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Inflaton Fragmentation After λφ4 Inflation
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(Dated: February 7, 2008)

We use lattice simulations to examine the detailed dynamics of inflaton fragmentation during
and after preheating in λφ4 chaotic inflation. The dynamics are qualitatively similar to preheating
after m2φ2 inflation, involving the exponential growth and subsequent expansion and collision of
bubble-like inhomogeneities of the inflaton and other scalar fields. During this stage fluctuations of
the fields become strongly non-Gaussian. In the quartic theory, the conformal nature of the theory
allows us to extend our simulations to much greater times than is possible for the quadratic model.
With these longer simulations we have been able to determine the time scale on which Gaussianity
is restored, which occurs after a time on the order of a thousand inflaton oscillations.

I. INTRODUCTION

After inflation the energy density of the nearly homogeneous inflaton field decays into fluctuations of the inflaton
and other fields. In many simple models of inflation this process begins with an exponentially rapid stage of decay
that produces highly inhomogeneous, nonthermal field fluctuations. In large field chaotic inflation models preheating
occurs via parametric resonance, which has been analyzed both analytically (see e.g. [1]) and numerically [2]. This
preheating stage is followed by a short, violent transition that leads to a regime of Kolmogorov turbulence [3].

In [4] this transition stage was studied for a model with inflaton potential V = (1/2)m2φ2. It was found there
that parametric resonance leads to growth of fluctuations in the peaks of the initial random gaussian field, giving
rise to a quasi-stable standing wave pattern of bubbles and nodes. This growth continues until backreaction makes
parametric resonance inefficient, after which these bubbles expand and collide, thus bringing the entire space into the
strongly inhomogeneous regime. It was found there that the fluctuations produced during preheating are strongly
non-Gaussian, and that this non-Gaussianity persists long after the end of parametric resonance.

For technical reasons discussed below, the simulations performed in [4] could not be continued long enough to
determine the ultimate fate of these non-Gaussian perturbations. In this paper we explore these same questions in a
quartic model with an inflaton potential V = (1/4)λφ4. In this model it is possible to run the simulations to much
later times and we were thus able to see the field statistics return to Gaussianity.

In section II we describe the model we are using and our numerical simulations. In section III we present the results
of our simulations and discuss their implications.

II. THE MODEL

We consider the potential

V =
1

4
λφ4 +

1

2
g2φ2χ2 (1)

where φ is the inflaton and χ is another scalar field that is coupled to it. We use LATTICEEASY [5] to solve the
classical equations of motion for the two fields

φ̈ + 3Hφ̇ − 1

a2
∇2φ +

(

λφ2 + g2χ2
)

φ = 0 (2)

χ̈ + 3Hχ̇ − 1

a2
∇2χ + g2φ2χ = 0. (3)

Oscillations of the zeromode of φ after inflation lead to parametrically resonant amplification of modes of χ within
certain resonance bands. These amplified modes of χ in turn excite fluctuations of φ.

LATTICEEASY uses a comoving grid, meaning the wavelength of produced fluctuations remains constant in pro-
gram coordinates. In a quadratic model this comoving growth causes a problem for compuater simulations because
the physical wavelength m−1 at which modes are preferentially produced shrinks in these comoving variables. As
the universe expands the grid spacing needs to remain small enough to accurately capture this physical length scale.
Once the universe has expanded enough to violate this criterion, it is no longer possible to continue the simulation
with any accuracy.

http://arXiv.org/abs/hep-ph/0701128v1
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In the quartic model, however, the parameters λ and g are unitless and there is no fixed physical length scale in
the problem. By defining a new set of variables φpr ≡ φ/a and τ ≡ at the equations of motion can be recast as

φ′′

pr −∇2φpr +
(

λφ2

pr + g2χ2

pr

)

φpr + ∆ = 0 (4)

χ′′

pr −∇2χpr + g2φ2

prχpr + ∆ = 0 (5)

where primes represent differentiation with respect to τ and ∆ represents derivatives of the scale factor that vanish
for a radiation equation of state, an approximation that is very accurate for this model. [9] In other words we can
scale expansion out of the equations, and can thus simulate to much later times than would be possible for a quadratic
model.

The simulations shown in this paper were done on a three dimensional grid of 1283 or 2563 gridpoints. The
simulations start at the end of inflation when the mean value of the inflaton is φ0 = 0.342Mp. Times are reported

in units of 1/(
√

λφ0) and field values are reported in units of φ0. All of the results shown in this paper are for
λ = 9 × 10−14 and g2/λ = 200.

III. INFLATON FRAGMENTATION: RESULTS AND CONCLUSIONS

Figures 1 and 2 show the growth of fluctuations of the fields φ and χ. The information in these plots is well known.
The field χ grows exponentially. Some time after the growth of χ starts fluctuations of the field φ begins growing
with twice the exponent of χ. These plots are included here primarily as a reference for seeing where in the process
of preheating the fields are at each of the times shown in the plots below.
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FIG. 1: Variances of the fields φ (red) and χ (blue).
(For black and white viewing, χ begins growing ear-
lier; φ begins later but quickly catches up to χ.)
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FIG. 2: Number density for φ (red, solid) and χ (blue,
dashed).

Figure 3 shows the growth of fluctuations of the χ field during preheating. For clarity the figures show values
only on a one dimensional slice through the lattice. The initial conditions used for the model are gaussian random
fluctuations with expectation values

〈|φk|2〉 =
1

2
√

k2 + m2

eff

, (6)

intended to simulate quantum vacuum fluctuations [2, 6]. See the LATTICEEASY documentation [7] for more details.
As parametric resonance begins fluctuations of the field begin to grow exponentially. Note that the vertical scale on
the different frames of 3 is not constant. Since parametric resonance only excites modes with momenta below a certain
cutoff (k∗ ∼ (g2λ)1/4φ0 [8]), the short wavelength fluctuations rapidly become insignificant. The longer wavelength
modes, however, remain almost entirely unchanged except for their overall scale. In other words the spatial distribution
of the fluctuations produced during preheating simply mimics the spatial distribution of the infrared modes of χ that
were present before preheating.

Fluctuations of φ are not produced until later, but when they appear they grow due to interactions with the amplified
χ fluctuations, so the peaks of δφ mostly correspond to the peaks of the initial random gaussian field χ. Figure 4
shows a snapshot of φ and χ fluctuations shortly after the φ fluctuations have started to grow. The fluctuations of
φ are for the most part in the same places as the fluctuations of χ; the correlation between δφ2 and δχ2 in this plot
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FIG. 3: Values of the field χ on a 1D slice through the lattice.
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t=50

FIG. 4: Values of field fluctuations δφ (red, solid) and δχ (blue, dashed) on a 1D slice through the lattice. Because the scale
of δχ is much larger than δφ at the time shown, fluctuations of both fields are normalized to the same standard deviation.

is 0.72. However, the oscillation frequencies are different for the two fields so the fluctuations are in general not in
phase, as can be seen in the plot.

Finally, we considered the field statistics for these field fluctuations. It is known that fluctuations produced during
preheating are non-Gaussian (see e.g. [1]). We measure the Gaussianity of the fields through the kurtosis, 3〈f2〉2/〈f4〉.
It is a necessary but not sufficient condition for Gaussianity that this quantity be equal to one. Figure 5 shows the
evolution of this quantity for fields φ and χ. As noted in [4] the fluctuations become non-Gaussian during preheating
and begin slowly tending towards Gaussianity thereafter. We see here that Gaussianity is restored after a time of
order of a thousand inflaton oscillations.
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FIG. 5: Kurtosis for the fields φ (red, solid) and χ (blue, dashed). The plot on the left shows the development of non-Gaussianity
during preheating. The plot on the right shows a much larger time scale on which the return to Gaussianity can be seen.

We can understand this timing with a rough analytical estimate. Perturbatively the time scale for rescattering is
given by tr ∼ 1/(nσ) where n and σ are the number density and scattering cross sections for the gas of particles.
The cross section can be estimated as σ ∼ g2/k∗2, where k∗ ∼ (g2λ)1/4φ0 is the typical particle momentum produced
during preheating. To estimate the number density we can take n ∼ ρ/k∗ ∼ g2 < φ2 >< χ2 > /k∗. Putting all of
this together

√
λφ0tr ∼ 1

(g2/λ)5/4〈(φ/φ0)
2〉〈(χ/φ0)

2〉
. (7)

Shortly after preheating the variances 〈(φ/φ0)
2〉 and 〈(χ/φ0)

2〉 are both approximately 10−3, so the rescattering time
is of order

√
λφ0tr ∼ 1

(200)5/410−6
∼ 1000. (8)

In other words the time that we found is required to restore Gaussianity has the expected order of magnitude.
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In a lattice simulation all classical dynamics are automatically taken into account, so the Gaussianity of the fields is
irrelevant to the accuracy of the simulation. While lattice simulations are excellent for describing preheating and the
evolution shortly afterwards, they can not be extended to time scales long enough to describe the stages of turbulence
and thermalization. Many approximation techniques are thus employed to describe these epochs (see e.g. [3] and
references therein), and for these it is often important to know the field statistics. Our results suggest that techniques
that assume Gaussianity should not be employed immediately after preheating, but they also suggest that it can be
possible to extend lattice simulations long enough to get through the non-Gaussian stage and thus overlap with the
subsequent period that can be well described in other ways.

We would like to thank Lev Kofman for useful discussions and advice. This work was supported by NSF grant
PHY-0456631.
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