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Slip distribution of the 2014 M,,=8.1 Pisagua, northern
Chile, earthquake sequence estimated from coseismic
fore-arc surface cracks

John P. Loveless’, Chelsea P. Scott?, Richard W. Allmendinger?, and Gabriel Gonzalez>*

"Department of Geosciences, Smith College, Northampton, Massachusetts, USA, Department of Earth and Atmospheric
Sciences, Cornell University, Ithaca, New York, USA, 3Departamento de Ciencias Geoldgicas, Universidad Catdlica del
Norte, Antofagasta, Chile, “Centro Nacional de Investigacion para la Gestién Integrada de Desastres Naturales,
Antofagasta, Chile

Abstract The 2014 M,,=8.1 Iquique (Pisagua), Chile, earthquake sequence ruptured a segment of the
Nazca-South America subduction zone that last hosted a great earthquake in 1877. The sequence opened
>3700 surface cracks in the fore arc of decameter-scale length and millimeter-to centimeter-scale aperture.
We use the strikes of measured cracks, inferred to be perpendicular to coseismically applied tension, to
estimate the slip distribution of the main shock and largest aftershock. The slip estimates are compatible with
those based on seismic, geodetic, and tsunami data, indicating that geologic observations can also place
quantitative constraints on rupture properties. The earthquake sequence ruptured between two asperities
inferred from a regional-scale distribution of surface cracks, interpreted to represent a modal or most
common rupture scenario for the northern Chile subduction zone. We suggest that past events, including the
1877 earthquake, broke the 2014 Pisagua source area together with adjacent sections in a

throughgoing rupture.

1. Introduction

Understanding the spatial distribution of coseismic slip is crucial for placing an earthquake in tectonic and
societal contexts, as it allows for comparison with records of strong ground motion [Graves, 1998], preseismic
coupling [Loveless and Meade, 2011; Moreno et al., 2010], and the distribution of postseismic processes includ-
ing the aftershock sequence [King et al,, 1994], afterslip on the source fault [Evans and Meade, 2012; Miyazaki
et al., 20041, and viscoelastic relaxation [Hearn et al., 2002; Pollitz et al., 2000]. The proliferation of local and
global seismic and geodetic observing systems has permitted high-resolution estimation of the static and
dynamic rupture processes, often in near real time.

We present here the first estimation of a coseismic slip distribution based on field observations of surface
deformation features produced by an earthquake sequence, inferring the rupture of the 1 April 2014
M,,=8.1 Pisagua, northern Chile, earthquake and its 3 April M,,=7.7 aftershock from >3700 small-scale
cracks breaking the surface of the northern Chile fore arc [Scott et al., 2016]. While mapping the distribu-
tion of surface rupture along a source fault has complemented geophysical studies of continental earth-
quakes such as the 2010 El Mayor, Mexico, [Gold et al., 2013] and 2003 Bam, Iran, [Fielding et al., 2005]
events, the coseismic cracks we use as constraining data are located >50 km from the rupture zone of
the Pisagua earthquake sequence, representing secondary deformation in response to coseismically
generated stress changes. Crack orientations vary on a spatial scale similar to the rupture length of the
earthquakes in the sequence [Scott et al, 2016] and provide diagnostic information about the patterns
of coseismic slip. The fresh cracks opened by the Pisagua earthquake sequence reactivated existing frac-
tures and are similar to long-lived structures throughout the northern Chilean fore arc. The Pisagua cracks
provide evidence that a single earthquake is capable of generating permanent deformation in the fore arc.
Furthermore, this deformation represents but an increment of the accumulated strain that region-wide
cracks record over a nearly million-year time scale [Baker et al., 2013], which we interpret as indicating
repeated opening due to a most common or modal rupture pattern of great earthquakes [Loveless
et al., 2009]. Thus, the fresh cracks not only provide information about the stresses imposed by the
2014 earthquake sequence but also allow us to interpret this sequence in the context of long-term sub-
duction zone seismicity.
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2. Estimated Slip From Coseismic Surface Cracks

The March-April 2014 Pisagua earthquake sequence consisted of a foreshock sequence, M,, = 8.1 main shock,
and aftershock sequence including the M,, = 7.7 event [Gonzdlez et al., 2015], and it represents the first great
earthquake along the “Iquique Gap” segment of the Andean subduction zone since 1877. The sequence gen-
erated thousands of decameter-scale length, millimeter- to centimeter-scale aperture open cracks in the fore
arc. We measured the location and orientation of more than 3700 such fresh surface cracks, the vast majority
representing reactivation of preexisting fractures, at 72 localities in the fore arc of northern Chile [Scott et al.,
2016]; we did not comprehensively sample the apertures or lengths of these structures. The spatial distribu-
tion and orientation of these cracks were documented during field campaigns carried out 2 weeks, 6 weeks,
and 3 months after the earthquake sequence. As such, though we refer to cracks as being formed coseismi-
cally, we cannot rule out the possibility that cracks represent deformation from the immediate postseismic
period. We use the cracks as indicators of coseismically applied tension arising from the slip process on
the underlying subduction zone interface. Specifically, we assume that static tension acted in a direction
normal to crack strike in order to cause coseismic opening, although locally, cracks display evidence of some
oblique opening.

Based on comparison with the orientation of static principal strain axes estimated from coseismic GPS displa-
cement gradients, we selected a subset of crack sites to constrain the slip distribution of the M,, =8.1 main
shock. Thirty-one crack populations, representing a total of 1787 individual cracks, are attributed to the main
shock based on the similarity between site-averaged strike and trend of the minimum principal extension
direction from the geodetic strain analysis, in which principal strain axes are calculated on a grid of 10 km spa-
cing by inverting [Cardozo and Allmendinger, 2009] the GPS data using a 50 km distance weighting factor
[Scott et al., 2016]. At 27 sites, cracks show similarity with strain axes calculated from coseismic displacements
related to the M,, =7.7 aftershock, which we use to estimate the slip distribution for that event. At 14 sites,
cracks have an average strike that differs from both the main shock and the M,,=7.7 aftershock strain axes
by >50°. Cracks at these sites are subparallel to regional fault scarps, and thus, we attribute their formation
as associated with topographic focusing of seismic waves [Scott et al., 2016].

We interpret the angular agreement between the crack strikes and principal strain axes as indication that the
same static stress field is responsible for generating geodetically observed coseismic displacements and
causing opening of the cracks. We use the strain axis-based selection of crack populations attributed to
the main shock and aftershock described above only to discriminate subsets of data used to estimate the slip
distribution of these events, but it is important to note that we use neither the geodetic displacements them-
selves nor the derived strain as formal constraints in the crack-based estimation of slip.

2.1. Estimation Methodology

Linear elastic dislocation theory establishes a first-order relationship between slip on modeled fault surfaces
and displacement, strain, and stress throughout homogeneous elastic half-space. We use this theory to
describe how slip on the Nazca subduction zone interface, represented using triangular dislocation elements
(TDEs) capable of capturing along-strike and downdip geometric complexity as expressed in the U.S.
Geological Survey Slab 1.0 model [Hayes et al., 2012], generated static stress changes in the fore arc where
coseismic cracks are observed. We calculate the partial derivatives [Meade, 2007] relating unit strike and
dip slip on the subduction zone TDEs to the full stress tensor at each crack site then transform each stress
tensor into a local coordinate system, with axes (1) parallel to mean crack strike at the site, (2) parallel to
dip (vertical), and (3) normal to the mean crack attitude. Each locality is assigned a normal stress magnitude
proportional to the spatial density of observed cracks. We use this suite of projected normal stresses to esti-
mate the distribution of subduction interface slip, separately for the main shock and aftershock, subject to
Laplacian smoothing to regularize the underdetermined problem [Desbrun et al., 1999], with weighting pro-
portional to the nominal resolving capability of the crack data [Loveless and Meade, 2011] (Figure S3 in the
supporting information). Uncertainties on the projected normal stresses are proportional to the standard
deviation of the suite of measured crack strikes at each location, under the assumption that cracks with uni-
form orientation and hence small variance better constrain the direction of applied stress. We use MATLAB's
constrained linear least squares optimization and impose constraints on slip in the dip direction to ensure
reverse motion and limit strike-slip motion to +1m, yielding estimated coseismic slip at a high angle to
the subduction trench, consistent with the azimuth of relative plate motion [Angermann et al., 1999].
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2.2, Stress Magnitude Scaling

The magnitude of estimated slip is linearly related to the magnitude of stress inferred to have generated the
cracks. Spatial variation in this stress magnitude is poorly constrained by the cracks, and as such, we focus on
using the spatial distribution of site-averaged crack strikes to constrain the gradient, rather than the absolute
magnitude, of coseismic slip. However, to facilitate comparison with independent estimates of the coseismic
slip distributions, we uniformly scale the stress magnitude at each crack site so that the estimated slip
distribution yields an earthquake of M,,=8.1-8.2 for the main shock and M,,=7.6-7.7 for the aftershock
(Figure S1). The uniform scaling factor is determined by taking the median of the crack-perpendicular normal
stress magnitudes calculated at all sites using a point source approximation of each earthquake, with para-
meters based on the event’s entry in the Global Centroid Moment Tensor catalog [Dziewonski et al., 1981;
Ekstrém et al., 2012]. We assume that crack density, calculated as number of cracks at a particular site normal-
ized by the maximum distance between the site centroid and the site’s individual cracks, is proportional to
normal stress magnitude to constrain the rupture area and gradient of coseismic slip, and so we multiply
the point source median stress by the crack density value to give the stresses used in the slip inversion
(Table S1). We also test inversions using (1) uniform stress at all sites, and stress magnitudes proportional
to (2) number of cracks at each site and (3) number of cracks normalized by the site area, and we find simila-
rities among these estimated slip distributions.

Coseismic cracks may be generated by both static and dynamic stress, the latter associated with the passage
of seismic waves. Our estimation method for coseismic slip makes the inherent assumption that the static
stress is representative of the stress that generated cracks, supported by the agreement between static prin-
cipal strain axes derived from coseismic GPS displacements and observed crack strikes. While principal stress
axis orientations vary through time as seismic waves pass through the fore arc, simulations of dynamic stress
for past Andean subduction events [Loveless et al., 2009] suggest that the temporal distribution of principal
stress orientation is tightly clustered around the predicted static stress direction. However, the presence of
the free surface, near-surface material properties, and topographic focusing of static and dynamic stress,
which are not considered here under the assumption of a homogeneous elastic half-space, likely influence
stress magnitudes and spatial density of cracks. Both the Pisagua coseismic cracks and longer-lived cracks
distributed throughout the northern Chile fore arc represent data sets well suited for future exploration of
the roles these rheologic and topographic factors play in generating near-surface deformation.

2.3. Evaluating Goodness-of-Fit

We evaluate the goodness-of-fit of the estimated slip distributions by first calculating the full stress tensor at
each constraining crack site as predicted by the estimated slip distribution then comparing the trend of the
most compressive principal horizontal stress axis (1) with the site-averaged crack strike. This comparison
implies a horizontal o3 axis perpendicular to crack strike and hence in the direction of crack opening. The
goodness-of-fit varies as a function of how heavily the Laplacian smoothing operator is weighted in the slip
estimation (Figure S1). The slip distribution shown in Figure 1a reflects a compromise fit to the crack orienta-
tion data and coseismic GPS displacements (Figure S1a), which were not used as formal constraints on the
slip estimation. For this main shock model, the average angular error, representing the absolute value of
the angle between the mean crack strike and o, trend, across the constraining crack sites is 12.9°, and the
angular error at 64% of sites is less than the standard deviation of crack strikes observed at the site. More
generally, the observed regional-scale pattern of crack strike variation is mimicked by the principal stress
orientations predicted by the model (Figure 1a), with northeast strikes and trends south of the main slip
region and northwest orientations to the north. The preferred aftershock slip distribution (Figure 1b) fits
the constraining crack strikes with an average angular error of 17.9°, with errors at 48% of sites less than
the standard deviation of strikes.

3. Comparing Crack-Based Slip Distribution to Other Estimates

In addition to evaluating the goodness-of-fit of our crack-based coseismic slip estimates to the constraining
data, we compare the slip distributions to estimates made from GPS, interferometric synthetic aperture radar,
strong motion, teleseismic, and tsunami data [An et al., 2014; Duputel et al., 2015; Gusman et al., 2015; Hayes
et al., 2014; Liu et al., 2015; Schurr et al., 2014; Yagi et al., 2014]. For the main shock, the crack-based 2 m slip
contour shows spatial overlap that from with other estimates, while the peak slip is located around 70.9°W,
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Figure 1. (a) The 1 April 2014 M,,, = 8.1 Pisagua earthquake main shock slip distribution estimated from coseismic crack
orientation data. Triangular dislocation elements representing the subduction interface are colored by estimated slip,
equivalent to an earthquake of M,, =8.1. Onshore, bars are oriented parallel to the mean strike of observed coseismic
cracks at 31 field sites and are colored by the azimuth difference, defined as the absolute value of the angle between mean
observed strike and forward prediction of crack strike at these sites, given as maximum principal compression direction
(o1). Gray lines show ¢ axes at gridded locations to illustrate the regional trend in predicted crack strikes. (b) Slip
distribution for the 3 April M,, = 7.7 aftershock, estimated using the mean strike of observed coseismic cracks at 27 field
sites, with symbols as in a. Inset map shows study area and Andean subduction trench. Figure S1 shows the azimuth
differences for each event at all 72 sites where coseismic cracks were observed.

19.5°S, northwest of that derived from other data sets (Figure 2a). For the aftershock, we find peak slip occur-
ring south of the main shock, consistent with previous estimates [Hayes et al., 2014; Schurr et al., 2014]
(Figure 2a), though the 1 m slip contour and peak slip location are located ~25-50 km south of those of other
estimates. Estimation of subduction interface slip from crack orientations is affected by the same geographi-
cal bias as that from geodetic data sets: we have no offshore observations directly overlying the region of
greatest subduction zone slip (Figure S3).

To formally compare the spatial correlation of the crack-based main shock slip distribution with estimates
made from other data sets (specifically, An et al. [2014], Duputel et al. [2015], Hayes et al. [2014], and Schurr
et al. [2014]), we first interpolate the published slip maps onto our subduction zone geometry and then
calculate the correlation coefficient among the slip magnitudes. The crack-based slip distribution shows
the strongest spatial correlation (correlation coefficient of 0.80 +0.04) with that of Schurr et al. [2014] and
is, on average, as strongly correlated with alternative slip maps (0.54+0.07) as are An et al. [2014] and
Duputel et al. [2015] (averages of 0.55 +0.07 and 0.56 + 0.07, respectively; Figure 2b). That is, the crack-based
slip estimate is as similar to previously published slip distributions estimated from geodetic, seismic, and/or
tsunami data as most of these estimates are to each other.

As another means of testing the compatibility between the crack-based slip distribution and other data mea-
suring coseismic deformation, we use our estimated main shock slip to calculate [Meade, 2007] predicted
coseismic displacements at regional GPS stations. These predicted displacements show generally good
agreement with the spatial pattern of observed coseismic motion; our predicted GPS displacements have
a mean residual magnitude of 2.4 cm (Figure 3). Displacements predicted by our model are smaller in mag-
nitude than the observations and have azimuths that are, on average between 18°5-22°S, rotated ~15° clock-
wise from the observed vectors. This is consistent with the location of a concentration of our estimated slip to
the northwest of slip distributions constrained by geophysical data, including GPS displacements (Figure 2a).
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Figure 2. Comparisons of crack-based slip distributions with published estimates. (a) Solid colored lines and filled dots,
respectively, show the estimated 2 m slip contour and location of maximum slip from coseismic slip distribution esti-
mates for the 1 April main shock: black, crack based; blue, An et al. [2014]; red, Duputel et al. [2015]; green, Hayes et al. [2014];
and magenta, Schurr et al. [2014]. Dashed lines and hollow dots show the 1 m slip contour and peak slip location,
respectively, for the 3 April aftershock. (b) Spatial correlation of estimated main shock slip distributions. Each slip estimate
was mapped onto the subduction interface geometry used for the crack-based inversion, and the correlation coefficient
was calculated between the slip magnitudes. For each slip estimate, the average row reflects correlations with the four
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Figure 3. Observed static coseismic GPS displacement vectors (blue) com-
pared to predicted displacements (red) from the crack-based main shock
slip estimate (shown as 1 m contours). The GPS vectors were not used

as formal constraints in the crack-based slip estimate.

Though the crack strike data could
be combined with geodetic obser-
vations in a joint inversion for
coseismic slip, we choose to
present here only the crack-based
estimates. Using the cracks alone
highlights an independent means
of estimating slip from geologic
data. While the crack data may
provide unique information to a
joint inversion, the nonuniqueness
involved in weighting multiple
data sets in such an inversion may
cloud the relationship between slip
and permanent deformation that
we present in this paper.

4. Relationship Between
Fresh and Existing Cracks

Many cracks formed during the
Pisagua earthquake sequence are
within existing weathered cracks,
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having exploited weaknesses already present in the crust [Scott et al., 2016] that were likely generated by
thousands of past earthquakes [Baker et al., 2013; Loveless et al., 2009]. Nonetheless, the consistency between
the static stress directions predicted by our geologically constrained inversion for the 2014 Pisagua events
and those constrained by geodetic, seismic, and tsunami observations, reflecting the similarity in the esti-
mated slip distributions (Figure 2), indicates that the Pisagua earthquake sequence produced stress capable
of reopening existing cracks. That is, even if preexisting cracks were oriented oblique to the coseismically
induced stress, the Pisagua event must have imposed sufficient coseismic tension normal to crack strikes
to cause opening of fresh fissures. While field evidence of lateral offset suggests some nonorthogonal open-
ing of Pisagua earthquake cracks [Scott et al., 2016], the relative proportion of shear and opening is unknown,
and so we assume that tensile stresses dominated crack reactivation. The misfit between observed mean
crack strikes and predicted static o axes (Figure 1) therefore inherently reflects both model prediction error
as well as our assumption that the cracks truly are mode 1 fractures. The systematic clockwise rotation of our
predicted GPS vectors relative to the observations (Figure 3) may suggest that the strikes of measured cracks
are not aligned with the true coseismically imposed o, directions: if the actual coseismic stress field arose
from a slip distribution more consistent with the GPS data than that constrained by the crack strikes, fresh
cracking must have included a component of shearing in addition to opening.

5. Implications for Past and Future Iquique Gap Earthquakes

More than 50,000 measured surface cracks similar to those attributed to the 2014 Pisagua earthquake
sequence are present in northern Chile and southernmost Peru [Baker et al., 2013; Keefer and Moseley,
2004; Loveless et al., 2009, 2005], which we have interpreted as geologic records of accumulated damage
due to thousands of subduction zone earthquakes [Loveless et al., 2009] over 100 kyr time scales [Baker
et al., 2013]. We hereinafter refer to these as “imagery-mapped cracks,” as we have documented the majority
of them with high-resolution satellite imagery, with field-based ground-truthing of select sites revealing that
some cracks penetrate tens of meters into bedrock.

We use our estimated Pisagua main shock slip distribution to calculate the predicted principal stress direc-
tions at the imagery-mapped crack sites for comparison with the observed strikes [Loveless et al., 2009].
The average azimuth difference between the predicted o, axes and observed site-averaged crack strikes is
54.6° (Figure 4b), suggesting that the strikes of any individual imagery-mapped cracks reopened by the
2014 earthquake deviate substantially from the mean strike at these sites. In other words, only the most
favorably oriented subset of imagery-mapped cracks was reactivated. The obliquity between observed orien-
tations and our predicted stress field may also suggest thatimagery-mapped cracks could have been affected
by tensile stress to cause the opening, as well as crack-parallel shear stress.

Using a similar methodology to this study, we estimated a long-term slip distribution using the imagery-
mapped crack strikes [Loveless et al., 2009] that can be interpreted as a modal slip distribution, reflecting
the most common slip pattern that would induce stresses capable of repeatedly opening the observed cracks
(Figure 4). The imagery-mapped cracks reflect episodes of repeated opening, documented by observations of
vertically laminated salt deposits on bedrock crack walls [Loveless et al., 2009]. Under the assumptions that
cracks are reactivated by coseismically imposed stresses and that the cracks most favorably aligned with
the most frequently imposed principal tension axes will have an obvious surface expression evident in satel-
lite imagery, we interpret the slip distribution estimated based on imagery-mapped crack strikes [Loveless
et al., 2009] to represent the most common, or modal, slip pattern on the northernmost Chile segment of
the subduction zone.

We focus on the area north of 22°S latitude, where the spatial density of imagery-mapped crack populations
resolves better the modal coseismic slip than to the south, though strong interseismic coupling inferred from
geodetic observations between 22° and 24°S [Bejar-Pizarro et al., 2013; Métois et al., 2013; Schurr et al., 2014]
hints at impending great earthquakes along that segment as well. Modal slip is spatially consistent with esti-
mated interseismic coupling [Schurr et al., 2014] north of ~21°S, with the along-strike extent of a concentra-
tion of coupling similar to that of large magnitude modal slip (Figure 4a). This agreement suggests that the
future earthquake hazard implied by strong coupling is similar to a great earthquake slip pattern estimated
from the imagery-mapped cracks, which reflect the accumulated fore-arc deformation from thousands of
plate boundary events.
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Figure 4. Comparison of interseismic coupling, modal slip, and 2014 earthquake slip. (a) Colored triangles show long-term modal slip distribution estimated from
imagery-mapped crack orientations [Loveless et al., 2009] overlain with contours of interseismic coupling estimated from geodetic observations [Schurr et al.,
2014]. The contour interval is 0.1 of the plate convergence rate. (b) Modal slip distribution overlain by 1 m contours showing crack-based estimated 2014 Pisagua
main shock slip distribution. Onshore, bars show regionally distributed, long-term, imagery-mapped crack strikes, colored by the azimuth difference between
site-averaged strike and the o direction predicted by our 2014 Pisagua main shock slip distribution. (c) Long-term modal slip distribution with 2014 slip subtracted,
suggesting adjacent yet unruptured asperities.
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Subtracting our estimated slip distribution of the 2014 Pisagua earthquake from the modal slip distribution
provides an interpretation of remaining earthquake potential on the northernmost Chile segment of the sub-
duction zone (Figure 4c). As in the case of the Pisagua earthquake, there is uncertainty in the magnitude of
slip estimated from the regional-scale distribution of cracks; Loveless et al. [2009] scaled the estimated modal
slip distribution to a maximum of 8 m to yield a moment magnitude consistent with historical estimates of
Iquique Gap events (M~ 8.5-9.0) [e.g., Comte and Pardo, 1991]. Under that assumption, we find that the
Pisagua earthquake locally mimics the proposed longer-term pattern (Figure 4c) but leaves open the possi-
bility of future great earthquakes to the south of the 2014 source region, consistent with the suggestion of
Hayes et al. [2014]. The rupture area of the 2014 earthquake sequence is smaller than that estimated for
the 1877, but proposed epicenters and magnitudes of other historical earthquakes, including the 1615
(70.5°W, 19.5°S, M~7.9), 1833 (71.0°W, 19.0°S, M~7.4), and 1869 (70.2°W, 19.6°S, M~ 7.4) events [Comte
and Pardo, 1991], are more consistent with rupture of a smaller portion of the northern Chile subduction
interface as occurred in 2014. In terms of future potential hazard, the close temporal spacing of the 1833
and 1869 earthquakes with the giant 1877 event suggests the possibility that an 1877-like rupture may
occur in the coming decades despite—or perhaps associated with—the moment released in the 2014
Pisagua sequence.

References

An, C, |. Sepulveda, and P. L.-F. Liu (2014), Tsunami source and its validation of the 2014 Iquique, Chile, earthquake, Geophys. Res. Lett., 41,
3988-3994, doi:10.1002/2014GL060567.

Angermann, D., J. Klotz, and C. Reigber (1999), Space-geodetic estimation of the Nazca-South America Euler vector, Earth Planet. Sci. Lett.,
171,329-334.

Baker, A, R. W. Allmendinger, L. A. Owen, and J. A. Rech (2013), Permanent deformation caused by subduction earthquakes in northern Chile,
Nat. Geosci., 6(6), 492-496, doi:10.1038/Nge01789.

Bejar-Pizarro, M., A. Socquet, R. Armijo, D. Carrizo, J. Genrich, and M. Simons (2013), Andean structural control on interseismic coupling in the
North Chile subduction zone, Nat. Geosci., 6(6), 462-467, doi:10.1038/Ngeo1802.

Cardozo, N., and R. W. Allmendinger (2009), SSPX: A program to compute strain from displacement/velocity data, Comput. Geosci., 35(6),
1343-1357, doi:10.1016/j.cage0.2008.05.008.

Comte, D., and M. Pardo (1991), Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps,

Nat. Hazards, 4(1), 23-44, doi:10.1007/BF00126557.

Desbrun, M., M. Meyer, P. Schroder, and A. H. Barr (1999), Implicit fairing of irregular meshes using diffusion and curvature flow, in
Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, edited, pp. 317-324, ACM Press/Addison-
Wesley Publishing Co., New York.

Duputel, Z., et al. (2015), The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty,
Geophys. Res. Lett., 42, 7949-7957, doi:10.1002/2015GL065402.

Dziewonski, A. M., T.-A. Chou, and J. H. Woodhouse (1981), Determination of earthquake source parameters from waveform data for studies
of global and regional seismicity, J. Geophys. Res., 86, 2825-2852, doi:10.1029/JB086iB04p02825.

Ekstrom, G., M. Nettles, and A. M. Dziewonski (2012), The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes,
Phys. Earth Planet. Inter., 200-201, 1-9, doi:10.1016/j.pepi.2012.04.002.

LOVELESS ET AL.

PISAGUA EARTHQUAKE COSEISMIC CRACKS 10,140


http://dx.doi.org/10.1002/2014GL060567
http://dx.doi.org/10.1038/Ngeo1789
http://dx.doi.org/10.1038/Ngeo1802
http://dx.doi.org/10.1016/j.cageo.2008.05.008
http://dx.doi.org/10.1007/BF00126557
http://dx.doi.org/10.1002/2015GL065402
http://dx.doi.org/10.1029/JB086iB04p02825
http://dx.doi.org/10.1016/j.pepi.2012.04.002
https://www.researchgate.net/publication/258807419_Andean_structural_control_on_interseismic_coupling_in_the_North_Chile_subduction_zone?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/258807419_Andean_structural_control_on_interseismic_coupling_in_the_North_Chile_subduction_zone?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/256823578_The_Global_CMT_project_2004-2010_Centroid-moment_tensors_for_13017_earthquakes?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/256823578_The_Global_CMT_project_2004-2010_Centroid-moment_tensors_for_13017_earthquakes?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/253533953_Determination_of_earthquake_source_parameters_for_studies_of_global_and_regional_seismicity?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/253533953_Determination_of_earthquake_source_parameters_for_studies_of_global_and_regional_seismicity?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/242013808_Permanent_deformation_caused_by_subduction_earthquakes_in_northern_Chile?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/242013808_Permanent_deformation_caused_by_subduction_earthquakes_in_northern_Chile?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/227111084_Reappraisal_of_great_historical_earthquakes_in_the_Northern_Chile_and_Southern_Peru_seismic_gaps?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/227111084_Reappraisal_of_great_historical_earthquakes_in_the_Northern_Chile_and_Southern_Peru_seismic_gaps?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/227111084_Reappraisal_of_great_historical_earthquakes_in_the_Northern_Chile_and_Southern_Peru_seismic_gaps?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/227111084_Reappraisal_of_great_historical_earthquakes_in_the_Northern_Chile_and_Southern_Peru_seismic_gaps?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/227111084_Reappraisal_of_great_historical_earthquakes_in_the_Northern_Chile_and_Southern_Peru_seismic_gaps?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/222499725_Space-geodetic_estimation_of_the_Nazca-South_America_Euler_vector?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/222499725_Space-geodetic_estimation_of_the_Nazca-South_America_Euler_vector?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/220164443_SSPX_A_program_to_compute_strain_from_displacementvelocity_data_Comput?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/220164443_SSPX_A_program_to_compute_strain_from_displacementvelocity_data_Comput?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/200018483_Implicit_Fairing_of_Irregular_Meshes_using_Diffusion_and_Curvature_Flow?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/200018483_Implicit_Fairing_of_Irregular_Meshes_using_Diffusion_and_Curvature_Flow?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/200018483_Implicit_Fairing_of_Irregular_Meshes_using_Diffusion_and_Curvature_Flow?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==

@AG U Geophysical Research Letters 10.1002/2016GL070284

Evans, E. L., and B. J. Meade (2012), Geodetic imaging of coseismic slip and postseismic afterslip: Sparsity promoting methods applied to the
great Tohoku earthquake, Geophys. Res. Lett., 39, L11314, doi:10.1029/2012GL051990.

Fielding, E. J., M. Talebian, P. A. Rosen, H. Nazari, J. A. Jackson, M. Ghorashi, and R. Walker (2005), Surface rupture and building damage of the
2003 Bam, Iran earthquake mapped by satellite synthetic aperture radar interferometric correlation, J. Geophys. Res., 110, B03302,
doi:10.1029/2004JB003299.

Gold, P. O., M. E. Oskin, A. J. Elliott, A. Hinojosa-Corona, M. H. Taylor, O. Kreylos, and E. Cowgill (2013), Coseismic slip variation assessed from
terrestrial lidar scans of the El Mayor-Cucapah surface rupture, Earth Planet. Sci. Lett., 366, 151-162, doi:10.1016/j.epsl.2013.01.040.

Gonzalez, G., P. Salazar, J. P. Loveless, R. W. Allmendinger, F. Aron, and M. Shrivastava (2015), Upper plate reverse fault reactivation and the
unclamping of the megathrust during the 2014 Northern Chile earthquake sequence, Geology, 43(8), 671-674, doi:10.1130/G36703.1.

Graves, R. W. (1998), Three-dimensional finite-difference modeling of the San Andreas fault: Source parameterization and ground-motion
levels, Bull. Seis. Soc. Am., 88(4), 881-897.

Gusman, A. R, S. Murotani, K. Satake, M. Heidarzadeh, E. Gunawan, S. Watada, and B. Schurr (2015), Fault slip distribution of the 2014 Iquique,
Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data, Geophys. Res. Lett., 42, 1053-1060, doi:10.1002/
2014GL062604.

Hayes, G. P, D. J. Wald, and R. L. Johnson (2012), Slab1.0: A three-dimensional model of global subduction zone geometries, J. Geophys. Res.,
117, B01302, doi:10.1029/2011JB008524.

Hayes, G.P., M. W. Herman, W. D. Barnhart, K. P. Furlong, S. Riquelme, H. M. Benz, E. Bergman, S. Barrientos, P. S. Earle, and S. Samsonov (2014),
Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake, Nature, 512(7514), 295-298, doi:10.1038/
Nature13677.

Hearn, E. H., R. Burgmann, and R. E. Reilinger (2002), Dynamics of Izmit earthquake postseismic deformation and loading of the Duzce
earthquake hypocenter, Bull. Seis. Soc. Am., 92(1), 172-193.

Keefer, D. K., and M. E. Moseley (2004), Southern Peru desert shattered by the great 2001 earthquake: Implications for paleoseismic and
paleo-El Nifo-Southern Oscillation records, Proc. Natl. Acad. Sci. U.S.A., 101, 10,878-10,883, doi:10.1073/pnas.0404320101.

King, G. C. P, R. S. Stein, and J. Lin (1994), Static stress changes and the triggering of earthquakes, Bull. Seis. Soc. Am., 84(3), 935-953.

Liu, C, Y. Zheng, R. Wang, and X. Xiong (2015), Kinematic rupture process of the 2014 Chile M,, 8.1 earthquake constrained by strong-motion,
GPS static offsets and teleseismic data, Geophys. J. Int., 202(2), 1137-1145, doi:10.1093/gji/ggv214.

Loveless, J. P., and B. J. Meade (2011), Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 M,, = 9.0
Tohoku-oki earthquake, Geophys. Res. Lett., 38, L17306, doi:10.1029/2011GL048561.

Loveless, J. P., G. D. Hoke, R. W. Allmendinger, G. Gonzélez, B. L. Isacks, and D. A. Carrizo (2005), Pervasive cracking of the northern Chilean
Coastal Cordillera: New evidence for forearc extension, Geology, 33(12), 973-976, doi:10.1130/G22004.1.

Loveless, J. P, R. W. Allmendinger, M. E. Pritchard, J. L. Garroway, and G. Gonzalez (2009), Surface cracks record long-term seismic
segmentation of the Andean margin, Geology, 37(1), 23-26, doi:10.1130/G25170a.1.

Meade, B. J. (2007), Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a
uniform elastic half space, Comput. Geosci., 33, 1064-1075, doi:10.1016/j.cageo.2006.12.003.

Métois, M., A. Socquet, C. Vigny, D. Carrizo, S. Peyrat, A. Delorme, E. Maureira, M. C. Valderas-Bermejo, and I. Ortega (2013), Revisiting the
North Chile seismic gap segmentation using GPS-derived interseismic coupling, Geophys. J. Int., 194(3), 1283-1294, doi:10.1093/Gji/
Ggt183.

Miyazaki, S., P. Segall, J. Fukuda, and T. Kato (2004), Space time distribution of afterslip following the 2003 Tokachi-oki earthquake:
Implications for variations in fault zone frictional properties, Geophys. Res. Lett., 31, L06623, doi:10.1029/2003GL019410.

Moreno, M., M. Rosenau, and O. Oncken (2010), 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone,
Nature, 467, 198-202, doi:10.1038/nature09349.

Pollitz, F. F., G. Peltzer, and R. Birgmann (2000), Mobility of continental mantle: Evidence from postseismic geodetic observations following
the 1992 Landers earthquake, J. Geophys. Res., 105, 8035-8054, doi:10.1029/1999JB900380.

Schurr, B., et al. (2014), Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake, Nature, 512(7514),
299-302, doi:10.1038/nature13681.

Scott, C. P, R. W. Allmendinger, G. Gonzalez, and J. P. Loveless (2016), Coseismic extension from surface cracks reopened by the 2014
Pisagua, Northern Chile earthquake sequence, Geology, 44(5), 387-390, doi:10.1130/G37662.1.

Yagi, Y., R. Okuwaki, B. Enescu, S. Hirano, Y. Yamagami, S. Endo, and T. Komoro (2014), Rupture process of the 2014 Iquique Chile earthquake
in relation with the foreshock activity, Geophys. Res. Lett., 41, 4201-4206, doi:10.1002/2014GL060274.

LOVELE uthbrtras requested enhancement of the downidAGeH AR AR rerepeedV G ERACKS are linked to publications on Research®até!


http://dx.doi.org/10.1029/2012GL051990
http://dx.doi.org/10.1029/2004JB003299
http://dx.doi.org/10.1016/j.epsl.2013.01.040
http://dx.doi.org/10.1130/G36703.1
http://dx.doi.org/10.1002/2014GL062604
http://dx.doi.org/10.1002/2014GL062604
http://dx.doi.org/10.1029/2011JB008524
http://dx.doi.org/10.1038/Nature13677
http://dx.doi.org/10.1038/Nature13677
http://dx.doi.org/10.1073/pnas.0404320101
http://dx.doi.org/10.1093/gji/ggv214
http://dx.doi.org/10.1029/2011GL048561
http://dx.doi.org/10.1130/G22004.1
http://dx.doi.org/10.1130/G25170a.1
http://dx.doi.org/10.1016/j.cageo.2006.12.003
http://dx.doi.org/10.1093/Gji/Ggt183
http://dx.doi.org/10.1093/Gji/Ggt183
http://dx.doi.org/10.1029/2003GL019410
http://dx.doi.org/10.1038/nature09349
http://dx.doi.org/10.1029/1999JB900380
http://dx.doi.org/10.1038/nature13681
http://dx.doi.org/10.1130/G37662.1
http://dx.doi.org/10.1002/2014GL060274
https://www.researchgate.net/publication/308263820_Revisiting_the_North_Chile_seismic_gap_segmentation_using_GPS-derived_interseismic_coupling?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/308263820_Revisiting_the_North_Chile_seismic_gap_segmentation_using_GPS-derived_interseismic_coupling?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/308263820_Revisiting_the_North_Chile_seismic_gap_segmentation_using_GPS-derived_interseismic_coupling?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/303184151_Maule_earthquake_slip_correlates_with_pre-seismic_locking_of_Andean_subduction_zone?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/303184151_Maule_earthquake_slip_correlates_with_pre-seismic_locking_of_Andean_subduction_zone?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/300079674_Coseismic_extension_from_surface_cracks_reopened_by_the_2014_Pisagua_northern_Chile_earthquake_sequence?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/300079674_Coseismic_extension_from_surface_cracks_reopened_by_the_2014_Pisagua_northern_Chile_earthquake_sequence?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/285707439_Three-dimensional_finite-difference_modeling_of_the_San_Andreas_Fault_source_parameterization_and_ground-motion_levels?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/285707439_Three-dimensional_finite-difference_modeling_of_the_San_Andreas_Fault_source_parameterization_and_ground-motion_levels?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/281336183_Kinematic_rupture_process_of_the_2014_Chile_M_w_81_earthquake_constrained_by_strong-motion_GPS_static_offsets_and_teleseismic_data?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/281336183_Kinematic_rupture_process_of_the_2014_Chile_M_w_81_earthquake_constrained_by_strong-motion_GPS_static_offsets_and_teleseismic_data?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/279292893_Upper_plate_reverse_fault_reactivation_and_the_unclamping_of_the_megathrust_during_the_2014_northern_Chile_earthquake_sequence?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/279292893_Upper_plate_reverse_fault_reactivation_and_the_unclamping_of_the_megathrust_during_the_2014_northern_Chile_earthquake_sequence?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/271302440_Fault_slip_distribution_of_the_2014_Iquique_Chile_earthquake_estimated_from_ocean-wide_tsunami_waveforms_and_GPS_data_The_2014_Iquique_earthquake?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/271302440_Fault_slip_distribution_of_the_2014_Iquique_Chile_earthquake_estimated_from_ocean-wide_tsunami_waveforms_and_GPS_data_The_2014_Iquique_earthquake?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/271302440_Fault_slip_distribution_of_the_2014_Iquique_Chile_earthquake_estimated_from_ocean-wide_tsunami_waveforms_and_GPS_data_The_2014_Iquique_earthquake?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/264796239_Gradual_unlocking_of_plate_boundary_controlled_initiation_of_the_2014_Iquique_earthquake?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/264796239_Gradual_unlocking_of_plate_boundary_controlled_initiation_of_the_2014_Iquique_earthquake?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/263305296_Rupture_process_of_the_2014_Iquique_Chile_Earthquake_in_relation_with_the_foreshock_activity?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/263305296_Rupture_process_of_the_2014_Iquique_Chile_Earthquake_in_relation_with_the_foreshock_activity?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/258647044_Geodetic_imaging_of_coseismic_slip_and_postseismic_afterslip_Sparsity_promoting_methods_applied_to_the_great_Tohoku_earthquake?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/258647044_Geodetic_imaging_of_coseismic_slip_and_postseismic_afterslip_Sparsity_promoting_methods_applied_to_the_great_Tohoku_earthquake?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/254896877_Space_time_distribution_of_afterslip_following_the_2003_Tokachi-oki_earthquake_Implications_for_variations_in_fault_zone_frictional_properties?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/254896877_Space_time_distribution_of_afterslip_following_the_2003_Tokachi-oki_earthquake_Implications_for_variations_in_fault_zone_frictional_properties?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/251432014_Spatial_correlation_of_interseismic_coupling_and_coseismic_rupture_extent_of_the_2011_MW_90_Tohoku-Oki_earthquake?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/249520501_Surface_cracks_record_long-term_seismic_segmentation_of_the_Andean_margin?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/249520501_Surface_cracks_record_long-term_seismic_segmentation_of_the_Andean_margin?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/241329686_Mobility_of_continental_mantle_Evidence_from_postseismic_geodetic_observations_following_the_1992_Landers_earthquake?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/241329686_Mobility_of_continental_mantle_Evidence_from_postseismic_geodetic_observations_following_the_1992_Landers_earthquake?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/236202513_Coseismic_slip_variation_assessed_from_terrestrial_lidar_scans_of_the_El_Mayor-Cucapah_surface_rupture?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/236202513_Coseismic_slip_variation_assessed_from_terrestrial_lidar_scans_of_the_El_Mayor-Cucapah_surface_rupture?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/221678199_Slab10_A_three-dimensional_model_of_global_subduction_zone_geometries?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/221678199_Slab10_A_three-dimensional_model_of_global_subduction_zone_geometries?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/38414352_Algorithms_for_the_Calculation_of_Exact_Displacements_Strains_and_Stresses_for_Triangular_Dislocation_Elements_in_a_Uniform_Elastic_Half_Space?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/38414352_Algorithms_for_the_Calculation_of_Exact_Displacements_Strains_and_Stresses_for_Triangular_Dislocation_Elements_in_a_Uniform_Elastic_Half_Space?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/8446642_Southern_Peru_desert_shattered_by_the_great_2001_earthquake_Implications_for_paleoseismic_and_paleo-El_Nino-Southern_Oscillation_records?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==
https://www.researchgate.net/publication/8446642_Southern_Peru_desert_shattered_by_the_great_2001_earthquake_Implications_for_paleoseismic_and_paleo-El_Nino-Southern_Oscillation_records?el=1_x_8&enrichId=rgreq-cffbb6dea9de2b009a3f86981ca36206-XXX&enrichSource=Y292ZXJQYWdlOzMwODI4MDYyMTtBUzo0Mjg4MTc4NTc2ODM0NTZAMTQ3OTI0OTU1MjU2MA==

	Smith ScholarWorks
	10-9-2016

	Slip Distribution of the 2014 Mw=8.1 Pisagua, Northern Chile, Earthquake Sequence Estimated From Coseismic Fore-Arc Surface Cracks
	John P. Loveless
	Chelsea P. Scott
	Richard W. Allmendinger
	Gabriel González
	Recommended Citation


	

