 for an example.

3 Main result: Inductive Proof via Henneberg construction

We are now ready to give our first proof of the Main Theorem, in the following slightly more general
form, and extend it to planar Laman-plus-one graphs.

Theorem 3.1 Any plane Laman graph has a pointed pseudo-triangular embedding.

Theorem 3.2 Any plane Laman-plus-one graph has a pointed-plus-one pseudo-triangular embedding.

Both proofs have the same structure and are divided into three steps: topological, combinatorial
and geometric. They are based on the corresponding Henneberg constructions, the common theme of
this section. The easy topological lemmas shows that any Henneberg construction on a (Laman or
Laman-plus-one) plane graph can be carried out in a manner compatible with the plane embedding. The
combinatorial lemmas construct a combinatorial pseudo-triangulation while performing a topological
Henneberg construction. Finally, in the geometric lemmas we show how to perform geometrically, with
straight-line egdes, the Henneberg extension (rather than just combinatorially). All the ideas are already
contained in the proof of the first theorem: the second one will only be sketched, with indications of
where the differences lie.

3.1 Pseudo-Triangular Embeddings of Plane Laman Graphs

The proof of Theorem 3.1 is a consequence of the four lemmas stated and proven below. Lemma 3.3
reduces the construction to the case when the outer face is a triangle. Lemma 3.4 provides the framework
for a Henneberg induction on plane graphs. This is then used in Lemma 3.5 to compute a combinatorial
pseudo-triangulation assignment and in Lemma 3.6 to realize the same thing geometrically. Theorem 3.1
follows from Lemma 3.6. We remark that Lemma 3.5 is not needed for the proof of Theorem 3.1. It is
however natural to include it here because it makes use of the same Henneberg technique (ubiquitous in
this section). It also gives a better intuition about the combinatorial structure of the many possibilities
involved in a complete proof by case analysis of Lemma 3.6.

Lemma 3.3 (Fixing the Outer Face) Embedding a plane Laman graph as a pseudo-triangulation
reduces to the case when the outer face is a triangle.

Proof: Let G be a plane Laman graph with an outer face having more than three vertices. We construct
another Laman graph G′ of n+3 vertices by adding 3 vertices on the outer face and connecting them into
a triangle including the original graph. Then we add an edge from each of the three new vertices to three
distinct vertices on the exterior face of G. See Figure 3. We now realize G′ as a pseudo-triangulation
with the new triangle as the outer face. The graph G, as a subgraph of G′, must be realized with its
outer face convex by the following argument. The three new interior edges of G′ provide two corners each
at their end-point incident to the outer face and at least one corner in the interior one. Since the three
faces incident to them have nine corners in total, the boundary of G provides no corner to the three new
interior faces of G′. 2

Notice that a planar Laman graph (on n vertices) always has at least two triangular faces: the dual
planar graph has n − 1 vertices (including the vertex corresponding to the outer face) and 2(n − 1) − 1

3In general, those with k non-pointed vertices (all interior) have 2n − 3 + k edges.
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Figure 3: Reducing to an embedding with a triangular outer face.

edges, hence there exists at least two of degree three. The construction in the previous lemma makes it
possible to use the stronger invariant of the Henneberg construction from Lemma 2.2 and to start any
geometric embedding with a triangular outer face, then to insert only on interior faces. This feature is
not needed in the proof of the topological or combinatorial lemmas below.

Figure 4: A plane Henneberg construction. Top row: Gn, to which a new vertex will be added. Middle
row: Henneberg I on the outer, resp. an interior face. Bottom row: Henneberg II on the outer, resp. an
interior face.

Lemma 3.4 (The Topological Lemma) Every plane Laman graph has a plane Henneberg construc-
tion in which:

1. All intermediate graphs are plane

2. At each step, the topology is changed only on edges and faces involved in the Henneberg step: either

9



a new vertex is added inside a face of the previous graph (Henneberg I), or inside a face obtained
by removing an edge between two faces of the previous graph (Henneberg II).

In addition, if the outer face of the plane graph is a triangle, we may perform the Henneberg construc-
tion starting from that triangle. The Henneberg steps will never insert vertices on the outer face.

Proof: We follow the structure of the basic Henneberg construction from Lemma 2.2. Find an appropriate
vertex of degree 2 or 3. Removing it, and its incident edges, merges two (resp. three) faces into one. The
other endpoints of the removed edges are incident to this face, hence the added edge in the Henneberg II
step simply splits this face and maintains the planarity of the embedding. 2

Figure 5: Extending a combinatorial pseudo-triangulation in a Henneberg I step. Top left: the combi-
natorial face is represented as a circle with its three corners, denoted by white vertices, marked small (a
small black dot). Top right, a representative situation: the two endpoints of the newly added edges (in
black) are distributed on two distinct side chains of the face. Two distinct labelings are possible in this
case (bottom row): the newly created angles after the insertion of the new vertex (grey) are labeled with
a small black dot for small (or convex) and with a large arc for big (or reflex).

Lemma 3.5 (The Combinatorial Lemma) Every plane Laman graph admits a combinatorial pseudo-
triangulation assignment.

Proof: Let Gn be a plane Laman graph on n vertices. We may assume that the outer face is a triangle.
We proceed with a plane Henneberg construction guaranteed by Lemma 3.4, which will insert only on
interior4 faces. The base case is a triangle and has a unique cpt labeling. At each step we have, by
induction, a cpt labeling which we want to extend. The proof will guarantee that each one can be
extended (so there is no need to backtrack).

In a Henneberg I step, the new vertex v is inserted on a face T (already labeled as a pseudo-triangle),
and joined to two old vertices v1 and v2. The new edges vv1 and vv2 partition the face F and its three
corners into two. Three cases may happen. Either the three corners fall one in one face and two in
another face, or one of them is split by a new edge (say v1 is a corner) and the other two are either both
in the same new face or are separated, or two corners are split, and the third corner is in one of the two
newly created faces. In either case, the assignment of big and small labels is what one would expect: a

4This is just a technical simplification reducing the size of our case analysis. The reader may verify that the Henneberg
steps work as well for insertions on the outer face.
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Figure 6: Merging two faces into one: a representative case for the analysis of a combinatorial Henneberg
II step. The markings of small and big angles follow the conventions from Figure 5. The black vertices
are the endpoints of the removed edge v1v2.

small angle is split into two small angles, a big angle is split into a big and a small angle, and the new
point gets exactly one big angle. We illustrate one representative case in Figure 5 and leave the rest of
the straightforward details of this case analysis to the reader.

Figure 7: Extending a combinatorial pseudo-triangulation in a Henneberg II step. Top: a representative
case of a combinatorial face with four corners. Left: two (out of three) possible placements of the third
vertex. Right: the possible labelings of the induced faces as combinatorial pseudo-triangles.

In a Henneberg II step, an edge v1v2 is first removed, merging two faces labeled as combinatorial
pseudo-triangles into one face T . In this process, some angles are merged into one: their labels must be
reassigned, but we make no changes to the labels of the other angles. The rules for assigning labels to
merged angles are simple, mimicking what one would expect to happen in a straight-line situation: if one
old angle was big, the merged angle is marked big, otherwise small. The face T thus gets exactly four
small angles. Its boundary is separated by the vertices v1 and v2 into two chains: each contains at least
one corner. Four cases may happen: v1 and v2 are both small (corners), separating the other two corners;
only one is small (say, v1), and the other corners are distributed as 1-2 on the chains; or both v1 and v2

are big, and the four corners are distributed as either 2-2 or 1-3. See Figure 6 for a representative case
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(the other are similar and are left to the reader). Notice that it is impossible to have all four corners on
only one chain induced by v1 and v2.

The new vertex v is now inserted inside this face T , and joined to the old vertices v1 and v2, and to
some other vertex v3 on T . The new edges vv1, vv2 and vv3 partition the face T and its four corners into
three parts, which can be assigned the labels in several ways. See Figure 7 for a representative case: the
systematic verification of all the cases is straightforward and is left to the reader. 2

Notice that in general the pointed combinatorial pseudo-triangulation guaranteed by Lemma 3.5 is
not unique. The Lemma shows in fact how to systematically generate all of them in a non-backtracking
manner: if we succeeded in finding a pointed cpt at step n, we simply extend it at the next Henneberg
step. We next prove that at least one of them is realizable with straight-lines via a similar Henneberg
extension technique.

Lemma 3.6 (The Geometric Lemma) Every plane Laman graph G can be embedded as a pseudo-
triangulation.

Proof: Let Gn be a plane Laman graph on n vertices with a triangular outer face. Assume we have a
plane Henneberg construction for Gn starting with the outer face and adding vertices only on interior
faces. We basically follow the same analysis as in Lemma 3.5. This time, however, we will not choose the
big/small labels of the angles, but rather show that there exists a way of placing a point pn inside a face
which realizes a compatible partitioning of the face into pseudo-triangles as prescribed by the Henneberg
step on the vertex vn of degree 2 or 3.

As in Lemma 3.5, the Henneberg I step is straightforward on an interior face (which is what we do
here). As an exercise pointing out to the difference between the combinatorial and the geometric case,
we leave it to the reader to verify that this is not the case on an outer face, where the placement of a
vertex at step n + 1 may be constrained by the realization up to step n, and thus may not directly allow
an embedding with a certain prescribed outer face.

The analysis of a Henneberg II step is identical to that performed in the combinatorial lemma, and
leads to several cases to be considered. We illustrate here only a representative case (but have verified
them all). The important fact is that it is always possible to realize with straight-lines at least one of the
possible Henneberg II combinatorial pseudo-triangular extensions.

Consider the (embedded) interior face F with four corners obtained by removing an interior edge pipj ,
and let pk be a vertex on the boundary of F . We must show that there exists a point p inside F which,
when connected to pi, pj and pk partitions it into three pseudo-triangles and is itself pointed. The three
line segments ppi, ppj and ppk must be tangent to the side chains of F . We define the feasibility region
of an arbitrary point pa on the boundary of F as the (single or double) wedge-like region inside F from
where tangents to the boundary of F at pa can be taken. The feasibility region of several points is the
intersection of their feasibility regions. An important fact is that the feasibility region of pi and pj always
contains the part of the supporting line of the removed edge pipj , and that the feasibility region of any
other vertex pk cuts an open segment on it. In fact, the feasibility region of pk intersects the feasibility
region of pi and pj in a non-empty feasible 2-dimensional region on one side or the other (or both) of this
segment. One can easily see that not only is this region non-empty, but it contains a subregion where a
placement of p as a pointed vertex is possible (we call that a pointed-feasible region). We skip the rest of
the straightforward details. See Figure 8 for a representative case. 2

Proof of Theorem 3.1. Let G be a plane Laman graph. If its outer face is not a triangle, apply Lemma
3.3 to get a new graph Gn which will contain G in its embedding. Follow the plane geometric Henneberg
construction described in Lemma 3.6 to embed Gn starting from a triangle and always inserting new
vertices in some interior face. 2

Algorithmic analysis. The proof of Theorem 3.1 can be turned into an efficient polynomial time
algorithm. Given a Laman graph, verifying its planarity and producing a plane embedding (stored as a
quad-edge data structure [19] with face information) can be done in linear time [22]. One then chooses an
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Figure 8: Henneberg II step on an interior face. One sees that the feasible region of pk (light grey)
intersects the feasible region of the two endpoints pi and pj (dark grey) of the removed edge. We show
the two feasible regions (of the pair pi, pj, resp. pk), their intersection, the final pointed-feasible region
and a placement of a pointed vertex p and its three tangents.

outer face and in linear time one can perform the construction from Lemma 3.3 to get a triangular outer
face. For producing a topological Henneberg construction, we’ll keep an additional field in the vertex
data structure, storing the degree of the vertex. We will keep the vertices in a min-heap on the degree
field. To work out the Henneberg steps in reverse we need to do efficiently the following operations: a)
detect a vertex of minimum degree (which will be 2 or 3), b) if the minimum degree is 3, corresponding
to a vertex v, we must find an edge e that will be put back in after the removal of the neighbors of v, and
c) restore the quad-edge data structure. Step a) can be done in O(log n) time. Step c) can be done in
constant time. Step b) requires deciding which of the three possibilities for e among v1v2, v1v3 and v2v3

(where v1, v2 and v3 are the neighbors of the vertex removed in a reverse Henneberg II step) produces
a Laman graph. Testing for the Laman condition on a graph with 2n − 3 edges can be done by several
algorithms (the algorithms of Imai and Sugihara, via reductions to network flow or bipartite matching, or
via matroid (tree) decompositions, see [53] and the references given there), and takes O(n2). Therefore
the time for performing a reverse Henneberg step is dominated by b), which gives a total running time
of O(n3).

The embedding is done now by performing the Henneberg steps, starting with the outer triangular
face embedded on an arbitrary initial triple of points. It is straightforward to see that each step takes
constant time to determine a position for the new vertex, and the whole embedding takes linear time
once the Henneberg sequence is known.

The time complexity would be improved by a positive answer to the open questions 3 and 4 listed in
the concluding Section 6.

3.2 Pseudo-Triangular Embeddings of Plane Laman-plus-one Graphs

We now turn to a proof of Theorem 3.2 using Henneberg constructions for plane Laman-plus-one graphs.
It is very similar to the proof of Theorem 3.1. It is instructive though to see the differences, which lie
in the combinatorial (and hence also geometric) pseudo-triangulation assignment, where we must keep
track of the non-pointed vertex. We have two items which may in principle be prescribed: the outer face
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and the vertex to become the unique non-pointed one. The non-pointed vertex may only be interior to
the circuit. In a Henneberg construction, we will see that it is easy to prescribe either the outer face or
the interior vertex to be non-pointed, but the analysis becomes more complicated for the prescription of
both. In Section 4 we use a different, global argument to do the simultaneous prescription of the outer
face and of the non-pointed vertex, in the case of a rigidity circuit.

The next two lemmas are straightforward extensions of the Laman case.

Lemma 3.7 (Fixing the Outer Face) Embedding a plane Laman-plus-one graph as a pseudo-triangulation
reduces to the case when the outer face is a triangle.

Notice that this would fail if we only planned to deal with a circuit.

Lemma 3.8 (The Topological Lemma) Every plane Laman-plus-one graph has a plane Henneberg
construction.

A planar Laman-plus-one graph (on n vertices) always has at least two triangular faces: the dual
planar graph has n vertices (including the vertex corresponding to the outer face) and 2n − 2 edges,
hence there exists at least two of degree three. The previous construction allows to prescribe the outer
face in a geometric embedding, should we want to do so, and is not needed in the proof of the combinatorial
lemma below.

Lemma 3.9 (The Combinatorial Lemma) Every plane Laman-plus-one graph admits a pointed-plus-
one combinatorial pseudo-triangulation assignment.

Proof: The proof has the same basic structure (but more cases to analyze) as Lemma 3.5, and relies on
the details of the Henneberg construction from Lemma 2.3. The base case is K4 which has a unique cpt
assignment for a choice of an outer face. It is easy to see that Henneberg I steps cause no problem, and
the Henneberg II steps work as before when the vertex of degree 3 is not inside the circuit, is not the
pointed vertex, and it is not incident to it.

Let vivj be the removed edge and vk the third vertex involved in the Henneberg II step. The only
problematic case is when the edge vivj is incident to the unique non-pointed vertex. In this case, the
resulting face after the removal of vivj is a pseudo-triangle: it has three, not four corners. We must argue
that in at least one combinatorial pseudo-triangulation compatible with the information so far, the three
vertices vi, vj and vk cannot lie all three on the same side-chain of this face, otherwise the extension to
a cpt is impossible.

There is a way around this, which would guarantee that both the outer face and the non-pointed
vertex could be prescribed. We will describe this, in a more general setting, in a forthcoming paper. For
the time being, it suffices to notice that if this happens during the Henneberg construction, we can always
pick up one of the other three vertices guaranteed to have degree three (when there are no degree two
vertices), and continue from there. Notice that this may change the outer face assignment, though. 2

Lemma 3.10 (The Geometric Lemma) Every plane Laman-plus-one graph G can be embedded as a
pseudo-triangulation.

This proof, and the proof of Theorem 3.2 are now straightforward extensions of those done for the
Laman case. Notice that it may not be possible in general to guarantee a certain outer face or non-pointed
vertex.

Remarks. The inductive technique described in this section works in fact for rigid graphs on n vertices
and fewer than 2n edges (i.e. Laman graphs with at most two extra edges). Indeed, the only ingredient
that is needed is the existence of a vertex of degree at most 3 whose removal either leaves a rigid graph
or a graph with one degree of freedom. Given a rigid graph with a combinatorial pseudo-triangulation
assignment we can add edges and combinatorially assign the big and small labels to the angles, preserving
at each step the property that every face has exactly three small angles and every vertex has at most
one big angle and the outside face has only big angles. However, not all of these combinatorial angle
assignments are geometrically realizable.

The algorithmic analysis is similar to the case of plane Laman graphs.
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4 Combinatorial pseudo-triangulations

In this section we extend the results from Section 3 on pointed and pointed-plus-one combinatorial pseudo-
triangulations. We present a global, non-inductive technique for generating cpt assignments for planar
Laman graphs and planar circuits. It is based on a reduction to finding perfect matchings in a certain
associated bipartite graph. By showing that Hall’s condition is satisfied, we are guaranteed to have a
solution (and hence a cpt) for both plane Laman graphs and circuits. We also show that the existence
of a pointed combinatorial pseudo-triangulation assignment is not restricted to plane Laman graphs or
circuits.

Let G = (V, E, F ) be a plane graph with vertices V , edges E and faces F . Assume |V | = n and
|E| = 2n − 3. Euler’s relation implies that |F | = n − 1. Denote by F ′ the set of interior faces and by fo

the outer face (with h vertices), F = F ′ ∪ {fo}. We define a bipartite graph H with the two sets of the
bipartition labeled V and W . V stands for the set of vertices V of G and has n elements. The set W

corresponds to the faces F of G taken with certain multiplicities. For an interior face f ∈ F ′ of degree
(number of edges on the face) df , we will put df − 3 vertices in W . For the outer face fo we will put
h = dfo

nodes in W . The total number of elements in W is thus
∑

f∈F ′(df −3)+h =
∑

f∈F df −3|F ′| =
2|E| − 3(n − 2) = 2(2n− 3) − 3(n − 2) = n.

Figure 9: A plane graph with 2n− 3 edges and its associated bipartite graph H .

A vertex v ∈ V is connected in H to the vertices in W corresponding to the interior faces f of degree
larger than 3 to which it belongs in G, and to the vertices corresponding to the outer face (if it belongs to
it). Hence if v belongs to three faces f1, f2, · · ·, and these faces have multiplicities d1, d2, · · · in W , then
v is connected to d1 copies of the vertex for f1, d2 copies for f2, etc. See Figure 9. The 6 vertices and 5
faces of degrees 3 (outer face 1), 3 (faces 2 and 3), 4 (face 5) and 5 (face 4) lead to the bipartition sets
V = {1, 2, 3, 4, 5, 6} and W = {1a, 1b, 1c, 4a, 4b, 5a}, connected by edges as in the figure.

The connections (edges) in the bipartite graph H represent potential assignments of big angles, where
an angle is viewed as a pair (vertex, face) . Since each vertex must receive a big angle, we want a perfect
matching. Since each interior face receives all but three big angles, and the outer face receives all big
angles, the choice of multiplicities reflects just that. These considerations lead to the following Lemma.

Lemma 4.1 There is a one-to-one correspondence between the combinatorial pseudo-triangulations of a
plane graph G with n vertices and 2n−3 edges and the perfect matchings in the associated bipartite graph
H.

In general, plane graphs satisfying the conditions of the previous Lemma may or may not have
combinatorial pseudo-triangulation assignments. See Figure 10 for examples. But for Laman graphs, we
are guaranteed a solution. The main result of this section is:

Theorem 4.2 If G is a Laman graph, then H has a perfect matching. Hence G has a pointed combina-
torial pseudo-triangulation.
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Figure 10: (a) A plane graph with 2n − 3 edges and no combinatorial pseudo-triangulation assignment.
(b) A plane non-Laman graph with a cpt assignment.

Proof: We will check Hall’s condition to guarantee the existence of a perfect matching. Let A ⊂ V be a
subset of |A| = a vertices. Let FA of size |FA| = fa be the set of faces incident to the vertices in A, and
let D =

∑
f∈FA

df . We need to show that a ≤ D − 3fA.
It suffices to carry out the analysis on different face-connected components of FA separately. See Figure

11. One face-connected component is a polygon with (say) b boundary edges, b′ ≤ b boundary vertices,
h ≥ 0 holes and ei interior edges. We have D = 2ei + b. By Euler’s relation (a + b′) + (fA + h + 1) =
(b + ei) + 2. Hence fA = ei − a + 1 + b − b′ − h, where ∆ := b − b′ − h ≥ 0. Laman’s condition
implies that b + ei ≤ 2(a + b′) − 3, hence ei ≤ 2a + 2b′ − b − 3. Now to show a + 3fA ≤ D we need
a+3(ei−a+1+ b− b′−h) ≤ 2ei + b, i.w. ei ≤ 2a−3+3b′−2b+3h. Since we know ei ≤ 2a+2b′− b−3,
it remains to show 2b′ − b ≤ 3b′ − 2b + 3h, i.e. b ≤ b′ + 3h, which is obviously true. 2

Figure 11: The analysis in the proof of Theorem 4.2: it suffices to analyze separately the face-connected
components of FA (two in this case, shaded slightly differently).

The result of Theorem 4.2 extends to the case of plane circuits. Moreover, we will be able to show in
this case a more general version of Theorem 3.8, by being able to prescribe both the outer face and the
non-pointed vertex (which may be chosen as any vertex non-incident to the outer face). In this case, the
associated bipartite graph is slightly different: the set V contains all vertices but one, namely the vertex
prescribed to be the non-pointed one. The set W has the same description, but its size now is n − 1
(because the number of faces is n).

Theorem 4.3 If G is a plane circuit, then H has a perfect matching. Hence G has a pointed-plus-one
combinatorial pseudo-triangulation with a prescribed outer face and prescribed non-pointed vertex.

Proof: The analysis from proof of Theorem 4.2 still holds, because in the case of a circuit, the condition
on subsets of size k < n is exactly the same as for Laman graphs: they span at most 2k − 3 edges.
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Therefore the analysis works whenever FA does not cover the whole polygon. Since at least one vertex is
missing from A (the vertex prescribed to be non-pointed), this is always the case. 2

Algorithmic analysis. To check whether a graph admits a combinatorial pseudo-triangulation (and to
compute one) we will use the O(n3/2) time algorithm for the maximum flow problem of Dinits (see [44])
to solve the bipartite matching problem described above.

Remark. This set of degree-constrained subgraphs of a bipartite graph can be modelled as a network
flow problem. Thus the set of combinatorial pseudo-triangulations of a given graph (with a given planar
embedding, including a specification of the outer face) is in one-to-one correspondence with the vertices
of a polytope, given by the equations and inequalities of the network flow.

5 Stretching combinatorial pseudo-triangulations

We have seen in the previous sections two proofs of the fact that every plane Laman graph can be
assigned a combinatorial pseudo-triangulation labeling. The technique from Section 3 does not realize
geometrically every such possible combinatorial structure. In this section we give the strongest version
of the main result by proving the following theorem.

Theorem 5.1 For any plane Laman graph G and for any of its combinatorial pseudo-triangular assign-
ments, there exists (and can be efficiently found) a compatible straight-line embedding. The same holds
for plane circuit graphs.

The proof is a consequence of two general results of independent interest. We first give in Theorem
5.4 two characterizations of stretchable combinatorial pseudo-triangulations. The stretchability proof
relies on a directed version of Tutte’s Barycentric Embedding Theorem, (Theorem 5.5). Finally, we show
that the characterization in Theorem 5.4 is satisfied for Laman (Theorem 5.6) and circuit plane graphs
(Theorem 5.7) with cpt assignments.

5.1 Two characterizations of stretchability

In this section we give two combinatorial characterizations of stretchability of combinatorial pseudo-
triangulations in terms of the number of corners of planar subcomplexes and in terms of 3-connectivity
properties of an associated directed graph.

Let G = (V, E) be a plane graph with a combinatorial pseudo-triangulation labeling. We do not
impose any restrictions on its number of non-pointed vertices or rigidity properties. As a plane graph,
every subgraph GS = (S, ES) induced by a subset of vertices S ⊂ V has an induced plane embedding and
a well-defined unbounded region. The boundary of the unbounded region consists of cycles of vertices and
edges, with one cycle for each connected component of GS . Some edges and/or vertices may be repeated
in these cycles. For example, if GS is a tree then every edge appears twice.

Corners of boundary cycles. We have defined corners in combinatorial pseudo-triangulations as being
the angles marked small. We extend the concept to the vertices on boundary cycles of induced subgraphs
GS by looking at the labels of angles in G incident to v on the outer face of GS . We call v a corner of
type 1 if it contains a big label on the outer face, or a corner of type 2 when v is non-pointed in G but
contains two consecutive small labels on the outer face.

The following simple counting lemma will be useful later.

Lemma 5.2 Let GS be a subgraph of a cpt induced by the subset S ⊂ V . Assume that GS is connected
and that it contains all the edges lying in the interior of its boundary cycle.

Let m be the number of edges, k the number of pointed vertices, l the number of non-pointed vertices
in GS and b the length of the boundary cycle in GS. Then the number c1 of corners of the type 1 (big
angles in the outer boundary) of GS equals

c1 = m + 3 − 2k − 3l + b.
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In this statement a vertex in GS is called pointed if and only if it was pointed in G.

Proof: Let f is the number of interior pseudo-triangles. The number of interior angles in GS is 3f+k−c1,
because there are 3f small interior angles and k − c1 interior big angles. But the number of interior
angles also equals 2m − b (since the total number of angles in any plane graph equals 2m). Hence,
2m − b = 3f + k − c1, or

3(m − f) = m + k + b − c1.

Finally, Euler’s formula applied to GS (as it contains all its interior edges) is m− f = (k + l)− 1, which
implies 3k + 3l − 3 = m + k + b − c1 and thus the desired statement. 2

The partially directed auxiliary graph D of a combinatorial pseudo-triangulation G. A
partially directed graph D = (V, E, ~E) is a graph (V, E) together with an assignment of directions to
some of its edges. Thus edges are allowed to get two directions, one direction only, or remain undirected.
Formally, ~E is a subset of E ∪ (−E) where E is the set of directed edges of G.

A plane embedding of a partially directed graph (V, E, ~E) is 3-connected to the boundary if from

every interior vertex p there are at least three vertex-disjoint directed paths in ~E ending in three different
boundary vertices. Equivalently, if for any interior vertex p and for any pair of forbidden vertices q and
r there is a directed path from p to the boundary not passing through q or r.

Lemma 5.3 For every combinatorial pseudo-triangulation, there exists a partially directed graph D sat-
isfying the following conditions:

1. D is planar and contains the underlying graph of G.

2. Every interior pointed vertex v ∈ V of G has three out-neighbors: its two neighbors in G along
extreme edges and a neighbor along the interior of the pseudo-triangle containing the big angle at
v.

3. For every pointed vertex v of G its out-neighbors in D are exactly its neighbors in G.

Proof: We extend the underlying graph of G to a (topological) triangulation by triangulating the pseudo-
triangles of G with more than three vertices in such a way that every big angle of G is dissected by at
least one new edge. This can be achieved by recursively dissecting each face with an edge joining a
non-pointed vertex on the face to the opposite corner. Then the edges are oriented as required by the
statement. See Figure 12 for an illustration of how a face is triangulated and how the edges incident to
big angles are oriented. 2

The main result of this section can now be stated.

Theorem 5.4 For a combinatorial pseudo-triangulation G with non-degenerate (simple polygonal) faces
the following are equivalent:

1. G can be stretched into a compatible pseudo-triangulation.

2. Every subgraph of G with at least three vertices has at least three corners.

3. Every partially directed graph satisfying the requirements of Lemma 5.3 is 3-connected to the bound-
ary.

5.2 Proof of Theorem 5.4

The implication from part 1 to part 2 is trivial. If G is embedded as a pseudo-triangulation, there is no
loss of generality in assuming that the embedding is in general position, so that every subgraph with at
least three vertices has at least three convex hull vertices. And all convex hull vertices of a subgraph of
G will be corners according to our definition.
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Figure 12: Left: A combinatorial pseudo-triangular face, with a small black dot indicating a small angle
(big angles are not marked). Middle: a compatible triangulation of the face. Right: the edges of the
auxiliary directed graph.

Proof of 2 ⇒ 3 in Theorem 5.4: To prove 3-connectedness, we will show that from every interior
vertex a there is a directed path in D going to the boundary and not passing through two arbitrary (but
fixed) vertices b and c.

Let us consider A, the directed connected component of vertex a, defined as the set of all vertices and
directed edges of D that can be reached from v without passing through b or c. We define this component
as not containing the forbidden points b and c, but it may contain edges arriving at them. Our goal is to
prove that A contains a vertex on the boundary of D. We argue by contradiction. Suppose that all the
vertices of A are interior to D.

For each interior pointed vertex v, let Tv be the unique pseudo-triangle of G containing the big angle at
v. Thus v is in an edge-chain of Tv containing also the two extreme adjacent edges of v. Let GS = (S, ES)
be the graph enclosing all the pseudo-triangles Tv associated to the pointed vertices v of A and all the
pseudo-triangles incident to the non-pointed vertices. Clearly GS contains A: indeed, every directed edge
of G is contained in a pseudo-triangle associated to its source vertex.

We now use our hypothesis that GS has at least three corners. We claim that at least one of them,
d, belongs to A. This gives the contradiction, because then there is an edge of D \ G jumping out of
that corner d (by the conditions imposed to the partial orientation in D), which means that the pseudo-
triangle(s) corresponding to d should have been contained in GS and hence d is not a corner of GS

anymore.
To prove the claim, let v1, . . . , vk be the corners of GS which are not in A. We want to prove that

k ≤ 2. For this let T1, . . . , Tk be pseudo-triangles in GS , each having the corresponding vi as a corner
(there may be more than one valid choice of the Ti’s; we just choose one). By definition, some non-corner
pointed vertex or some corner non-pointed vertex of each Ti is in the component A. Were there no
forbidden points, from a non-corner pointed vertex we could arrive to the three corners of Ti by three
disjoint paths: two of them along the concave chain containing the initial point and the third starting
with an edge of D \ G. From a non-pointed corner vertex we could arrive to the other two corners by
two disjoint paths: moving out from the vertex to the two neighbors in the incident pseudo-edges and
then following along them. In particular, since vi is not in A, one of the forbidden points must obstruct
to one of these paths, which implies that either vi equals one of the forbidden points b and c or that Ti

is the pseudo-triangle of one of the two forbidden points. And, clearly, each of the two forbidden points
contributes to only one of the indices i (either as a corner of GS or via its associated pseudo-triangle if
it is not a corner, but not both). This shows that k ≤ 2 and completes the lemma. 2
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Tutte’s equilibrium condition. To prove 3 ⇒ 1 we use a directed version of Tutte’s Theorem on
barycentric embeddings of graphs.

An embedding D(P ) of a partially directed graph D = (V, E, ~E) on a set of points P = {p1, · · · , pn},
together with an assignment w : ~E → IR of weights to the directed edges is said to be in equilibrium at a
vertex i ∈ V if ∑

(i,j)∈ ~E

wij(pi − pj) = 0.

Theorem 5.5 (Directed Tutte Theorem) Let D = ({1, . . . , n}, E, ~E) be a partially directed plane
graph, 3-connected to the boundary and whose boundary cycle has no repeated vertices. Let (k + 1, . . . , n)
be the ordered sequence of vertices in this boundary cycle and let pk+1, . . . , pn be the ordered vertices of a

convex (n−k)-gon. Let be the ordered vertices of a convex (n−k)-gon. Let w : ~E′ → IR be an assignment
of positive weights to the internal directed edges. Then:

(i) There are unique positions p1, . . . , pk ∈ IR2 for the interior vertices such that all of them are in
equilibrium in the embedding D(P ), P = {p1, . . . , pn}.

(ii) In this embedding, all cells of D are then realized as non-overlapping convex polygons.

Proof: The proof of Tutte’s Theorem given in [36] (Theorem 12.2.2, pages 123–132) works with only
minor modifications. First, in the definition of good representation (Definition 12.2.6, page 126), each
point pi is required to be in the relative interior of its out-neighbors, since this is what the directed
equilibrium condition gives. Second, Claim 1 on page 126 proves that in a good representation it is not
possible for a vertex p that p and all its neighbors lie in a certain line ℓ, using 3-connectedness. The
proof can be adapted to use 3-connectedness to the boundary as follows: consider three vertex disjoint
paths from p to the boundary. Call q any of the three end-points, assumed not to lie in the line ℓ.
Complete the other two paths to end at q using boundary edges in opposite directions. This produces
three vertex-disjoint paths from p to a vertex q not lying on ℓ. The rest needs no change. 2

Proof of 3 ⇒ 1 in Theorem 5.4: Construct an auxiliary partially directed graph D in the conditions
of Lemma 5.3, choose arbitrary positive weights for its directed edges, and apply the Directed Tutte
Theorem to it. Since all weights are positive, the equilibrium condition on an interior vertex p, together
with the convexity of faces that comes from Tutte’s theorem implies that every interior vertex is in
the relative interior of the convex hull of its out-neighbors. The conditions on D then imply that the
straight-line embeddding of G so obtained has big and small angles distributed as desired. 2

Time Analysis. Suppose that we are given a cpt that can be stretched. Tutte’s theorem actually gives
an algorithm to find a stretching: construct the auxiliary graph D of Lemma 5.3, choose coordinates for
the boundary cycle in convex position and arbitrary positive weights for the directed edges, and then
compute the equilibrium positions.

Everything can be done in linear time, except for the computation of the equilibrium position for
the interior vertices. In this computation one writes a linear equation for each interior vertex, which
says that the position of the vertex is the average of its (out-)neighbors. The position of the boundary
vertices is fixed. It has been observed [8, Section 3.4] that the planar structure of this system of equations
allows it to be solved in O(n3/2) time, using the

√
n-separator theorem for planar graphs in connection

with the method of Generalized Nested Dissection (see [26, 27] or [37, Section 2.1.3.4]), or even in time
O(M(

√
n)), where M(n) = O(n2.375) is the time to multiply two n × n matrices.

5.3 Laman and circuit combinatorial pseudo-triangulations can be stretched

Not all combinatorial pseudo-triangulations can be stretched: see for instance the first example in Figure
10. Its non stretchability can be proved either by showing that the graph is not Laman (while the graph

20



of every pointed pseudo-triangulation must be so) or by applying the characterization given in Theorem
5.4 and finding a subgraph with less than three corners.

Our next goal is to prove that if the underlying graph of a combinatorial pseudo-triangulation is
Laman (or is a rigidity circuit) then it can be stretched. The proof uses the Laman counting condition
to show that every subgraph has at least three corners. We recall that both Laman graphs and circuits
have the property that a subgraph induced on a subset of k ≥ 2 vertices has at most 2k − 3 edges. By
taking the complementary set of vertices (and edges) this is equivalent to:

• In a Laman graph with n vertices, every subset of k ≤ n−2 vertices is incident to at least 2k edges.

• In a rigidity circuit graph with n vertices, every subset of k ≤ n − 2 vertices is incident to at least
2k + 1 edges.

Theorem 5.6 Every subgraph GS of a Laman combinatorial pseudo-triangulation G has at least 3 cor-
ners. Therefore G can be stretched.

Proof: We show first that there is no loss of generality in assuming that GS is simply connected (i.e. it
is connected and contains all the edges of G interior to its contour) and that no edge appears twice in
the boundary cycle.

If GS has an edge which appears twice on the boundary cycle, its removal does not change the number
of corners; indeed, each end-point of such an edge that is a corner after the removal must be a corner
before as well. If GS is not connected, either some connected component has at least three vertices or
all the vertices of GS are corners. If GS is connected but not simply connected, then adding to GS the
pseudo-triangles, edges and vertices of G that fill in the holes does not change the number of corners.

We now observe that since G is pointed, the equation in Lemma 5.2 becomes

e = 2k − 3 − (b − c),

where e, k, b and c are the numbers of edges, vertices, boundary edges and corners of S.
Let b0 be the number of boundary vertices of GS (which may be smaller than b, if a boundary vertex

appears twice in the boundary cycle). We now consider the set of edges incident to vertices in the interior
of GS . Since there are k − b0 interior vertices, the (rephrased) Laman property tells us that there are at
least 2(k − b0) such edges. On the other hand, these edges are all interior to GS , and the total number
of interior edges in GS is e − k. Hence:

e − k = 2k + c − 3 − 2 ≥ 2k − 2b0

which implies the desired relation c ≥ 3 + 2b − 2b0 ≥ 3. 2

Theorem 5.7 Every subgraph GS of a rigidity circuit cpt G has at least 3 corners. Hence, G can be
stretched.

Proof: As in Theorem 5.6 we may assume without loss of generality that GS is connected, contains all
the edges of G enclosed by its boundary cycle and its boundary cycle has no repeated edges.

Let k, l, e, and b be the numbers of pointed vertices, non-pointed vertices, edges and boundary edges
of S, respectively. By Lemma 5.2 we have

e = 2k + 3l + c1 − b − 3.

If GS has no interior edge then the statement is trivial: either GS contains no pseudo-triangle and
then all its vertices are corners, or it contains only one pseudo-triangle and the three corners of it are
corners of GS . If GS has at least one interior edge then:

e ≥ 2k + 2l − b + 1.
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Indeed, let A ⊂ S be the set of vertices interior to GS , so that its cardinality equals k+l−b0, where b0 ≤ b

is the number of boundary vertices in GS . If A is empty then b0 = k + l ≤ b and our inequality becomes
e ≥ b+1−2(b−b0), which holds by the existence of at least one interior edge. If A is not empty we apply
the Laman condition to GA, which says that the number of interior edges of GS is at least 2(k+ l−b0)+1,
hence the total number of edges in GS is at least 2(k+l−b0)+1+b = 2k+2l−b+1+2(b−b0) ≥ 2k+2l−b+1.

The two formulas above imply that
l + c1 ≥ 4

and, since l ≤ 1 (because there is only one non-pointed vertex in G), c1 ≥ 3. 2

This completes the proof of Theorem 5.1.

6 Conclusions and Open Problems

We have shown that any combinatorial pseudo-triangulation of a plane Laman graph or of a plane rigidity
circuit is stretchable. In this latter case, we may even prescribe the non-pointed vertex. In addition,
Laman-plus-one and Laman-plus-two graphs are also stretchable, although we may not in general be able
to prescribe the outer face or the non-pointed vertices.

The Main Result stated in the Introduction has thus been extended along several lines, leading to
interesting combinatorial objects to study and several open questions, some solved in this paper, some
left for the future. We end with a listing of the main directions for further investigations.

Embeddability of planar generically rigid graphs as pseudo-triangulations. The goal here
is the clarification of the connection between minimum (pointed) pseudo - triangulations of a planar
point set and triangulations (maximal planar graphs embedded on the same point set). Triangles are
pseudo-triangles, and every triangulation is a pseudo-triangulation, but some or all of the vertices of the
embedding may not be pointed. All planar graphs containing a Laman graph are rigid (although not
minimally so). Stratifying by the number of additional edges (besides a minimally rigid substructure)
added to a Laman graph, we want to investigate realizability as triangulations with some prescribed
number of non-pointed vertices. In this paper, we solved the case of one additional edge (via the special
case of rigidity circuits). We leave open the question of completing the characterization for the whole
hierarchy. Such an investigation will shed light into new intrinsic properties of planar triangulations,
some of the best studied and still elusive objects in Combinatorial Geometry. We make the following
conjecture.

Conjecture 1 Given a plane graph G, the following conditions are equivalent:

(i) G is generically rigid

(ii) G can be straightened as a pseudo-triangulation.

Combinatorial pseudo-triangulations and embeddings on oriented matroids (pseudolines).
We have seen that not all planar graphs admitting combinatorial pointed pseudo-triangular labelings are
Laman graphs. But those which are Laman also have straight-line realizations. A further direction of re-
search emerging from our work is to study the connection between the combinatorial pseudo-triangulations
and realizations in the oriented matroid sense (on pseudo configurations of points).

Grid size of pseudo-triangular embeddings. Every planar graph can be embedded on a grid of size
O(n) × O(n), see for example [17], [43], [15]. Here is a natural remaining problem.

Open Problem 2 Can a planar Laman graph be embedded as a pseudo triangulation on a O(nk)×O(nk)
size grid? What is the smallest such k?
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Reciprocal duals of pseudo-triangulations. Planar graphs have combinatorial duals, obtained by
replacing faces with vertices and vice-versa. Moreover, when an embedded planar graph supports a self-
stress, it has a geometric dual, the so-called reciprocal diagram of Maxwell [12]. A natural question (which
will be answered in a subsequent paper) concerns the connection between stressed pseudo-triangulations
(necessarily not minimal) and the planarity of their reciprocal duals, see [30].

Algorithmic questions. We conjecture that our embedding algorithms can be improved from O(n
3

2 ) to
O(n log n) time. In general, the time complexity would be improved by a positive answer to the following
open questions.

Open Problem 3 Is it possible to decide the Laman condition in linear time for a planar graph?

Open Problem 4 Is it possible to decide, faster than by testing the Laman condition, which edge to put
back in a Henneberg II step for a planar graph? For a combinatorial pseudo-triangulation?
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[32] J. Pach and G. Tóth. Monotone drawings of planar graphs. in: Algorithms and Computation ( P. Bose, P.
Morin, eds.) LNCS 2518, Springer Verlag, 2002, 647-653

[33] M. Pocchiola and G. Vegter. Pseudo-Triangulations: Theory and Applications, Proc. 12th ACM Symp.
Comput. Geometry, Philadelphia, PE 1996, pp. 291-300.

[34] M. Pocchiola and G. Vegter. Topologically Sweeping Visibility Complexes via Pseudo-Triangulations, Discrete
Comput. Geom. 16 (1996), pp. 419-453.

24



[35] D. Randall, G. Rote, F. Santos and J. Snoeyink Counting triangu-
lations and pseudo-triangulations of wheels. Proc. 13th Canad. Conf. Comput. Geom., 2001, pp. 149-152.
http://compgeo.math.uwaterloo.ca/~cccg01/proceedings

[36] J. Richter-Gebert, Realization spaces of polytopes. Springer-Verlag, 1996.

[37] G. Rote Two solvable cases of the traveling salesman problem. PhD Thesis, Technische Universität Graz,
Institut für Mathematik, 1988.

[38] G. Rote, F. Santos and I. Streinu Expansive Motions and the Polytope of Pointed Pseudo Triangulations, in
B. Aronov, S. Basu, J. Pach and M. Sharir (eds.), Discr. Comput. Geom. - The Goodman-Pollack Festschrift,
Springer Verlag, to appear 2002.
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