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8 Extremal Configurations of Hinge Structures

Ciprian Borcea and Ileana Streinu

Abstract

We study body-and-hinge and panel-and-hinge chains in R
d, with two

marked points: one on the first body, the other on the last. For a general

chain, the squared distance between the marked points gives a Morse-Bott

function on a torus configuration space. Maximal configurations, when the

distance between the two marked points reaches a global maximum, have

particularly simple geometrical characterizations. The three-dimensional

case is relevant for applications to robotics and molecular structures.

Keywords: extremal configuration, Morse-Bott function, Hessian matrix, hinge
structure, maximum reach, revolute-jointed manipulator.

AMS Subject Classification: 53A17

Introduction

This work is an extension of our study of singularities of hinge structures [BS].
We refer to that paper for basic notions and background.

The hinge structures considered here will be body-and-hinge or panel-and-hinge
chains in Rd which have a point marked on the first body and a point marked
on the last body. In dimension three, these hinge structures would model serial
manipulators with revolute joints with a marked base-point and the end-effector
as the other marked point1. Likewise, the panel-and-hinge case may serve as
model for “backbone” protein chains [BT, CP, BS]. Extremal configurations
will be those where the squared distance function between the two marked
points (origin and terminus, or “head” and “tail”) reaches a local maximum or
minimum.

1The geometrical models have no rotational limitations around the joints and no self-

collision prohibitions.
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Robotics is obviously concerned with extremal reaches of manipulators and the
closely related problem of identifying the total workspace of a robot. A neces-
sary condition for extremal configurations was recognized and proven in several
papers [D, KW, SD, S]. In the words of [S], where the base-point may be chosen
arbitrarily, and the end-point is called “hand”, this necessary condition says:
“the line of sight from that point to the hand must intersect all turning axes”2.
However, all critical points with non-zero value for the squared distance function
satisfy the condition, and they grow exponentially with the number of hinges.

In this paper, we refine the study of extremal configurations and obtain, in
particular, a very simple necessary and sufficient characterization of the global
maximum. It may be observed here that the approach used to identify the global
maximum configuration (which is unique for generic body-and-hinge chains)
cannot be fully adapted for the global minimum, although the panel-and-hinge
case offers a fair degree of similarity (Theorems 10 and 11). The distinction,
we suggest, stems from the possibility to reinterpret the global maximum as a
global minimum of a related problem. Once recognized, the criterion for the
global maximum can be proven with completely elementary means.

Global Maximum Theorem: A body-and-hinge chain is in a global maxi-
mum configuration if and only if the segment from the origin to the end-point
intersects all hinges in their natural order.

The panel-and-hinge case has sufficient specificity to warrant separate treat-
ment, most particularly in dimension three. Local extrema must be global
extrema, but are not unique if not flat.

In the final section we discuss some variations.

1 A Morse-Bott function for chains with two
marked points

In this section we consider body-and-hinge chains with (n + 1) bodies and two
marked points, one on the first and the other on the last body. The ambient
dimension will be d, and we identify the first body with the fixed reference
coordinate system Rd ≡ B1, with the marked point at the origin. The point on
the last body will be the end-point.

2This incidence of the origin-to-terminus line with the hinges is understood projectively,

that is, includes the possibility of parallelism.
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The composition of the end-point map e : (S1)n → Rd with the squared norm
function Rd → R gives the squared distance function of the end-point to the
origin:

F : (S1)n → R, F (θ) =< e(θ), e(θ) > (1)

We’ll use Tn = (S1)n as another notation for the n-torus parametrizing the
configuration space of our body-and-hinge chain.

The critical points of F are described by:

Proposition 1. Let n ≥ d. If zero is a value of F , then all points in X0 =
F−1(0) ⊂ Tn are critical points of F . The critical points with non-zero critical
values are those configurations which have all hinges (projectively) incident with
the line connecting the origin to the end-point.

In the generic case, F : Tn = (S1)n → R is a Morse-Bott function, which has
only isolated critical points for non-zero critical values, while the fiber over zero
X0 ⊂ Tn, when non-empty, will be smooth, of dimension n − d.

Proof: The squared norm on Rd has a critical point at the origin, hence all
configurations with the two marked points coinciding (i.e. figuratively, when
“the head bites the tail”) will be critical for F .

For non-zero critical values, the argument is similar to the one used in [BS] :
at a critical configuration, rotating the part of the chain from hinge Ai on, as a
rigid piece, must preserve, infinitesimally, the (squared) distance “head-to-tail”,
that is: must produce a velocity vector for the end-point orthogonal to the line
between the marked points. That requires the (projective) incidence of hinge
and line.

In the generic case, the origin will be a regular value of the end-point map, and,
when zero is a value of F , it will give a smooth (not necessarily connected),
codimension d fiber X0 = F−1(0) ⊂ Tn. The fact that the remaining critical
points are isolated will follow from the examination of the corresponding Hes-
sian. The Bott non-degeneracy condition [G] along (the connected components
of) X0 will be verified at that stage as well.

1.1 Set-up for computing the Hessian matrix

In a given configuration, hinge number i will be determined by the vector ti
which is the perpendicular projection of the origin on the corresponding hinge,
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plus the normal direction to the hyperplane formed by the hinge and the origin.
One may keep track of global orientations, but for our computations, a local
choice of unit normal νi will suffice. Thus (ti, νi) = (ti(θ), νi(θ)) ‘encodes’ the
ith hinge.

At any critical point, we may assume the θ ∈ (S1)n labelling of the configuration
space introduced by the following rule: the critical point is θ = 0, and the
position for arbitrary θ = (θ1, ..., θn) is obtained by rotating the last body
around the last hinge with angle θn, then rotating the last two bodies (as a
rigid piece) around the last but one hinge with angle θn−1, and so on until, at
last, the whole (rigid) piece thus formed with all the bodies from the second
to the last is rotated around the first hinge with angle θ1. All rotations, for
i = n, ..., 1, are using the sense dictated by a fixed orientation, say {νi, ti} in
the vector plane [νi, ti] they span.

Let Ri(ω) stand for the linear operator in Rd which gives the rotation with
angle ω around [νi, ti]

⊥, with the orientation fixed as above. Then, ∂Ri

∂ω
(ω) is a

skew-symmetric operator vanishing on [νi, ti]
⊥, and we put ∂Ri

∂ω
(0) = Si.

With a second derivation ∂2Ri

∂ω2 (ω) = −PiRi(ω) with Pi denoting the orthogonal

projection on the 2-subspace [νi, ti]. Thus: ∂2Ri

∂ω2 (0) = −Pi

We let x ∈ Rd denote the position of the end-point for the critical configuration
under investigation. With the parametrization and notation just described, and
the abbreviation Ri(θi) = Ri, the end-point function is:

e(θ) = R1R2...Rnx+R1...Rn−2(I −Rn)tn + ...+R1(I −R2)t2 +(I −R1)t1 (2)

This gives:

e(0) = x,
∂e

∂θi

(0) = Si(x − ti)

∂2e

∂θ2
i

(0) = Pi(ti − x),
∂2e

∂θi∂θj

(0) = SjSi(x − ti), j < i

Considering that Siti = −||ti||νi, the resulting entries for the Hessian matrix
are:

1

2

∂2F

∂θi∂θj

(0) =< Si(x − ti), Sj(x − tj) > + < SjSi(x − ti), x >=

4



=< Si(x − ti), Sj(x − tj) > − < Si(x − ti), Sjx >=< Si(ti − x), Sjtj >=

=< Si(1 −
< x, ti >

< ti, ti >
)ti, Sjtj >= (1 −

< x, ti >

< ti, ti >
) < Siti, Sjtj >=

= (1 −
< x, ti >

< ti, ti >
)||ti|| · ||tj || < νi, νj >

for j ≤ i.

We retain the result of this computation as:

Proposition 2. With adequate parametrization, the symmetric n×n Hesssian
matrix for the squared end-point distance function F at a critical configuration
θ = 0, with end-point at e(0) = x, has entries:

1

2

∂2F

∂θi∂θj

(0) = (1 −
< x, ti >

< ti, ti >
)||ti|| · ||tj || < νi, νj >, j ≤ i (3)

and, after the change of basis ei 7→
1

||ti||
ei, corresponds with the quadratic form

given by:

hij = hji = (1 −
< x, ti >

< ti, ti >
) < νi, νj >, j ≤ i (4)

For a non-zero critical value, the coefficients αi = <x,ti>
<ti,ti>

are obtained geometri-
cally from the intersections of the line through the origin and the end-point x with
the hinges, since these intersections are precisely the points 1

αi

x, i = 1, ..., n.

When F takes the value zero, the Hessian at a critical point in X0 = F−1(0)
is equivalent to the Gram matrix hij =< νi, νj > of the normals, which is
semi-positive definite and has, in the generic case, rank d. Thus, the null-space
corresponds to the tangent space of X0 at the critical point under consideration.
This is the Bott non-degeneracy property required along the critical manifold
X0.
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1.2 An upper-bound for the number of isolated critical
points

An upper-bound for the number of isolated critical points can be obtained from
the following complexification: Tn = (S1)n is complexified to (P1(C))n by con-
sidering each circle S1 as the real locus of the corresponding complex conic:

P1(C) ≈ {x ∈ P2(C) : x2
1 + x2

2 = x2
0}

x1

x0
= cos θi,

x2

x0
= sin θi

With some choice of a reference simplex in each hinge Ai(θ), say ai
1(θ), ..., a

i
d−1(θ),

the condition that the ‘head-to-tail’ line meets this hinge becomes

det[ai
1(θ)...a

i
d−1(θ)e(θ)] = 0

This defines in (P1)
n a hypersurface of multi-degree 2(d, ..., d, 1, ...1) , with po-

sitions d up to the ith coordinate.

The intersection of these n hypersurfaces yields, in the complex count, the
number:

2n

∫
(P1)n

(h1+...+hn)(dh1+h2+...hn)...(dh1+...+dhn−1+hn) = 2n

n−1∑
k=0

A(n, k)dk

where hi stands for the class of a point in the ith factor P1, and A(n, k) denote
Eulerian numbers. Thus, we have:

Proposition 3. The number of isolated critical points for F : Tn → R is
bounded by

2n

n−1∑
k=0

A(n, k)dk (5)
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1.3 A Meyer-Vietoris sequence (or Morse-Bott theory)

The determination of critical configurations and their indices can be used in
the following setting: we assume a generic body-and-hinge chain, n ≥ 3 and
zero to be a value of F . This ensures the smoothness of the (n− 3)-dimensional
fiber X0 = F−1(0) over zero, and, for small enough ǫ > 0, a diffeomorphism
X0 × B3

ǫ ≈ F−1[0, ǫ], where B3
ǫ stands for the 3-dimensional ball of radius ǫ.

The (n − 1)-dimensional fiber Xǫ = F−1(ǫ) is thereby identified with X0 × S2
ǫ .

We’ll use the notation Tn = (S1)n for the n-dimensional torus representing the
configuration space of our chain with (n + 1) panels and n hinges. For small
and nearby values 0 < γ < ǫ < δ we put:

U = F−1[0, δ), V = Tn \ F−1[0, γ]

assuming all non-zero critical values of F greater than δ. Thus, the two open
sets cover the torus Tn, and we have homotopy equivalences:

U ∼ X0, U ∩ V ∼ Xǫ = X0 × S2

The corresponding Meyer-Vietoris exact sequence gives:

... → Hi(X0 × S2) → Hi(X0) ⊕ Hi(V ) → Hi(Tn) → Hi−1(X0 × S2) → ...

and in particular, we have the relation of Euler-characteristics:

e(X0 × S2) + e(Tn) = e(X0) + e(V ) i.e. e(X0) = e(V )

By Morse theory [M], the last Euler-characteristic can be expressed in terms
of critical points as follows: put ci for the number of critical points of index i;
then:

e(V ) =

n∑
i=0

(−1)n−ici

Note: The common convention would be to use −F as the Morse function.
Since we go with F , the signs are as above.

We obtained:
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Proposition 4. Suppose n ≥ 3 and let the origin be a regular value of the
end-point map for an otherwise generic chain. Then, the (n − 3)-dimensional
manifold X0 parametrizing all configurations with the origin coinciding with the
end-point has the Euler number:

e(X0) =

n∑
i=0

(−1)n−ici (6)

where ci is the number of critical points of index i for F on Tn \ X0.

1.4 The index of the Hessian matrix: panel-and-hinge case

The restriction to panel-and-hinge chains brings new structural aspects. We
note first the presence of natural transformations of the configurations space
Tn = (S1)n:

Transformations: Given any configuration, one may consider the hyperplane
through one marked point and some hinge, and reflect the part of the chain from
point to hinge in this hyperplane. The resulting transformation is obviously its
own inverse i.e. an involution. Note that we may always reposition the structure
with its first panel in its fixed location. Since the composition of reflecting in the
first and then last panel gives a global rotation of the chain, these two operations
represent the same transformation of Tn and this gives 2n − 1 involutions on
the configuration space, all transforming the fibers of F to themselves. Two
such involutions commute when they implicate the same marked point or the
respective portions of the chain do not overlap.

We have seen that, in case F reaches 0, F−1(0) is part of the critical locus, but
all critical points for non-zero critical values are isolated in the generic case. The
following definition refers to these isolated critical configurations corresponding
to non-zero critical values of F :

Definition 5. The 2n flattened configurations when all panels lie in the same
hyperplane (i.e. the codimension one subspace of the first panel, which is iden-
tified here with xd = 0 in Rd) will be called flat critical configurations (points),
while critical configurations which do not have all panels in the same hyperplane
will be called non-flat critical configurations (points).

It will be observed that, in a non-flat critical configuration, a new panel normal
direction requires two consecutive hinges to meet the line from the origin to the
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end-point in the same point and we’ll call such a point a fold point (on the ”head-
to-tail” line). Fold points will be considered as labelled by the corresponding pair
of consecutive hinges and ordered via this labelling.

Note: Flat critical configurations are fixed points of all involutions described
above and the group they generate, while non-flat critical configurations have
an orbit of cardinality 2c under this group, where c is the number of fold points
on the ”head-to-tail” line. Assuming a generic case, c + 1 will give the number
of distinct hyperplanes determined by origin and hinges .

We settle first the case of all flat critical configurations. Then all normal direc-
tions are the same and (regardless of the choice ±ni) Proposition 2 gives the
signature as that of the (quadratic form with) matrix:

hij = hji = 1 −
< x, ti >

< ti, ti >
= βi, j ≤ i (7)

Lemma 6. The signature of the above matrix is determined by the signs of:

β1 − β2, β2 − β3, ..., βn−1 − βn, βn

Proof: The symmetric matrix H = (hij) is the expression of the quadratic form
q(x) = xtHx in the standard basis ei, i = 1, ..., n. If we do the (unimodular)
change of basis:

ei 7→ ẽi = ei − ei+1, i = 1, ..., n − 1; en = ẽn

we obtain a diagonal matrix with the indicated entries.

As mentioned in Proposition 2, if we mark the end-point by x, and the intersec-
tions of the “head-to-tail” line with the kth hinge is akx, then βk = 1−a−1

k . For
a generic chain in a flattened position, hinges will intersect the ”head-to-tail”
line in different points, and we’ll have a non-degenerate Hessian. Since by defi-
nition, the index of a symmetric matrix is the number of negative eigen-values,
we have:

Proposition 7. The index of a flat critical configuration with hinges meeting
the line from the origin to the end-point x at akx, k = 1, ..., n, is the number of
negative values in the list:

1 −
1

an

,
1

an

−
1

an−1
, ...,

1

a2
−

1

a1
(8)
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Corollary 8. A flat critical configuration is a local maximum if and only if the
hinges meet the oriented segment (0, x) in points akx, k = 1, ..., n, lined-up in
their natural order, that is:

0 < a1 < a2 < ... < an < 1 (9)

For a convenient geometric formulation of the existence of a local minimum
in a flat configuration we conceive of the “head-to-tail” line as completed to a
projective line, and the complement of the affine segment [0, x] gives then the
open arc from 0 to x passing through the “point at infinity”.

Corollary 9. A flat critical configuration is a local minimum if and only if the
hinges meet the oriented arc from 0 to x passing through the point at infinity in
their natural order. This means one the following:

an < ... < a2 < a1 < 0 or (10)

ak < ... < a1 < 0 < 1 < an < ... < ak+1 or (11)

1 < an < ... < a2 < a1 (12)

Remark: In fact, the projective formulation allows some relaxation in the gener-
icity assumptions and one of the hinges may be parallel to the “head-to-tail”
line in that flat configuration.

1.5 Extremal configurations

In this section we refine our description of extremal configurations of panel-and-
hinge chains in Rd with two marked points.

We’ll elaborate on our Corollaries 8 and 9 and address possible maxima and
minima at non-flat critical configurations. One should remain aware of the
involutions described in subsection 1.3. Recall that a fold point on the “head-
to-tail” line is common to two consecutive hinges, say akx = ak+1x. When
speaking of the ordering of intersections of hinges with the “head-to-tail” line,
either ordering may be envisaged for the two hinges, but we intend the ordering
requested in the statement. The function F is the squared distance from “head”
to “tail”.
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Theorem 10. A local maximal configuration for F is characterized by the fact
that all hinges intersect the oriented segment (0, x) in the natural order. More-
over, a local maximum is in fact the global maximum and is unique modulo
the natural transformations generated by the involutions described above. Thus
there are 2µ maximal configurations equivalent under natural transformations,
where µ is the number of fold points for any and all of them.

Proof: Let us call flat subsystem in a non-flat critical configuration the panel-
and-hinge structure obtained by retaining the consecutive axes which lie in the
same hyperplane through the “head-to-tail” line i.e. the hinges corresponding
to a specific normal direction νi (up to the first occurrence of a fold point, or
between a fold point and the next, or up from the last fold point). The “head”
and “tail” are inherited from the full configuration. Then the expression (4) we
obtained for the Hessian shows that a local maximum requires all flat subsystems
to be flat local maxima. Thus, by Corollary 8, all hinges intersect the oriented
segment (0, x) in the natural sequential order.

As a consequence, we may trace a “red line” on consecutive panels by following
the segment [0, x] in our local maximum configuration. Thus, any other con-
figuration will display the “red line” as a polygonal arc from “head” to “tail”
proving that our local maximum is the global maximum. It also follows that any
other local maximum must have exactly the same pattern of planar subsystems
and therefore be obtained from our maximal configuration by some composition
of involutions.

Theorem 11. A local minimal configuration for a non-zero value of F is char-
acterized by the fact that all hinges intersect the oriented projective arc from 0
to x passing through the point at infinity (i.e. the complement of [0, x]) in the
natural order. Moreover, if such a local minimum exists, it is in fact the global
minimum and 0 is not a possible value for F . When 0 is not a possible value
for F , all minima are achieved at 2ν minimal configurations equivalent under
natural transformations, where ν is the number of fold points for any and all of
them.

Proof: Simple adaptation of the “red line” argument presented above.

2 The global maximum as a global minimum

The criteria obtained above for extremal configurations of marked panel-and-
hinge chains in Rd offer obvious suggestions for the more general body-and-hinge
case.
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It is an immediate observation that a marked body-and-hinge chain for which
the segment from the origin to the end-point intersects all hinges in their natural
order is in a global maximum configuration, since for any other configuration,
the previous segment (drawn as a “red segment”) becomes a polygonal arc longer
than the new segment from the origin to the end-point. What is less immediate
is that any body-and-hinge chain actually reaches its global maximum in such a
configuration. This will be proven by relating the global maximum to a global
minimum.

Theorem 12. Let a body-and-hinge chain be presented in a fixed configuration,
with the origin as the marked point of the first panel, e the end-point (on the
last body) and hinges given by codimension two affine subspaces Ai, i = 1, ..., n.
Consider variable points on each hinge ai ∈ Ai and the length of the polygonal
arc going from the origin to the end-point through the points ai in their natural
order:

f(a1, ..., an) = ||a1|| + ||a2 − a1|| + ... + ||an − an−1|| + ||e − an|| (13)

The global maximum distance between the marked points of the given body-and-
hinge chain equals the global minimum of the function f .

Proof: Note that f is continuous and a global minimum always exists.

The proof will follow from the simple case of a single hinge (n=1). In this case,
a1 must be the unique point of A1 which allows a rotation of the segment from
a1 to e around A1 to become a continuation of the segment from the origin
to a1. Repeating this observation with respect to ai−1, ai+1 and the hinge Ai,
shows that the chain can be reconfigured so that the polygonal arc realizing the
global minimum becomes a straight segment from the origin to the end-point
intersecting all hinges in their natural order. That is the global maximum.

We have proven at the same time our:

Global Maximum Theorem: A body-and-hinge chain is in a global maximum
configuration if and only if the segment from the origin to the end-point inter-
sects all hinges in their natural order. For a generic body-and-hinge chain, this
global maximum is unique.

Remarks: (i) In general, a body-and-hinge chain may well have local maxima
which are not global maxima. By (4), the segment from the origin to the end-
point must intersect all hinges.
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(ii) f is continuous, but not differentiable when ai = ai+1 for some i.

Examples show that global minima for body-and-hinge chains do not have to
respect the pattern observed for panel-and-hinge chains. We may consider, for
instance, just two hinges (say in R3) and take the second body (containing these
hinges) as reference. Then the marked points trace circles, each around a hinge.
Examples of global minima with the hinges intersecting in the order A2, A1

the projective arc from origin to the endpoint passing thorough infinity, can be
easily produced. What still holds true, by (4), for any local minimum is the
fact that all hinges intersect the projective arc from the origin to the end-point,
passing through the point at infinity.

3 Variations on the same theme

A few ‘variations’ of these techniques should be mentioned before concluding.
Again, the issues are important in robotics and the necessary conditions have
been detected in the literature [SR, SD].

If we abandon the first marked point, we’ll rather be concerned with the squared
distance from the end-point to the first hinge. The resulting critical configura-
tions for non-zero values will require the perpendicular from the end-point to the
first hinge to meet (projectively) all hinges. The global maximum will require
the natural ordering of these intersections on the segment from the foot of the
perpendicular to the end-point.

In dimension three, a similar scenario holds if we abandon both marked points
and only inquire about the squared distance between the first hinge and the
last hinge. Critical configurations for non-zero values will have the common
perpendicular of these two hinges intersect (projectively) all the intermediate
hinges. The global maximum will require the natural ordering.
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