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SPLINES IN GEOMETRY AND TOPOLOGY

JULIANNA TYMOCZKO

Abstract. This survey paper describes the role of splines in geometry and topology, emphasizing both
similarities and differences from the classical treatment of splines. The exposition is non-technical and
contains many examples, with references to more thorough treatments of the subject.

The goal of this survey paper is to describe how splines arise in geometry and topology. Geometric splines
usually appear under the name GKM theory after Goresky-Kottwitz-MacPherson, who developed them to
compute what is called the cohomology ring of a geometric object. Geometers and analysts ask many of the
same questions about splines: what is their dimension? can we identify a basis? can we find explicit formulas
for the elements of the basis? However geometric constraints can change the tone of these questions: the
splines may satisfy various symmetries or have a basis satisfying certain conditions. And some questions are
specific to geometric splines: geometers particularly care about the multiplication table with respect to a
given basis.

In Section 1 we discuss GKM theory, followed in Section 2 by some important families of geometric
examples, some of which are well-known to students of analytic splines and some of which may be useful in
future. Section 3 sketches some techniques that are natural from the perspective of a geometer/topologist,
including Morse flows and symmetries that come from geometric representation theory. Finally in Section 4
we generalize splines to a more abstract ring setting, both as a useful conceptual framework and because it
provides new combinatorial tools.

This paper is targeted at researchers in geometric design, especially those with an analytic background.
Our aim is to give an overview of theoretical tools and techniques from geometry and topology; we often
illustrate concepts by example and refer to the literature for details on technical aspects. A reader with a
different mathematical perspective may be interested in surveys like [27, 35, 36].

1. GKM theory

Cohomology is an algebraic gadget associated to a geometric object X that encodes various properties
of X . Among other things, the cohomology of X indicates the dimension of X , the number of connected
components (how many separate pieces X has), how many holes X has, whether X has singularities, and
how different subspaces of X intersect.

We could treat very general kinds of geometric objects but for simplicity in this survey we take X to
be a compact complex manifold. When we say that cohomology is an “algebraic gadget” the most general
interpretation is that cohomology is a ring. In the cases of interest here, the cohomology ring is actually an
algebra, namely a vector space in which one can multiply vectors. The technical condition we assume is that
cohomology has coefficients in Q,R, or especially C.

In fact we will consider an enhanced version of cohomology called T -equivariant cohomology. Equivari-
ant cohomology has strictly more information than ordinary cohomology yet surprisingly can be easier to
compute. In our case T is a torus, namely the group

T = C∗ × C∗ × · · · × C∗

where C∗ denotes the group of nonzero complex numbers.

Remark 1.1. In the literature algebraic geometers tend to use the torus above while differential geometers
tend to use a product of circles T = S1 × · · · × S1. This makes very little difference in practice because
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2 JULIANNA TYMOCZKO

C∗ contracts to S1. In other words, thinking of C∗ as the plane with the origin removed, we can squeeze it
thinner and thinner until only S1 remains. This squeezing process respects the constructions that underly
cohomology. The outcome after formalizing is that in cases where either S1 × · · · ×S1 or C∗ ×C∗ × · · · ×C∗

can be used, the equivariant cohomology is the same.

We require T to act on X “nicely”, which for us means:

(1) X has a finite number of T -fixed points
(2) X has a finite number of one-(complex)-dimensional T -orbits
(3) X is “equivariantly formal”

The first two are geometric conditions that are relatively straightforward to check in specific examples.
The last is a technical condition that amounts to a certain spectral sequence degenerating. In practice
one usually assumes one of the many conditions that implies equivariant formality, for instance any of the
following conditions:

• X is a smooth complex projective algebraic variety
• X has no odd-dimensional ordinary cohomology
• X has a T -stable cell decomposition

We refer to this set of hypotheses as the GKM hypotheses.

Definition 1.2. If X is a compact complex manifold with the action of a torus T = C∗ ×C∗ × · · · ×C∗ that
satisfies (1)–(3) then we say X and T satisfy the GKM hypotheses.

1.1. Examples of varieties with “nice” torus actions.

1.1.1. The projective line P1. Consider the collection of lines through the origin in the plane, which we call
P1. Each point (x, y) in the plane other than the origin gives rise to a point in P1 by taking the unique line
through (x, y) and (0, 0). Of course many points give rise to the same line; in fact multiplying the vector
(x, y) by a nonzero constant won’t change its direction and thus won’t change the line through the origin on
which it lies. We use square brackets to indicate points in P1 itself, which are equivalence classes of points
in the plane. In other words we could write

P1 =
{[x, y] : x, y ∈ C and at least one of x, y is nonzero}

[x, y] ∼ [λx, λy] for all nonzero λ ∈ C∗

to indicate that two different equations for a line are equivalent if they differ by a nonzero constant multiple.

There are different ways for a torus to act on P1. Of interest to us is the following action of T = C∗ on
P1. Suppose that t ∈ C∗ and that [x, y] ∈ P1. Then

t · [x, y] = [x, ty]

At this point the reader should pause and try to identify the fixed points of P1 under this torus action as
well as the (only) one-dimensional orbit.

Notice that [x, 0] is fixed by this T -action. Since x 6= 0 we conclude that [x, 0] is actually the single point
[1, 0] by definition of P1. In other words

[x, 0] ∼ [1, 0]

In fact [x, 0] ∼ [x′, 0] for any nonzero x, x′ ∈ C∗ since [x′, 0] = [x
′

x x,
x′

x 0].

A similar argument shows that [0, y] is the single point [0, 1] in P1. It is also a T -fixed point, since
t · [0, 1] = [0, t] by definition of the group action and [0, t] ∼ [0, 1] by the argument above.

In fact these are the only T -fixed points. Indeed suppose that [x, y] is T -fixed, meaning that [x, ty] ∼ [x, y]
for every possible t ∈ C∗. Then there exists a nonzero scalar λ with [λx, λy] = [x, ty]. On the one hand
λx = x so either λ is one or x is zero. On the other hand λy = ty so either λ = t or y is zero. Since t is
arbitrary we conclude that one of x or y must be zero.
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In this example there is exactly one one-dimensional T -orbit consisting of all points [x, y] with both
x 6= 0, y 6= 0. Indeed any such point [x, y] can be written [x, y] ∼ [1, y′] by multiplying by λ = 1/x. Any two
points [1, y′] and [1, y′′] are in the same T -orbit because we can choose t = y′/y′′. (The choices of λ and t
are valid because all of x, y′, and y′′ are nonzero.)

1.1.2. The projective plane P2. The projective plane P2 consists of all lines through the origin in C3. We
can describe it similarly to the projective line:

P2 =
{[x1, x2, x3] : x1, x2, x3 ∈ C and at least one of x1, x2, x3 is nonzero}

[x1, x2, x3] ∼ [λx1, λx2, λx3] for all nonzero λ ∈ C∗

We choose a different torus action for P2 than P1 in order to lay the foundations for general projective space
Pn. However the analysis is very similar.

Take T = C∗ × C∗ × C∗ and define an action of (t1, t2, t3) ∈ T on [x1, x2, x3] ∈ P2 by

(t1, t2, t3) · [x1, x2, x3] = [t1x1, t2x2, t3x3]

Again the reader should pause to identify T -fixed points and one-dimensional orbits before continuing with
the exposition.

By the same argument as above we can see that the three points [1, 0, 0], [0, 1, 0], and [0, 0, 1] are all fixed
by this T -action and in fact that they are the only T -fixed points. (If [x1, x2, x3] is a point with at least two
nonzero entries, we can restrict attention to the two nonzero entries and literally use the previous argument
to conclude that the point cannot be fixed.)

Identifying one-dimensional orbits seems more complicated for P2 than for P1. However suppose we
consider a subset of P2 in which exactly two entries are nonzero, for instance

{[x1, x2, 0] : x1, x2 are nonzero in C}

We can divide by the nonzero coordinate x1 to get

{[x1, x2, 0] : x1, x2 are nonzero in C} ∼ {[1, x, 0] : x is nonzero in C}

where x = x2

x1

. The torus acts on each element of this subset by

(t1, t2, t3) · [1, x, 0] = [t1, t2x, 0]

and by previous arguments we know that [t1, t2x, 0] ∼ [1, t2
t1
x, 0]. In other words T preserves the set

{[x1, x2, 0] : x1, x2 ∈ C∗}. Of course which two entries were nonzero was immaterial. We conclude that
P2 has at least three one-dimensional T -orbits, each obtained by choosing two entries to be nonzero.

In fact those three are the only one-dimensional T -orbits. If x1, x2, x3 are all nonzero then

[x1, x2, x3] ∼ [1,
x2

x1
,
x3

x1
]

The image under an arbitrary element of the torus is

(t1, t2, t3) · [1,
x2

x1
,
x3

x1
] = [t1, t2

x2

x1
, t3

x3

x1
]

which is the same point in P2 as [1, t2
t1

x2

x1

, t3
t1

x3

x1

]. The last two coordinates can be any pair of nonzero complex
numbers because t1, t2, and t3 are all arbitrary nonzero complex numbers. In other words if all three entries
are nonzero then [x1, x2, x3] lies on a two-dimensional T -orbit.

1.1.3. Projective space Pn−1. More generally projective space Pn−1 consists of all lines through the origin in
Cn. As before we can write

Pn =
{[x1, x2, . . . , xn] : x1, x2, . . . , xn ∈ C and at least one of x1, x2, . . . , xn is nonzero}

[x1, x2, . . . , xn] ∼ [λx1, λx2, . . . , λxn] for all nonzero λ ∈ C∗

Fix the torus T = C∗ × C× · · · × C∗ with n copies of C∗ and define an action of T on Pn−1 by

(t1, t2, . . . , tn) · [x1, x2, . . . , xn] = [t1x1, t2x2, . . . , tnxn]
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The same analysis as before shows that the T -fixed points of Pn−1 are the n coordinate points

[1, 0, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, 0, 0, . . . , 1]

in which exactly one entry is nonzero. Each one-dimensional orbit consist of points in which exactly two
entries are nonzero; the set of pairs (i, j) with 1 ≤ i < j ≤ n indexes the set of one-dimensional orbits,
determining which entries are nonzero.

1.2. Moment graph. In P2 we saw that every one-dimensional T -orbit essentially looked like the one-
dimensional T -orbit in P1. In fact the closure of each one-dimensional T -orbit is exactly P1. This holds not
just for Pn but for all X that satisfy the GKM hypotheses.

Proposition 1.3. Suppose X and T satisfy the GKM hypotheses and O is any one-dimensional T -orbit O
in X. Then the closure of O is homeomorphic to P1 and consists of O together with two T -fixed points N
and S (essentially the north and south poles).

This means we can record the data of T -fixed points and one-dimensional orbits more concisely: as a
graph.

Definition 1.4. Suppose X and T satisfy the GKM hypotheses. The moment graph or GKM graph of X
is defined from the T -orbits of X as follows:

T -fixed points ↔ vertices
1-dimensional T -orbits ↔ edges
weight of T -action ↔ label on edge

(Section 1.3 explains how the moment gets into moment graph.)

The weight of the T -action essentially records the direction of the T -action. For instance when studying
the one-dimensional T -orbits in P2 we found that

(t1, t2, t3) · [1, x, 0] ∼ [1,
t2
t1
x, 0]

In other words the torus pushed the point [1, x, 0] in the t2
t1

direction. We typically linearize this and (with

a slight abuse of notation) record the weight as t2 − t1. Figure 1 gives the moment graphs for P1 and P2. In
the moment graph for Pn−1 the edge indexed by (i, j) for 1 ≤ i < j ≤ n is labeled tj − ti.

t

t

t

t

t

t

❅
❅❅
�
��

t3 − t1

t2 − t1

t3 − t2

Figure 1. Examples of moment graphs for P1 and P2

1.3. GKM theorem. We can now give Goresky-Kottwitz-MacPherson’s theorem [20].

Theorem 1.5 (Goresky-Kottwitz-MacPherson). Let X be a compact complex manifold with the action of a
torus T that satisfies the GKM hypotheses. Let GX be its moment graph. Then the equivariant cohomology
ring H∗

T (X ;C) satisfies the ring isomorphism

H∗
T (X ;C) ∼= {p ∈ C[t1, . . . , tn]

|V | : for each edge uv the difference pu − pv is in α(uv)}

From the perspective of splines, the point is the following:

Corollary 1.6. Suppose X is a compact complex manifold with a torus action that satisfies the GKM
hypotheses. The equivariant cohomology of X is isomorphic to the ring of complex splines S0

∞(GX).
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What precisely does this mean? Classically the splines Sr
d(∆) consist of Cr piecewise polynomials of degree

at most d on the combinatorial object ∆. We take ∆ to be a pure polyhedral complex whose maximal faces
are all d-dimensional polytopes in Rd and use the example of a triangulation of a region of the plane.

The graph GX is the dual graph to ∆, namely GX has one vertex for each d-dimensional face and an
edge between two vertices if the corresponding faces intersect in a d− 1-dimensional face. For instance if ∆
is a triangulation then GX is the classical dual graph: it has one vertex per triangle and an edge between
vertices if the corresponding triangles share an edge.

We can label the edges of GX as well. If σ1 ∩ σ2 is a d− 1-dimensional face in ∆ then the affine span of
σ1 ∩ σ2 is a hyperplane. Label the edge corresponding to σ1 ∩ σ2 in GX with the affine form that vanishes
on that hyperplane. For instance when ∆ is a triangulation the label on each edge of GX is essentially the
slope of the line between the corresponding triangles. Section 2.1 shows an example in detail.

Billera first used dual graphs in the context of splines, proving that the ring of splines on the dual graph
is isomorphic to Sr(∆) when ∆ is a hereditary pure polyhedral complex [7]. (Hereditary complexes are
essentially those without holes or pinchpoints; for instance any triangulation of a convex region in R2 is
hereditary. For details see e.g. [8, 9].)

The GKM perspective uses graphs because of the historical evolution of the result. Pieces of Goresky-
Kottwitz-MacPherson’s approach predate them significantly. The T -orbits onX had been studied extensively
in different contexts: when X is a symplectic manifold with a Hamiltonian T -action there’s a natural map
µ : X → Rn called the moment map that linearizes the action of the torus, “straightening out” the torus
orbits. Kostant noticed that the image of the moment map for one important manifold was a convex polytope
[31], leading to work by Atiyah, Guillemin-Sternberg, and Heckman that collectively proved that the image
of the moment map is a union of convex polytopes [4, 23, 26]. In fact the points and 1-dimensional faces of
the moment map form precisely the moment graph that arises in GKM theory.

Another crucial step of the GKM proof is to construct a map from the equivariant cohomology H∗
T (X)

into a product of polynomial rings. It turns out that the equivariant cohomology of a point is simply
C[t1, . . . , tn] and in fact the natural inclusion ι : XT →֒ X of T -fixed points into X induces the desired map
on cohomology ι∗ : H∗

T (X) → C[t1, . . . , tn]
|V |. This map plays an especially important role in symplectic

geometry and topology, in the work of Kirwan [28], among others. Chang-Skjelbred analyzed the image of
this map in very general settings, where the image is determined by a complicated spectral sequence [15].
One of Goresky-Kottwitz-MacPherson’s deep contributions is to identify a package of GKM hypotheses for
which the general picture simplifies so dramatically.

At the same time, some work on equivariant cohomology leads to the classical spline perspective, especially
whenX is a toric variety. Each toric varietyX is associated to a polytope, making it more natural to consider
piecewise polynomials on the faces of the polytope. This is what Payne [32] and Bahri-Franz-Ray [5] do.

I have not found indication in the literature that any of these geometers or topologists were aware that
they had recreated the classical notion of splines. Schenck appears to be the first person to work in both
splines and equivariant cohomology [33].

Remark 1.7 (Singularities). For simplicity we assumed that X is a manifold. In fact GKM theory applies
to many singular varieties as well, including Schubert varieties (see Sections 2.2 and 2.3 below). Geometers
often find this surprising, but the GKM hypotheses reduce the calculation of equivariant cohomology to an
analysis of zero- and one-dimensional orbits, where geometric singularities don’t significantly arise.

Singularities in the sense of analytic splines correspond to faces like the subgraph shown in Figure 2.
They have no relationship to geometric singularities of the variety X. Singular faces appear frequently in
moment graphs; for instance Figure 2 also shows the moment graph of the Grassmannian G(2, 4). Section
2.2 describes the Grassmannian in more detail; the edge-labels of the moment graph of G(2, 4) can be found
in many other sources [29, 35].

The difference in perspective between students of analytic splines and what we will call geometric splines
affects the kinds of data we assume and the kinds of questions we ask about splines.
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Figure 2. The subgraph corresponding to a singular vertex and the moment graph for the
Grassmannian G(2, 4)

• Geometers typically consider the splines H∗
T (X,C) as modules over the polynomial ring C[t1, . . . , tn]

rather than vector spaces because the GKM construction does not naturally impose any degree
constraints on splines. In addition the GKM hypotheses guarantee that H∗

T (X,C) is a free module
over the polynomial ring C[t1, . . . , tn]. (In some contexts this free-ness is taken as the definition of
equivariant formality.)

• Geometers typically know the dimension of the splines H∗
T (X,C) as a module over the polynomial

ring for geometric reasons.
• Geometers, like analysts, want explicit formulas for bases for the space of splines. In many cases the
torus action can be used to construct geometric bases or to suggest preferred forms for bases. In
other cases a group action on the spline module can be used to construct representation-theoretic
bases. But these constructions guarantee existence of a basis or set of splines rather than concrete
descriptions that can be used in calculations. Section 2.3 says more about bases when X is a flag
variety and Section 3 discusses bases in general.

• Geometers care about the multiplicative structure of the ring of splines. In particular geometers
want explicit multiplication tables in terms of a basis for the splines. Section 2 describes some
context behind this problem in the case of ordinary and equivariant cohomology of specific families
of manifolds X .

• Geometers focus on S0
∞(GX) since these are the splines isomorphic to H∗

T (X ;C). Billera asked what
kind of geometric meaning the rings S0

d(GX) carry as d increases.

In the rest of this survey we give important geometric examples of splines and elaborate on these points.

2. Important examples for geometers/topologists

This section describes some of the most important examples for geometers and topologists. Some are
already used in analytic splines; projective space turns out to be essentially the Alfeld split. We present
others both to expand on the questions that concluded Section 1 and to suggest tools that may be useful
within analytic splines.

2.1. Projective spaces. We described projective space extensively in Section 1.1. The moment graph of
projective space is better-known within analytic splines as the Alfeld split [2] or sometimes the Clough-
Tocher split (but see the comment in Kolesnikov-Sorokina [30, Section 2]). We are particularly grateful to
Alexei Kolesnikov and Gwyneth Whieldon for pointing this out.

We describe the Alfeld split following Kolesnikov-Sorokina [30] and Schenck [34]. Let T = [v1, . . . , vn+1]
be an n-simplex in Rn. Given a central interior vertex v0 the Alfeld split is defined by taking the cone
over the boundary. Without loss of generality we can assume that v0 is the origin, each vi is the standard
basis vector ei, and vn+1 = −

∑n
i=1 ei. Then there are n+ 1 facets F1, F2, . . . , Fn+1 of the Alfeld split, each

containing all but one of the vertices v0, v1, . . . , vn+1. Specifically for each i = 1, . . . , n + 1 the ith facet is
the face that does not contain vi. The intersection of two facets Fi and Fj lies on the hyperplane defined by

Fi ∩ Fj =

{

xi − xj = 0 if 1 ≤ i < j ≤ n
xi = 0 if 1 ≤ i < n+ 1 and j = n+ 1
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Thus the dual graph of the Alfeld split is the complete graph on n + 1 vertices indexed without loss of
generality by {F1, F2, . . . , Fn+1} with edge Fi ↔ Fj labeled as above.

Proposition 2.1. The ring of C0 splines on the moment graph of projective space Pn is isomorphic to the
ring of splines on the Alfeld split ASn.

Proof. For each i = 1, . . . , n let αi = ti+1 − ti. Define a map

ϕ : R[α1, α2, . . . , αn] → R[x1, x2, . . . , xn]

on the generators α1, . . . , αn by

ϕ(αi) = xi − xi+1 if i ∈ {1, 2, . . . , n− 1}

and

ϕ(αn) = xn

The map ϕ extends to a ring homomorphism. It is surjective because for each i = 1, . . . , n− 1 we have

xi = ϕ(αi + αi+1 + · · ·+ αn)

This also shows that the map ϕ sends the moment graph of Pn to the dual graph of the Alfeld split, in the
sense that it sends each edge-label to the corresponding edge-label.

The map ϕ is injective because {x1−x2, x2−x3, . . . , xn−1−xn, xn} are algebraically independent. Indeed
a polynomial p(α1, . . . , αn) is in the kernel of ϕ only if ϕ(p) = 0. But ϕ(p) = p(x1 − x2, . . . , xn) is zero only
if p is identically zero.

In other words ϕ is an isomorphism of polynomial rings that sends the moment graph of Pn to that of
the dual graph to the Alfeld split. It follows from Billera’s result [7] that the ring of splines on the moment
graph of Pn is isomorphic to the ring of splines on the Alfeld split, as desired. �

2.2. Grassmannians. The Grassmannian is a natural generalization of projective space in which we con-
sider higher-dimensional subspaces of Cn than lines. More precisely the Grassmannian G(k, n) consists of
the set of k-dimensional vector subspaces of Cn. Note that G(1, n) is another way to write the projective
space Pn−1.

Grassmannians occur naturally in different geometric contexts. For instance the tangent bundle of a
smooth k-dimensional manifold M ⊆ Cn can be thought of as a map from M to the Grassmannian G(k, n).
Explicitly each point p ∈ M is mapped to the k-dimensional subspace obtained by translating the tangent
space to M at p to the origin.

The cohomology ring of the Grassmannian is particularly interesting. Just like we identified the one-
dimensional orbits of P2 by choosing which entries were nonzero, we can partition the Grassmannian into a
natural collection of subspaces by choosing which entries in the k-dimensional planes are pivots. The sets
of pivots are indexed by partitions of n and the collection of subspaces corresponding to the partition λ is
called a Schubert variety. The Schubert varieties induce a basis of Schubert classes σλ for the cohomology
ring H∗(G(k, n),C). Since they are a basis, we can write the products σλ · σµ again in terms of the basis of
Schubert classes:

σλ · σµ =
∑

ν

cνλ,µσν

The entries cνλ,µ in this multiplication table have remarkable properties.

• The entries cνλ,µ count the intersections of linear spaces in a vector space. The 19th-century math-
ematician Hermann Schubert, a pioneer of enumerative geometry, computed these intersections by
hand. His name is now given to Schubert calculus, which is more generally considered the study of
the cohomology ring of the Grassmannian and related spaces.

• The entries cνλ,µ also describe the ring of symmetric polynomials. A polynomial is a symmetric
polynomial if it is invariant under all permutations of the variables. One main direction of research
in algebraic combinatorics studies the ring of symmetric polynomials with respect to different bases,
including an important basis of Schur functions sλ. It turns out that writing a product of Schur
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functions in terms of Schur functions gives sλ · sµ =
∑

ν c
ν
λ,µsν for the very same cνλ,µ that appear in

the cohomology of the Grassmannian.
• The entries cνλ,µ also describe the representations of the group GLn(C) of n× n invertible matrices.

The irreducible representations Vλ of GLn(C) are indexed by partitions, just like Schubert classes
and Schur functions. The tensor product Vλ ⊗ Vµ of the vector space Vλ and Vµ can be decomposed
into irreducible representations Vλ ⊗ Vµ =

⊕

ν c
ν
λ,µVν . The tensor product multiplicities also turn

out to be precisely the coefficients in the multiplication table of H∗(G(k, n),C).

The structure constants cνλ,µ for H∗(G(k, n),C) are well-understood. The classical combinatorial formula
for cνλ,µ in terms of the underlying partitions λ, µ, and ν was discovered by Littlewood-Richardson. More
recently Knutson-Tao discovered a combinatorial formula for the equivariant structure constants cνλ,µ for

H∗
T (G(k, n),C) using splines (in the form of GKM theory) [29]. Their proof has three steps: 1) use splines

to determine the base case of a recurrence, 2) prove that any set of numbers that satisfy the base recurrence
are the same; and then 3) miraculously identify a second formula that satisfies the same recurrence and thus
is the same as cνλ,µ. A particularly interesting element of the proof is that while splines play a key role, it is
in some sense an indirect role. Geometrically splines have proven very difficult to calculate.

2.3. Flag variety. Flag varieties form another important family of spaces that satisfy the GKM hypotheses.
Consider the general linear group GLn(C), namely the collection of n×n invertible matrices. The subgroup
of upper-triangular invertible matrices is called the Borel subgroup and typically denoted B. The flag variety
is the quotient GLn(C)/B.

On the one hand a flag is a coset gB. On the other hand a flag V• can be realized geometrically as a
nested collection of subspaces

V1 ( V2 ( V3 ( · · · ( Vn−1 ( Cn

To see that these two descriptions are equivalent, write the columns of g as vectors v1, v2, . . . , vn where
〈v1, . . . , vi〉 = Vi. The different matrix representatives for a given flag V• are exactly the matrices in the
coset gB. Indeed the matrices in gB contain all possible nonzero vectors in V1 as their first column; their
second column contains all vectors in V2 that are linearly independent from V1, and so on.

The moment graph of the flag variety is defined as follows:

• The vertices are the permutations Sn.
• There is an edge between each pair of permutations w ↔ (ij)w that are related by multiplication
by a transposition. (Here (ij) indicates the permutation that exchanges i and j and leaves all other
numbers fixed.)

• The label on the edge w ↔ (ij)w is tj − ti. (Typically we assume j > i.)

For instance Figure 3 shows the moment graph of the flag variety associated to GL3(C). The moment graph

t

t t

t t

t

❍❍❍ ❍❍❍❍❍❍ ❍❍❍

✟✟✟✟✟✟✟✟✟✟✟✟Edge labels

Negative slope: t2 − t1

Positive slope: t3 − t2

Vertical: t3 − t1

Permutations at vertices:

Top and bottom: (13) and e

Leftmost: (12)(23) and (12)

Rightmost: (23)(12) and (23)

Figure 3. The moment graph of GL3(C)/B

of the flag variety is also important in algebraic combinatorics, where it is called the Bruhat graph.
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There are many symmetries in the moment graph of the flag variety and in the equivariant cohomology
of the flag variety. For instance, the permutation group Sn acts on the vertices Sn either by left- or right-
multiplication. At the same time, the group Sn also acts by permuting the variables t1, t2, . . . , tn. Some of
these actions extend to Sn actions on the splines, too, as we discuss in Section 3.

The careful reader may also notice certain similarities between the moment graph of P2 and that of
GL3(C)/B. In fact the moment graph of GL3(C)/B is a twisted product of the graph consisting of a single
edge together with the moment graph of P2. Figure 4 shows how the single edge (drawn in boldface) is
transported around the cycle with a Möbius-like twist on the back edges (drawn with dotted lines). This is
part of a general phenomenon studied extensively by Guillemin-Sabatini-Zara [21, 22]. Each Grassmannian
G(k, n) can be identified with the quotient GLn(C)/Pk of the flag variety by the larger group Pk ⊃ B of
n × n invertible matrices whose bottom-left n − k × n − k block is zero. This gives rise to a fiber bundle
Pk/B →֒ GLn(C)/B →→ G(k, n) whose equivariant cohomology satisfies the module isomorphism

H∗
T (P/B)⊗H∗

T (G(k, n)) ∼= H∗
T (GLn(C)/B)

This result is often called the equivariant Leray-Hirsch isomorphism; it can be realized as a straightforward
product of splines in two different submodules of H∗

T (GLn(C)/B) [18].
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Figure 4. The moment graph of GL3(C)/B drawn as a fiber bundle over P2

Just like projective space and Grassmannians, the flag variety has a natural collection of subvarieties
called Schubert varieties that induce a basis for (ordinary and equivariant) cohomology. There is also a
remarkable formula for the polynomial associated to the restriction of the equivariant Schubert class σv

at the fixed point w. This formula is often referred to as Billey’s formula for σv
w and was discovered by

Andersen-Jantzen-Soergel and Billey independently [3, 10]. We give the formula in the case of GLn(C)/B
though it holds in more generality, including projective spaces and Grassmannians, so long as appropriate
permutations are chosen to represent the Schubert classes in H∗

T (G(k, n),C).

Theorem 2.2 (Billey’s formula). Write w as a product of simple reflections (i, i + 1) in as few reflections
as possible. Denote this factorization of w by (i1, i1 + 1)(i2, i2 + 1) · · · (ik, ik + 1). Let R be the collection of
subsets {j1 < j2 < · · · < jℓ} of minimum cardinality for which v = (ij1 , ij1 + 1)(ij2 , ij2 + 1) · · · (ijk , ijk + 1).
Then

σv
w =

∑

{j1<j2<···<jℓ}∈R

ℓ
∏

r=1

(i1, i1 + 1)(i2, i2 + 1)(i3, i3 + 1) · · · (ijr−1, ijr−1 + 1)(tjr − tjr+1)

where permutations act on variables by exchanging the indices.

For instance w = (13) could be written either (12)(23)(12) or (23)(12)(23). If we pick w = (12)(23)(12)
and v = (23) then the set R contains only {2} and

σv
w = (12)(t3 − t2) = t3 − t1

If instead we take w = (23)(12)(23) and v = (23) then the set R contains {1} and {3} and

σv
w = (t3 − t2) + (23)(12)(t3 − t2) = t3 − t2 + t2 − t1 = t3 − t1

This example demonstrates that it is nontrivial even to see that the formula is well-defined. Figure 5 gives
all of the equivariant Schubert classes σv in H∗

T (GL3(C)/B,C) listed in order

v = e, (12), (23), (13), (12)(23), (23)(12)



10 JULIANNA TYMOCZKO

Each spline σv in Figure 5 is denoted by a copy of the graph with vertex w labeled by the polynomial σv
w .

The top vertex of the second spline is labeled with the polynomial t3 − t1 that we just computed.
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Figure 5. A module basis for H∗
T (GL3(C)/B,C) obtained using Billey’s formula

We close this section with an open question. Recall that there is a closed formula for coefficients in the
multiplication table for the cohomology H∗(G(k, n),C) of each Grassmannian. Perhaps surprisingly there is
no good formula for the analogue in the case of the flag variety, either in ordinary or equivariant cohomology.
What does “good” mean? It means an explicit, positive formula—essentially a formula that counts some
quantity rather than restating Billey’s formula with inclusion/exclusion. This is a problem that has attracted
enormous attention within Schubert calculus with only limited success. We suspect that the problem needs
radically new tools or perspective.

3. Geometric and topological tools for computing with splines

In this section we describe three very natural tools for geometers and topologists working on splines. We
focus on how these tools are used to identify bases for the module of splines.

It bears repeating that one significant difference from the analytic approach to splines is that geometers
typically think about splines as modules over a polynomial ring rather than over the base field C or R.
Geometers also tend to use bases of splines whose polynomials pu are either zero or homogeneous of a fixed
degree depending on p. This means that each module basis spline corresponds to a family of vector-space
basis splines. For instance in S1

2(∆) the constant module basis element 1 gives rise to the six vector-space
basis elements {1, x1, y1, x21, xy1, y21} while a degree-two basis element p gives rise only to itself as a
vector-space basis element. (If there were degree-one basis elements p they would generally correspond to
the three vector-space basis elements {p, xp, yp}.) In some settings one needs to worry about whether the
module is actually free over the polynomial ring, which would imply that minimal generating sets of splines
are actually bases. Spaces that satisfy the GKM hypotheses are always free modules so this is not a concern
for GKM theory.

We now discuss some geometric strategies to identify module generators for splines.

Recall in what follows that geometers traditionally study S0
∞(GX) since those are the splines isomorphic

to equivariant cohomology (though Section 4 describes interpretations of the ring Sr
d(GX)).

3.1. Toric actions and flow-up bases. Given a torus acting on a space in X , one of the most natural
things for geometers and topologists to do is to push subspaces around in X using the torus. This technique
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goes by different names in different fields (e.g. Morse theory for analysts/topologists, Bialynicki-Birula
decompositions for algebraists/geometers). Regardless of the name, the techniques have consequences for
splines that can be described precisely without reference to the underlying geometry.

These techniques often use a one-dimensional torus chosen “suitably generically” from a possibly larger
torus action on X . From a combinatorial perspective, choosing a one-dimensional torus corresponds to
directing the edges of the graph GX . The “suitably generic” condition helps ensure that the directed graph
is a poset, namely GX has no directed cycles.

These techniques give an analogue for splines of upper-triangularity, though the definition we give here is
independent of geometry.

Definition 3.1. Suppose that G is a directed, edge-labeled graph. A spline p on G is poset upper-triangular if
there is a vertex v in the graph for which pv 6= 0 and pu = 0 for all vertices u in the graph without a directed
path to v. (The second condition can be written u 6> v with the partial order > defined by the direction on
the graph.) A basis B for the set of splines on G is a flow-up basis if its elements can be indexed with distinct
vertices so that the basis elements are all poset upper-triangular.

Intuitively each element of a flow-up basis collects the points that “flow up” from a specific vertex according
to the action of the torus.

For some graphs, like cycles, poset upper-triangularity is equivalent to ordinary upper-triangularity. Figure
6 shows a flow-up basis for the equivariant cohomology of P2. Each spline is denoted by a copy of the graph
with vertices labeled by polynomials. For the reader’s convenience, we left the edge-labels on the graph;
they are indicated in grey. Flow-up bases for more general graphs do not correspond as naturally to upper-
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Figure 6. Flow-up basis for H∗
T (P

2,C)

triangular bases. For instance Figure 5 shows a flow-up basis for H∗
T (GL3(C)/B,C). We can impose a total

order on the vertices to make this basis upper-triangular, but that requires an arbitrary choice; poset upper-
triangularity is the more natural condition. (For flag varieties, Grassmannians, and more general partial flag
varieties, the flow-up basis is precisely the Schubert basis.)

Geometers generally require a stronger condition on flow-up classes than in Definition 3.1: that the flow-
up class pv restricted to the fixed point v is the product of the labels on the edges directed out of v. Our
definition applies in greater generality, discussed at greater length in Section 4.

Many natural spaces X satisfy an additional geometric condition called Palais-Smale, which ensures that
if a flow-up basis exists then it is unique. Combinatorially the Palais-Smale condition says that the graph G
satisfies the property that for each directed edge u 7→ v the number of edges directed out of u is greater than
the number of edges directed out of v. Informally the number of out-edges increases along each path up in
the graph. While the geometric Palais-Smale condition is stronger, the combinatorial Palais-Smale condition
suffices to guarantee uniqueness of flow-up bases. At the same time many natural manifolds are not Palais-
Smale. For instance Figure 7 shows a family of manifolds called regular semisimple Hessenberg varieties
parametrized by certain nondecreasing vectors recorded below each moment graph. The third example from
the left is not Palais-Smale. Explicitly the vertex associated to the permutation (12) has both the flow-up
class in Figure 5 and the flow-up class whose only nonzero labels are at vertices (12) and (12)(23), labeled
by the polynomials t2 − t1 and t2 − t3 respectively.
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Figure 7. Moment graphs for regular semisimple Hessenberg varieties (edges and vertices
labeled as in Figure 3)

3.2. Geometric representations and symmetrized bases. A second geometric tool for working with
splines comes out of geometric representation theory. The fundamental idea is that graph automorphisms
(namely bijections V (G) → V (G) that preserve the adjacencies in G) sometimes preserve the spline relations
as well. In this section we sketch the general philosophy using flag varieties; for a deeper discussion and
more examples, see e.g. [36].

Recall that the vertices in the moment graph of the flag variety are associated with the elements of the
permutation group Sn. Each element v in the group Sn acts on Sn in two different ways: either by left
multiplication v · w 7→ vw or by right multiplication v ∗ w 7→ wv−1. Both of these actions give rise to an
action on splines as follows.

Right-multiplication on the vertices induces an action on the splines in the equivariant cohomology ring
because the labels on the edges come from left-multiplication by transpositions. In other words the moment
graph for the flag variety contains an edge (ij)w ↔ w if and only if it contains an edge (ij)wv−1 ↔ wv−1 for
each v ∈ Sn. Figure 8 shows what right-multiplication by the simple reflection (23) does to a flow-up class.
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Figure 8. Right-action of S3 on splines in H∗
T (GL3(C)/B)

Left-multiplication of the vertex labels by (23) corresponds to exchanging labels on either side of the
edges of positive slope. That does not preserve splines: for instance it would send the flow-up class of Figure
8 to a class whose central vertical edge had t3 − t2 on the bottom and t3 − t1 on the top. However if we
also permute the variables by (23) the outcome is again a spline, as shown in Figure 9. (This action on
polynomials appeared in Billey’s formula in Section 2.3 as well.)

These geometric representations lend themselves to two different kinds of tools. The first is a collection
of degree-lowering operators on the collection of splines that behaves particularly well with respect to flow-
up bases. Bernstein-Gelfand-Gelfand and Demazure originally defined divided difference operators for flag
varieties [6, 16]. The essential formula for a divided difference operator ∂i is:

∂ip =
(i, i+ 1) · p− p

ti+1 − ti

As written the formula could apply to polynomials p with (i, i+1) exchanging the ith and i+ 1th variables,
or it could apply to splines p with the left action of Sn defined above. A similar formula can also be written
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Figure 9. Left-action of S3 on splines in H∗
T (GL3(C)/B)

for the right action but instead of dividing by the constant ti+1 − ti we divide by the label on the edge
v(i, i + 1) ↔ v incident to each vertex v. One key property divided difference operators satisfy for the
flow-up (equivalently Schubert) basis {σv : v ∈ Sn} of the flag variety is

∂iσv =

{

σ(i,i+1)v if (i, i+ 1)v is below v in the moment graph
0 otherwise

Divided difference operators are an important tool in algebraic combinatorics; for instance, part of the proof
of Billey’s formula is an elementary application of divided difference operators [10].

The second tool has been much less studied. Representations can also be used to create symmetrized
bases for splines or subsets of splines. In this case the group action can be used to transport a particular
polynomial around the vertices, creating splines that are fixed by the overall Sn action. Figure 10 shows
a symmetrized basis for splines on the flag variety GL3(C)/B. In each case the polynomial at the bottom
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Figure 10. Symmetrized basis for H∗
T (GL3(C)/B

vertex was transported by the group action around all of the vertices. This Sn action actually descends to
Grassmannians as well. Figure 11 shows the symmetrized basis for splines on P2 as a comparison. Guillemin-
Sabatini-Zara constructed examples of symmetrized bases as a step towards identifying bases for splines that
arise as fiber bundles [21, 22].

Symmetrized bases are not nearly as common as flow-up bases in the literature. In one sense the con-
struction is more algebraic than geometric since it relies on a representation on cohomology. Moreover this
symmetrization only describes the whole module if the representation on splines is trivial, which is not usu-
ally the case. For instance the left action of Sn restricts to the splines on the Hessenberg varieties shown
in Figure 7. In general the number of symmetrized basis elements decreases as the parameter h changes, as
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Figure 11. Symmetrized basis for H∗
T (P

2,C)

Hessenberg function Number of symmetrized basis classes
h=(3,3,3) 6
h=(2,3,3) 4
h=(2,2,3) 2
h=(1,2,3) 1

Figure 12. Symmetrized basis classes for splines corresponding to regular semisimple Hes-
senberg varieties

shown in Table 12. Currently the only known formula computes the number of symmetrized class rather than
the classes themselves. It is an open question to find an explicit formula for a maximal set of basis classes
for the equivariant cohomology of regular semisimple Hessenberg varieties that is also symmetric under the
Sn-action. (These symmetrized basis classes generate a subring that is isomorphic to the cohomology of a
different family of Hessenberg varieties called regular nilpotent Hessenberg varieties [1].)

3.3. Subvarieties. Containment is another natural geometric relationship to consider, though one with
more limited uses. This has been most extensively considered for a GKM space Y which is a subvariety of
another GKM space X , both with respect to the same torus action. Schubert varieties are one example, as
are other examples that come from flowing subspaces as far as possible in one particular direction. In these
cases information about bases and geometric representations for X can be applied directly to splines on Y .

In general some of the most interesting results about subvarieties come from leveraging information about
bases for splines of the ambient space. For instance both the Grassmannian G/P and the quotient P/B can
be viewed as submodules of the splines H∗

T (GLn(C)/B) by restricting the Schubert classes to specific fixed
points in the moment graph. Together with Billey’s formula, this permits calculations that aren’t as easy
when G/P or P/B are viewed just in their own right [18].

The technique of restricting splines to the fixed points lying inside certain subvarieties has been used even
when the subvariety Y is not a GKM space with respect to the same torus action [25]. This technique—
called poset pinball—can be used to construct the C∗-equivariant cohomology of Y . In some sense this is
a geometry/topology problem more than a problem about splines: it restricts splines to various subsets of
vertices, but often the cohomology H∗

C∗(Y ) is not a spline ring itself.

4. Algebraic generalization of splines

We conclude with an algebraic generalization of splines that gives a more abstract framework for some of
the problems that we have considered here.

To define this more general version of splines, fix a graph G = (V,E). For simplicity we assume that G
has a finite vertex set, no multiedges (so each pair of vertices has at most one edge between them), and no
loops (so there are no edges from a vertex to itself). Let R be any commutative ring with identity. A map
α : E → { ideals in R} is called an edge-labeling of the graph G.

The ring of splines on the edge-labeled graph (G,α) is defined to be

RG,α = {p ∈ R|V | : for each edge uv the difference pu − pv is in α(uv)}
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Different choices of parameters in RG,α naturally recover the parameters r and d in the classical ring of
splines Sr

d(G). The parameter r arises from a map α that sends each edge uv to an ideal 〈ℓr+1
uv 〉 where ℓuv

is a homogenous linear form determined by the slope of the edge uv in the standard way (see also Billera’s
dual graph construction [7]). The parameter d arises by choosing the ring

R = R[x1, x2, . . . , xn]/〈 monomials of degree at least d+ 1〉

Intuitively (and somewhat inaccurately) this means: compute splines over the ring R[x1, x2, . . . , xn] and
“throw away” everything whose degree is too big. One subtlety is that the division algorithm does not
hold for multivariable polynomial rings; the field of Gröbner bases developed in order to deal with the
complications that arise.

Geometers have not studied the rings corresponding to Sr
d(G) when d is finite or r is nonzero, though it

seems likely that S0
d(G) carries useful geometric information (as Billera noted). The geometric implications

of varying r are more mysterious, and interesting.

A few words on bases in this context are useful. Again we consider module bases rather than vector space
bases. Indeed splines over an arbitrary ring R do not necessarily have vector-space bases (for instance when
R is the integers, described more below). Of more concern, the module of splines may not even be free, both
in interesting [17] and uninteresting (e.g. when R has zero divisors) ways.

When we first considered flow-up bases in Section 3.1, we said that geometers typically require the flow-up
class pv restricted to the vertex v to be the product of labels on edges directed out of v. There are examples
of flow-up bases for generalized splines for which this condition does not hold (see [24], who give an example
over the integers). If X is a GKM space then Definition 3.1 (and the GKM conditions) implies the product
condition on pvv.

In fact one could generalize splines even more, along the lines of Braden-MacPherson’s construction of
intersection homology [14]. Their starting point is a graph with a module Mv at each vertex. At each edge
there is a module Muv and maps ϕu : Mu → Muv and ϕv : Mu → Muv. A spline in this context is a
collection p ∈

∏

v Mv so that for each edge uv

ϕu(pu) = ϕv(pv)

When each Mv is R, each Muv is R/α(uv), and each map ϕu : Mu → Muv is the standard quotient map, we
recover the definition above.

4.1. Splines over the integers and over Z/mZ. Splines over the integers have interesting connections
to number theory. In fact the Chinese Remainder theorem can be restated as a question about splines on
the path with three vertices whose edge labels are the ideals mZ and m′Z shown in Figure 13. We can ask
whether given integers a and a′ associated to the vertices in Figure 13 can be extended to a spline on the
entire graph. In other words is there an integer x associated to the middle vertex so that

t t t
m m′

a a′x

Figure 13. Splines and the Chinese Remainder theorem

{

x ≡ a mod m and
x ≡ a′ mod m′

This is precisely what the Chinese Remainder theorem determines.

As in the Chinese Remainder theorem, splines over Z are closely related to splines over Z/mZ. We
summarize what is currently known about splines over Z and Z/mZ.

• Splines over Z always form a free module of rank |V (G)| [19]. (In other words they have a basis
with the same number of elements as vertices in G.) By contrast splines over Z/mZ can have any
rank between 1 and |V (G)| depending on the graph [13]. Splines over Z/mZ are not generally free
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because they are finite Z-modules; like other finite Z-modules, they have a natural analogue of a
basis.

• Given an edge-labeled graph (G,α), Bowden-Tymoczko identified the ring of splines over Z/mZ

using the structure theorem for finite abelian groups [13]. Bowden-Philbin-Swift-Tammaro chose
a particular m and showed explicitly that the minimal representatives of the basis for splines over
Z/mZ also forms a basis for splines on (G,α) over Z [12].

• Explicit bases for splines are known for several families of graphs, including trees (using arbitrary
rings) [19] and cycles (using Z) [24]. Handschy-Melnick-Reinders gave an explicit formula for the
smallest value of each element of their flow-up basis [24]. Bowden-Hagen-King-Reinders gave an
explicit formula for each entry of each basis element of splines on cycles over Z under the hypothesis
that one pair of adjacent edge-labels is relatively prime [11]. (The general GKM package implies
each pair of adjacent edge-labels is relatively prime.)

• With a basis, we can try to explicitly describe multiplication tables as in Section 2.2. Even in the
case of integers and integers mod m this can be a challenge. Bowden-Hagen-King-Reinders used
their basis for splines on some cycles to write an explicit multiplication table [11]. Bowden-Philbin-
Swift-Tammaro gave an explicit formula for the multiplication table of splines mod m over arbitrary
graphs, using a more implicitly defined basis [12].

Much of this work extends to PIDs in general, including C[x] and R[x]. Some of it even extends to Z[x] in
the geometric context even though Z[x] is a quintessential example of a ring that is not a PID. Indeed if X
is a GKM space for which GKM theory can be used with integer coefficients (like the flag variety), then we
can restrict the torus T to various one-dimensional subgroups and get a map from splines over Z[t1, . . . , tn]
to Z[x]. Judicious choice of the one-dimensional subgroup together with the GKM conditions imply that
each edge-label is an ideal of the form nxZ for some integer n. The ring of splines in that case is very closely
related to the ring of splines over integers obtained by evaluating at x = 1 as in [19, Theorem 2.12].

4.2. Graph operations. One of the most interesting aspects of generalized splines is that natural graph
operations also give useful information. In this section we will describe ways to remove parts of a graph.
This often changes the underlying graph in ways that violate conditions from classical splines or geometry.
In a simple case of our first example, removing a vertex together with its incident edges leaves a graph that
no longer satisfies the regularity conditions that moment graphs of manifolds satisfy. In the second example,
removing an edge typically results in a graph that is not dual to a triangulation.

Let us first consider the effects on RG,α of removing a subgraph of G. Suppose G′ is a subgraph of G.
Let MG/G′ be the collection of splines that are zero on all of the vertices of G′, namely

MG/G′ = {p ∈ RG : p(u) = 0 for all u ∈ V (G) − V (G′)}

Define the restriction map φ : RG → RG′ that forgets all vertices in G but not G′, namely

(pu)u∈V (G) 7→ (pu)u∈V (G′)

Then MG/G′ is the kernel of φ. In other words

MG/G′ →֒ RG
φ
→ RG′

is exact. Moreover the first isomorphism theorem tells us

Imφ ∼= RG′/MG′/G

Colloquially Im φ tells us which splines can be extend from G′ to G. When G′ consists of a single vertex,
this corresponds to adding a single triangle to a triangulation.

We can also remove edges from the graph G, effectively removing the conditions between two vertices. If
G′ is a graph obtained from G by erasing some edges then we get an inclusion RG →֒ RG′ . For instance if
G is planar graph, we can choose a vertex as the root and take a spanning subtree T ⊆ G for which the
distance between two vertices in T is the same as in G. The injection R(G) →֒ R(T ) describes R(G) as a
submodule of a free module whose generators are well-understood [19, Theorem 4.1]. Refining the way edges
are added to T gives a sequence of inclusions

R(G) →֒ R(Gi) →֒ · · · →֒ R(G1) →֒ R(T )
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This can constrain the codimension of each inclusion in interesting ways. We know of no good analogue
to this operation for splines over triangulations: removing an edge appears to “cut” the plane so that two
triangles are no longer adjacent, without moving or removing those triangles.

We conclude with another example, an algorithm that uses graph operations like contractions and deletions
to produce explicit bases for splines over Z. The algorithm has the following steps:

(1) If G is a tree then we have an explicit formula for a flow-up basis for its splines [19, Theorem 4.1].
(2) Otherwise suppose v is a vertex in G with neighbors N(v). Construct the (multi)graph G′

v by erasing
v and any incident edges from G and then add all possible edges uu′ for u 6= u′ with u, u′ ∈ N(v).
The edge uu′ is labeled with the ideal αuv ⊕ αu′v.

(3) If G′
v has any multiedges replace it with the graph Gv constructed as follows. If the pair of vertices

uu′ have edges labeled I1, I2, . . . , Ik then replace those edges with a single edge labeled I1∩I2∩· · · Ik.
(4) Return to Step 1 with the graph Gv.

The algorithm eventually terminates since the graph with a single vertex is a tree. The core of the proof of the
algorithm is that the operations of ⊕ and ∩ distribute so that RG surjects onto RGv

. In fact this surjection
holds for all PIDs (including C[x] and R[x]) and the algorithm holds for all PIDs. Figure 14 shows the graph
reductions described by this algorithm on a complete graph using the integers. In this case 〈m〉⊕〈m′〉 is just
gcd(m,m′) while 〈m〉 ∩ 〈m′〉 = lcm(m,m′). The final graph is an edge so its flow-up basis is {[1, 1], [0, 24]}.
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Figure 14. Computing a basis for splines over Z

The basis for the triangle surjects onto this basis, with flow-up basis itself of {[1, 1, 1], [0, 24, 24], [0, 0, 12]}.
(The last entry in the second basis vector requires a small calculation.) The basis for the square surjects
onto this basis, with flow-up basis itself of {[1, 1, 1, 1], [0, 24, 24, 24], [0, 0, 12, 42], [0, 0, 0, 42]}.
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