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Nonlinear inflaton fragmentation after preheating

Gary N. Felder1 and Lev Kofman2

1Department of Physics, Clark Science Center, Smith College Northampton, Massachusetts 01063, USA
2CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada

(Received 18 July 2006; published 23 February 2007)

We consider the nonlinear dynamics of inflaton fragmentation during and after preheating in the
simplest model of chaotic inflation. While the earlier regime of parametric resonant particle production
and the later turbulent regime of interacting fields evolving towards equilibrium are well identified and
understood, the short intermediate stage of violent nonlinear dynamics remains less explored. Lattice
simulations of fully nonlinear preheating dynamics show specific features of this intermediate stage:
occupation numbers of the scalar particles are peaked, scalar fields become significantly nongaussian and
the field dynamics become chaotic and irreversible. Visualization of the field dynamics in position space
reveals that nonlinear interactions generate nongaussian inflaton inhomogeneities with very fast growing
amplitudes. The peaks of the inflaton inhomogeneities coincide with the peaks of the scalar field(s)
produced by parametric resonance. When the inflaton peaks reach their maxima, they stop growing and
begin to expand. The subsequent dynamics is determined by expansion and superposition of the scalar
waves originating from the peaks. Multiple wave superposition results in phase mixing and turbulent wave
dynamics. Thus, the short intermediate stage is defined by the formation, expansion and collision of
bubblelike field inhomogeneities associated with the peaks of the original gaussian field. This process is
qualitatively similar to the bubblelike inflaton fragmentation that occurs during tachyonic preheating after
hybrid or new inflation.

DOI: 10.1103/PhysRevD.75.043518 PACS numbers: 98.80.Cq

I. INTRODUCTION

The origin of matter in the Universe from a decaying
inflaton field in the process of (p)reheating is a basic
feature of all realistic inflationary models. If four dimen-
sional effective field theory is sufficient (for specifics of
reheating in string theory inflation see e.g. [1]) this process
is described by the nonequilibrium QFTof particle creation
and thermalization. In chaotic inflation this particle crea-
tion typically involves a period of parametric resonance,
when occupation numbers of Bose particles rapidly be-
come exponentially large [2]. In this case the QFT is well
approximated by classical field theory, which can be in-
vestigated in detail with classical lattice simulations [3]. A
full treatment of the quantum field theory of the nonlinear
stages of preheating in controllable models in the limit of
high occupation numbers is in agreement with the classical
approximation [4].

The simplest possible inflationary potential contains a
massive inflation field V � 1

2m
2�2 and the simplest pre-

heating model involves a coupling of the inflaton to another
field 1

2g
2�2�2. The regime of parametric resonant particle

production is understood analytically [2]. Backreaction of
inhomogeneous fluctuations quickly brings the system of
interacting scalar fields to a strongly nonlinear regime
characterized by very high occupation numbers. The tur-
bulent regime of interacting classical scalar field waves
was studied in detail in numerical simulations [3,5,6], most
of which are based on the LATTICEASY code [7], and in
the ��4 model even analytically with the kinetic theory of
Kolmogorov-type turbulence [6]. The least understood
stage of (p)reheating is the short, violent transition from

linear preheating to the turbulent stage, which shows
anomalies in the momentum space picture, and in the
departure from gaussian statistics [5].

Hybrid inflation is another very important class of infla-
tionary models. At first glance preheating in hybrid infla-
tion, which contains a symmetry breaking mechanism in
the Higgs field sector, has a very different character than in
chaotic inflation. Preheating in hybrid inflation occurs via
tachyonic preheating [8], in which a tachyonic instability
of the homogeneous modes drives the production of field
fluctuations. In hybrid inflation, the decay of the homoge-
neous fields leads to fast nonlinear growth of scalar field
lumps associated with the peaks of the initial (quantum)
fluctuations. The lumps then build up, expand and super-
pose in a random manner to form turbulent, interacting
scalar waves [8,9]. A similar picture emeres in new infla-
tion preheating [10]. Like parametric resonance, tachyonic
preheating can be interpreted via the reciprocal picture of
copious particle production far away from thermal equi-
librium, and consequent cascades of energy through inter-
acting, excited modes.

In this paper we investigate in detail the structure of
preheating after chaotic inflation in position space. We find
that the intermediate stage between linear preheating and
turbulence proceeds via nonlinear growth, expansion, and
superposition of large value field bubbles, similar to what
we earlier observed in hybrid inflation. Thus, the bubble-
like intermediate structure of the nonlinear fields is another
consistent feature of preheating. However, the details of the
nonlinear dynamics are different: while the bubbles in
preheating after hybrid inflation initially occur as isolated
patches with large spaces in between them, the bubbles that

PHYSICAL REVIEW D 75, 043518 (2007)

1550-7998=2007=75(4)=043518(7) 043518-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.043518


appear in preheating in the model being considered here
appear more densely throughout the space and persist for
some time as a pattern of standing waves before they begin
spreading and colliding.

In Sec. II we describe the model we are considering and
review the basic nature of preheating in this model, focus-
ing on the (well studied) behavior of the fields in momen-
tum space. In Sec. III we discuss different diagnostics of
the system of interacting scalar fields in position space and
describe the fully nonlinear dynamics of inflaton fragmen-
tation. In the concluding section we discuss some of the
implications of these results, in particular, for the genera-
tion of gravitational waves from preheating and baryo/
leptogenesis from preheating.

II. PREHEATING AND THERMALIZATION IN
MOMENTUM SPACE

We consider the potential

 V � 1
2m

2�2 � 1
2g

2�2�2; (1)

where � is the inflaton and � is another scalar field that is
coupled to it. At the end of inflation � is a homogeneous
field which oscillates as ��t� � Mp�����

3�
p

mt
sinmt and � is a

quantum field with eigenfunctions �k�t�e�ikx. The tempo-
ral part �k�t� obeys an oscillator equation with a periodic
frequency !2

k � �k
2=a2� � g2��t�2. The amplitude �k�t�

thus undergoes parametric resonance, leading to large
occupation numbers of created particles nk.

Because of the rapid growth of its occupation numbers
the field ��t; ~x� can be treated as a classical scalar field. Its
appearance is described by the realization of the random
gaussian field

 ��t; ~x� � 2
Z
d3kj�k�t�j cos�kx� �k�; (2)

i.e. as a superposition of standing waves with random
phases �k and Rayleigh-distributed amplitudes

P�j�k�t�j�dj�k�t�j � e�
j�k�t�j

2

�
2j�k�t�j

� dj�k�t�j, � �
hj�k�t�j2i. One can use many different quantities to char-
acterize a random field, such as its variances h�2

ni �R
d3kk2nj�k�t�j

2, the spatial density of its peaks of a given
height, etc. The scale of the peaks and their density depend
on the characteristic scale R of the spectrum, which in our
case is related to the leading resonant momentum k� ’�������������
gm�0

p
a1=4 [2]. At the linear stage the phases �k are

constant, so that the structure of the random field � stays
almost the same.

Once one field is amplified in this way, other fields that
are coupled to it are themselves amplified [5], so within a
short time of linear preheating (of order dozens of inflaton
oscillations) fluctuations of � generate inhomogeneous
fluctuations of the field �. It is easy to see that fluctuations
of � will have a nonlinear, nongaussian character. From

the equation of motion for �

 ���m2�2 � g2�2� � 0; (3)

we have in Fourier-space

 

�� k � 3H _�k � ��k2=a2� �m2��k

� g2�0�t�
Z
d3q�q�

�
k�q; (4)

where we neglect the term that is third order with respect to
fluctuations; �0�t� is the background oscillation. The so-
lution of this equation with Green’s functions [2] shows
that � fluctuations grow with twice the exponent of �
fluctuations. It also shows that the fluctuations of � are
nongaussian. Sometimes this solution is interpreted as
rescattering of the particle �q against the condensate par-
ticle �0 at rest producing �k�q and �k, ��0 ! ���. As
we will see shortly, this interpretation has significant
limitations.

When the amplitudes of � and � become sufficiently
large we have to deal with the fully nonlinear problem. The
field evolution can be well approximated using the classi-
cal equation of motion (3) supplemented by another equa-
tion for �

 ��� g2�2� � 0: (5)

Results of simulations of nonlinear preheating using the
LATTICEEASY program [7] have been reported in many
earlier papers [3,5]. For chaotic inflation, these results were
presented in terms of the time evolution of occupation
numbers nk�t� or total number density of particles N�t�.
Figs. 1–3 show the results of our simulations in these
familiar terms of nk�t� (in combination k3!knk) and N�t�,
as well as showing the evolution of the field statistics
(departures from gaussianity). Here and for the rest of
this paper all simulation results are for model (1) withm �
10�6Mp (fixed by CMB normalization) and g2 � 2:5�
10�7. The size of the box was L � 10m�1 and the grid
contained 2563 points. We also tried other values of g2 and
found qualitatively similar results.

Figure 1 shows the evolution of the spectra. The spectra
show rapid growth of the occupation numbers of both
fields, with a resonant peak that develops first in the
infrared (k ’ k�) and then moves towards the ultraviolet
as a result of rescattering. In Fig. 2 you can see clearly that
the occupation number of � initially grows exponentially
fast due to parametric resonance, followed by even faster
growth of the � field due to the interaction, in accordance
with the solution of Eq. (4).

The gaussianity of classical fileds can be measured in
different ways. In Fig. 3 we show the evolution of the ratio
hf2i2=hf4i (kurtosis), which is equal to unity for a gaussian
field. During the linear stage of preheating, the field fluc-
tuations are a random gaussian field, see Eq. (2), reflecting
the initial quantum fluctuations that seeded them. The
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inhomogeneous field� is generated as a nongaussian field,
in agreement with the solution of Eq. (4). When the fluc-
tuation amplitude begins to get large, both fields are non-

gaussian. During the later turbulent stage both fields begin
to return to gaussianity.

Another known feature of preheating is the onset of
chaos, when small differences in the initial conditions for
the fields lead to exponentially divergent solutions: D�t� ’
e�t, where D is the distance in phase space between the
solutions and � is the Lyapunov exponent (see [5] for
details). The distance D begins to diverge exponentially
exactly after the violent transition to the turbulent stage.

Let us summarize the picture which emerges when we
study preheating, turbulence and thermalization in momen-
tum space with the occupation numbers nk. There is initial
exponential amplification of the field �, peaked around the
mode k�. At this stage the � fluctuations form a squeezed
state, which is a superposition of standing waves that make
up a realization of a random gaussian field. Interactions of
the two fields lead to very rapid excitation of fluctuations of
�, with its energy spectrum also sharply peaked around k�.
To describe generation of � inhomogeneities, people use
the terminology of ‘‘rescattering’’of waves. However, there
is a short violent stage when occupation numbers have a
sharply peaked and rapidly changing spectrum. The field at
this stage is nongaussian, which signals that the waves
phases are correlated. In some sense, the concept of ‘‘par-
ticles’’ is not very useful around that time. In the later
turbulent stage when nk�t� gradually evolves and gaussian-
ity is restored (due to the loss of phase coherency) the
picture of rescattering particles becomes proper. As we will
see in the next section, gaussianity is not restored for some
time after the end of preheating. To understand this violent,
intermediate stage, however, it is useful to turn to the
reciprocal picture of field dynamics in position space.

III. INFLATON FRAGMENTATION IN POSITION
SPACE

The features in the occupation number spectra nk�t�,
namely, sharp time variations, peaks at k	 k�, and strong
nongaussianity of the fields around the time of transition
between preheating and turbulence suggest that we are
dealing with distinct spatial features of the fields in the
position space. This prompted us to study the dynamics of
the fields in position space.

 

0 50 100 150 200 250

10 6

10 8

10 10

Number density m3

FIG. 2 (color online). Evolution of comoving number density
of � (red, lower plot) and � (blue, upper plot) in units of m3.
Time is in units of 1=m.
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FIG. 3 (color online). Evolution of the ratio hf2i2=hf4i, where
f represents the � field (red, solid) or the � field (blue, dashed)
and angle brackets represent a spatial average, is a measure of
gaussianity. This ratio is one for a random gaussian field. Time is
in units 1=m.
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FIG. 1 (color online). Evolution of spectra in the combination k3!knk of the � and � fields during and immediately after preheating.
Bluer plots show later spectra. Horizontal axis k is in units of m.
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The evolution of the fields in position space is shown in
Fig. 4. Each frame shows the spatial profile of the fields �
and � along a two-dimensional slice of the 3D lattice. A
movie that includes many more time frames can be found
at http://www.science.smith.edu/departments/Physics/
fstaff/gfelder/public/bubbles/. Note that here (and every-
where in this paper) times are reported in units of 1=m.

The initial evolution of the fields (t & 100) is charac-
terized by linear growth of fluctuations of �. During this
stage the fluctuations have the form of a superposition of
standing waves with random phases, which make up a
random gaussian field (2). The eye captures positive and
negative peaks that correspond to the peaks of the initial
gaussian random field �. The peaks in this early stage
correspond to the peaks of the initial gaussian random field
�. Next the oscillations of � excite oscillations of �. The
first panel of Fig. 4 shows a typical profile near the end of
this period, just as the oscillations are becoming nonlinear
and � is becoming excited. The amplitude of these �
oscillations grows much faster than the initial � oscilla-
tions (see our discussion of Eq. (4)) and the oscillations
have different (and changing) frequencies. The peaks of the

� oscillations occur in the same places as the peaks of the
� oscillations, however, as can be seen in the bottom three
panels on the left side of Fig. 4. We can analyze the
evolution during this early nonlinear period, not using the
Fourier-mode description (4), but instead considering the
position space description Eq. (3). The interaction term in
the equation of motion is approximated during this stage by
g2�0�

2, so we have

 ��t;x� � �0�t� � g
2
Z
d4x0�0�t

0��2�t0;x0�G�s�; (6)

where G�s� is the retarded Green’s function of the massive
scalar field wave equation, s � �t� t0�2 � �x�x0�2. We
have neglected expansion in this equation since H
 m.
Equivalently, one can eliminate expansion from the equa-
tion (up to a small correction term) by rescaling the fields
with a3=2 and using conformal time, as in [2]. Thus the
profile of ��t;x� is a superposition of the still oscillating
homogeneous part plus inhomogeneities induced by the
Yukawa-type interaction �g2�0���2 in the Lagrangian.
Since the Yukawa interaction is a short-range interaction
(defined by the length scale 1=m for a spacelike interval

 

FIG. 4 (color online). Values of the � and � fields in a two-dimensional slice through the lattice. The horizontal axes are spatial axes
and the vertical axis is field value.
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G�r� 	 e�mr), induced inhomogeneities of � appear in the
vicinity of those in �.

In the next stage (t * 110) the peaks reach their maxi-
mum amplitude, comparable to the initial value of the
homogeneous field �, and begin to spread. The two lower
left panels of Fig. 4 shows the peaks expanding and collid-
ing. In the panels on the right you can see the standing
wave pattern lose coherence as the peaks send out ripples
that collide and interfere. By t � 124 the fluctuations have
spread throughout the lattice, but you can still see waves
spreading from the original locations of the peaks. Shortly
after that time all coherence is lost and the field positions
appear to be like random turbulence.

Figure 5 shows the distribution of energy density at
several points during the evolution. Several points about
these figures are worth noting. For the parameters we are
considering, the gradient energy is subdominant through-
out the violent rescattering stage and only begins to be
significant during the onset of turbulence. Fluctuations in
the potential and kinetic energy grow in the locations of the
bubbles seen in Fig. 4, but they are out of phase such that
the total energy density remains nearly homogeneous.

Later, as the bubbles spread and collide, the phase coher-
ence is lost and inhomogeneities appear in the total energy
density. A movie showing many more time frames of
energy density can be found at http://www.science.smi-
th.edu/departments/Physics/fstaff/gfelder/public/bubbles/.

For the first time we calculate the evolution of the
statistics of the fields. Figure 6 shows the field distributions
(histograms) at various times during the evolution. Initially
both fields have gaussian distributions (from their random
quantum fluctuations), with � sharply peaked around �0

and � centered around zero. As nonlinear effects become
important, the statistics of both fields become quite non-
trivial. The distribution of the inflaton field becomes at
times sharply peaked to one side, when the condensate is at
an extreme end of its oscillation, and at other times bi-
modal, with a distinct presence of the homogeneous com-
ponent plus a significant inhomogeneous component. The
statistics of the � field also become strongly nongaussian.
Perhaps most surprisingly, the statistics of both fields
remain nongaussian for a long time after preheating. At
the end of our simulation, at t � 300, the fields were still
noticeably nongaussian. During all this time the random

 

FIG. 5 (color online). Energy density and its components. The horizontal axes represent the same two-dimensional slice through the
lattice as in Fig. 4.
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phase approximation of interacting scalars is justified only
to the extent that the distributions approximate gaussians.
We will return to the question of how long this non-
Gaussianity will persist in a subsequent paper.

IV. DISCUSSION

It is convenient to split the process of transition from the
homogeneous inflaton condensate to the radiation of ran-

domly moving waves into four stages: The first is expo-
nentially rapid growth of small inhomogeneities that
emerge from vacuum fluctuations. During this stage fluc-
tuations are linear and the fields are gaussian random fields.
The second stage is violent backreaction and rescattering
of waves, with nongaussian, nonlinear, nonthermal fluctu-
ations. The third stage is Kolmogorov turbulence. During
this period the fluctuations are again (nearly) gaussian and
energy gradually cascades towards high momentum
modes. Finally, there is thermalization.

In this paper we used lattice simulations to investigate
the second stage of violent field restructuring. We consid-
ered the model (1), in which preheating occurs through
parametric resonance, and examined the evolution of the
fields in position space. The picture that emerged is similar
in many ways to what we observed earlier for tachyonic
preheating in hybrid inflation. For instance in the F-term
inflation example where the nonlinear potential around the
bifurcation point is V��� � � �

3 v�
3 � �

4�
4 � �

12v
4, small

initial random fluctuations of � are amplified by the non-
linear �3 term. The peaks of the gaussian field thus begin
to grow very fast relatively to the surrounding regions of�.
Along those same lines, we found here that oscillations of
the � and � fields grow initially at the locations of the
peaks in the initial � field. For the model (1) these growing
peaks form a pattern of standing waves that persists
throughout the linear regime and then begin to spread
and overlap as rescattering becomes important.

The bubblelike structure we see here (and in hybrid
inflation) has nothing to do with first-order phase transi-
tions, but just with the initial structure of vacuum fluctua-
tions plus nonlinear dynamics [11]. Growth of the
individual peaks results in the build-up of the scalar field
gradients. Subsequent evolution is defined by the expan-
sion of the bubbles. The superposition of many almost
spherically expanding bubbles leads to decoherence and
turbulent motion of the scalar waves.

The main lesson we have learned from this work is that
the preheating stage of linear fluctuations and the turbulent
stage of interacting waves are divided by a short, violent
stage of nonlinear formation and collision of bubblelike
large value field regions.

Eventually the fields reach thermal equilibrium charac-
terized only by the temperature. Does that mean that all
traces of inflaton fragmentation history are erased? There
are potential tracers of the nonlinear stage of preheating
related to out-of-equilibrium processes. For instance,
people have discussed realizations of baryogenesis at the
electroweak scale via tachyonic preheating after hybrid
inflation [12], and this process is ultimately related to the
bubblelike lumps of the Higgs field that form during ta-
chyonic preheating [13]. Since we now see that fragmen-
tation through bubbles can also occur in chaotic inflation,
baryogenesis via out-of-equilibrium bubbles can also be
extended to these models.

 

t 300

φ

t 111

φ

t 100

φ

t 0

φ

FIG. 6 (color online). Field distributions in position space. The
horizontal axes are field values and the vertical axis represents
the frequency of that field value on the lattice. The black dots
represent the simulation results and the red lines are best-fit
Gaussian curves. The fitting lines cannot be seen in the first
frame because they lie directly under the dots.
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There is another, potentially observable consequence of
the nonlinear ‘‘bubble’’ stage of inflaton fragmentation.
Lumps of the scalar fields correspond to large (order of
unity) energy density inhomogeneities at the scale of those
bubbles, R. Collisions of bubbles generate gravitational
waves. The fraction of the total energy at the time of
preheating converted into gravitational waves is signifi-
cant. We estimate it is of the order of

 

�gw
�rad

’ �RH�2; (7)

where 1=H is the Hubble radius. This corresponds to a
present-day fraction of energy density �GW 	 10�5�RH�2.
The way to understand formula (7) is the following: The
energy converted into gravitational waves from the colli-
sion of two black holes is of the order of the black hole
masses. If the mass of lumps of size R is a fraction f of a
black hole of the same size, then the fraction of energy
converted to gravitational waves from two lumps colliding
is f. Scalar field lumps at the Hubble scale would form
black holes, so in our case f � �RH�2.

The present-day frequency of this gravitational radiation
is

 f ’
M

107 Gev
Hz; (8)

where M � V1=4 is the energy scale of inflation with the
potential V.

For the chaotic inflation model considered in this paper
the size of the bubbles is R	 few=m and at the time they
begin colliding H 	m=100, so that the fraction of energy
converted into gravitational waves is of the order
10�3–10�4. This figure is in agreement with the numerical
calculations of gravitational wave radiation from preheat-
ing after chaotic inflation [14].

For chaotic inflation with M at the GUT scale the
frequency (8) is too short and not observable.
Gravitational waves continue to be generated during the
turbulent stage and even during equilibrium due to thermal
fluctuations, but with a smaller amplitude. It is a subject of
further investigation if they can be observed. The most
promising possibility for observations is, however, genera-
tion of gravity waves from low energy hybrid inflation,
where f can much much smaller.
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