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DATA LITERACY IN ECONOMIC DEVELOPMENT 

Simon D. Halliday   

Department of Economics, Smith College, Northampton, MA, USA 

 

Abstract: In economic development and other economics electives, students regularly encounter 

economic measures of absolute and relative deprivation, from poverty measures like the Foster-

Greer-Thorbecke index to measures of distribution like the Gini index. By “doing economics,” 

students practice applying economic measurement to real-world data and develop more general 

data literacy. The author proposes a series of exercises starting with stylized 10-household 

economies, proceeding to nationally representative cross-sectional surveys using MS Excel or 

Google Spreadsheets, and culminating in students applying their acquired data literacy to a team 

project. The data sources are easily tailored to alternative household surveys in low- and middle-

income countries that include the required variables. Students learn data literacy through 

recognizing the properties of rectangular data, visualizing data appropriately, and creating 

aggregate economic measures. 
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A generation ago, Bartlett and King (1990, 182) argued that “we expect students to eventually 

learn to think like economists without providing them with any real opportunity to learn how 

economists go about ‘doing’ economics.” In economic development, a practitioner “doing 

economics” needs to use data in a variety of ways: by constructing measures of outcomes like 

income and poverty and by using the measures to understand both the status quo and the effects 

of new policies. The instruction of economic development—and similar courses—therefore 

requires a marriage of data to economic theory, policy analysis, and decision-making. In this 

article, I aim to address these ideas and fill a gap in the literature by providing a set of exercises 

for classes that teach topics on income, poverty and inequality, and which aspire to use real-

world data and facilitate experiential learning while improving student engagement (Hawtrey 

2007). I provide step-by-step instructions for the exercises in the supplementary material. 

Although development economics and the study of poverty are featured in the economic 

education literature, few examples exist of deliberate and sustained analysis of the measurement 

issues in an undergraduate development economics or economics of poverty classroom. Diduch 

(2012) is the main exception. Considering a question like “How do you overcome poverty in a 

big and diverse country?,” Diduch demonstrates that the problem of poverty motivates students 

to learn the details of measurement and, as a result, they learn the tools of policy analysis in the 

United States. However, no similar demonstrations exist for a course in development economics 

or in the use of data from middle- and low-income countries. 

A variety of papers have certainly attempted to address questions of content and research 

methods in economic development and related curricula. Singh and Russo (2013) provide insight 

into how the use of a “dream experiment” motivates students at a small liberal arts college to 

design a randomized controlled trial in a developing country while focusing on a policy-relevant 
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topic. In a behavioral economics class discussed in Castilla (2014), students engaged both with 

data literacy and experimental design by analyzing data they collected themselves to answer a 

research question. In discussing economic growth theories in the undergraduate curriculum, two 

articles provide a relevant perspective. Chen (2005) showcases the great diversity in theories that 

explain economic growth whereas Acemoglu (2013) makes the case that teaching growth and 

development in the undergraduate curriculum exposes students to facts about the world economy 

that are inherently interesting and that instructors should teach growth models in a nuanced and 

historically situated manner. In this article focusing on microeconomic development, I assume 

that an economic development course will cover topics of income, poverty and inequality, and I 

innovate in how those topics are taught. 

To improve their understanding of measurement, students need to cultivate data literacy. 

Data literacy is separate from statistical literacy (MacGillivray and Pereira-Mendoza 2011) and 

economic literacy (Hansen, Salemi, and Siegfried 2002; Gilleskie and Salemi 2012). Researchers 

conceive of data literacy as the ability “to read, create and communicate data as information” 

(MacGillivray 2017, 6). Data literacy therefore requires basic skills in data management, data 

visualization, and the computation of quantitative results using data to create information (IISD 

2017). However, research on data literacy in economics is scanty, and research outside 

economics tends not to explain the methods by which it can be taught in an economics 

classroom. 

Notwithstanding this gap, a focus on data literacy in the context of economic education 

may help to meet Hansen’s (2001, 231) criterion that, in studying economics, students should 

have the ability to "interpret and manipulate economic data.” Furthermore, data collection and 

analysis fall under the ‘essential competencies’ outlined by Allgood and Bayer (2016, 106). I 
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argue that a focus on data literacy therefore helps to promote these competencies and that 

students will more readily achieve them through step-by-step encounters with data to hone their 

data literacy and facilitate experiential learning by getting them to measure development 

outcomes themselves. 

The course in which I incorporate these exercises is a lower-level elective in economic 

development that does not require students to have taken calculus or statistics, but does require 

either introductory microeconomics or macroeconomics. The course is taught at a liberal arts 

college where the development economics elective enrolls anywhere from 25 to 55 students in a 

given semester (see online appendix A.1 for the syllabus; a list of the online resources is 

available in the appendix to this article). Although I have tailored the exercises to a course in 

economic development, the exercises could be incorporated into courses on poverty and 

inequality, public policy, urban economics, or economic policy analysis in which working with 

data or data literacy is an important course component. Students do not need competency with 

spreadsheet programs on entering the course, but the instructor will need to dedicate some class 

time to introducing basic spreadsheet functions such as IF(), COUNT() or SUM(). The practice 

of the course is similar to that used in higher-level courses where experiential learning (also 

known as learning-by-doing and hands-on learning) is used in capstone courses to teach 

economics research skills at the best-ranked liberal arts college and university economics 

departments in the United States (Hoyt and McGoldrick [2017] summarize these ideas and 

introduce a variety of case studies examining the practices more closely, such as Brunnermeier 

[2017] and Lima and Tsiang [2017]; with similar practices proposed in Ball and Medeiros 

[2012]). 
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I begin by outlining the main measures that are taught in an economic development 

classroom—income, poverty and inequality—and explain related theory and history from which 

these aggregate measures emerge. Second, I explain the initial exercise that I use to introduce 

students to the basics of data literacy for development: individuals with incomes who form an 

economy (a sample), the aggregate properties of which need to be measured (data analysis). The 

exercise employs stylized 10-person (or 10-household) economies for students to start learning 

data literacy and development theory (see online appendices B. 1 and B. 2). Third, the exercise 

proceeds to an advanced stage by providing students with publicly available household and 

cross-country data in Excel. Students become familiar with the constituent parts of data 

(observations, variables) and use the data to cultivate an understanding of visualization and 

aggregation by calculating measures of income, poverty and inequality. Students work on team 

projects on a low- or middle-income country that they choose and for which they apply their data 

literacy skills to a research question developed by the team. The measures and methods used in 

economic development are used in a variety of other core courses and electives where improving 

data literacy could be beneficial: from microeconomics to public policy, and from urban 

economics to the economics of poverty or inequality. 

MEASURING INCOME, POVERTY AND INEQUALITY 

Income 

Most economic development courses introduce the measurements of income, poverty and 

inequality by starting with national measures of gross domestic product (GDP) and gross 

national product or income (GNP/GNI). Although artificial input-output tables provide the basis 

for teaching income calculation, instructors generally cannot get students to calculate GDP with 
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real data from an economy as the process is too complex and beyond the scope of even some 

national statistical agencies (see, e.g., Jerven 2013). 

Furthermore, national income measures have a variety of shortcomings in terms of 

understanding poverty and inequality: First, if the per capita GDP of a country is, say, USD 

10,000 in 2014, that does not imply that each person in the economy spends that amount of 

money, or that the average (median) consumer in the economy has an equivalent disposable 

income. Second, and importantly for economic development, per capita GDP measures say 

nothing about the distribution of income or the skewness of that distribution. For example, two 

economies may have similar per capita GDP, but different poverty headcounts or Gini index 

values. Third, GDP measures are compiled from data with which most students are unfamiliar 

and from which they are likely to remain disengaged. Many students, in their work and family 

life, though, will be familiar with the idea that the family as a unit has a certain amount of 

income that can be spent on the goods and services that the family wants and with which the 

family may compare itself to other families, or through which policymakers may compare 

families in an economy. 

Such familiarity motivates the use of household datasets to understand incomes, poverty 

and inequality and to improve data literacy in the process, thinking about economies comprising 

households or individuals with certain levels of daily (or monthly) income that correspond more 

closely to how economists measure poverty and inequality, while also being the unit of analysis 

with which students themselves are more familiar. 

Poverty 

To understand poverty in an economy, it is standard practice to use the Foster, Greer and 

Thorbecke measures. Foster, Greer, and Thorbecke (1984) were engaged in the ongoing debate 
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about how to measure poverty in a way that was decomposable. That is, if we can separate all 

people who are poor into different groups (by gender, ethnicity, etc.), then a decrease (increase) 

in the poverty of one of the groups should result in a decrease (increase) in overall poverty (see 

Sen 1992). 

The Foster-Greer-Thorbecke (FGT(α)) formula provides a generalizable way to teach 

decomposable and relevant poverty measures. Poverty is indexed in the following way:  

 𝐹𝐺𝑇(𝛼) =  
1

𝑁
∑ (

𝑧−𝑦𝑖

𝑧
)

𝛼

 
𝑞
𝑖=1  (1) 

Where N is the total population, z is the poverty line, yi is the income of individual i, and q is the 

total number of individuals with incomes below the poverty line. FGT(α) provides three different 

measures of poverty depending on the value of α1: α = 0 results in the poverty head count ratio; α 

= 1 results in the poverty gap index, measuring the normalized distance of each poor individual’s 

income from the poverty line; α = 2 results in the poverty gap-squared index. 

Notice, though, that equation 1 can be rewritten as equation 2 by factoring out 𝑧𝛼 from 

the summation operator. 

 𝐹𝐺𝑇(𝛼) =  
1

𝑁𝑧𝛼
∑ (𝑧 − 𝑦𝑖)

𝛼𝑞
𝑖=1  (2) 

In my experience, rewriting FGT(α) as equation 2 allows for easier pedagogical outcomes for the 

following reasons. First, the instructor can separate the intuition of a gap (based on income less 

than the poverty line) from the practice of indexing for comparability across economies. Second, 

and importantly, when 𝑧𝛼 is outside of the summation operator and with 𝛼 = 1, the summation 

provides the total poverty gap in local currency. This construction allows students to understand 

a first-order policy problem: how much it would cost to eliminate poverty. 

The poverty headcount ratio counts the absolute number of poor individuals in an 

economy; that is, those whose incomes (yi) are beneath the poverty line (z), and divides that total 
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by the size of the population to make it comparable across economies. FGT(0) falls between 0 

and 1 and therefore measures the incidence of poverty or the proportion of the population that is 

poor. The poverty gap index sums all poor individuals’ income gaps to find the total poverty gap 

and indexes it by the total population multiplied by the poverty line (𝑁𝑧𝛼) to obtain a measure 

between 0 and 1 that policymakers can compare across economies. Students therefore learn an 

important aspect of data literacy and measurement: many aggregate measures must be indexed to 

permit comparison. 

Students come to understand the extent of an individual’s depth in poverty, the total 

poverty gap required to raise people out of poverty and therefore an economy’s depth of poverty, 

and how to compare this depth across countries using FGT(1). For example, compare two 

countries, A and B, where A has a higher total poverty gap than B, which students may think 

implies that country A is “poorer” than country B. But if A has a much larger population than B, 

then A’s FGT(1) will be lower than B’s. A good example here would be comparing, say, the 

United States of America (A) and Botswana (B), for which this analogy would hold true. The 

total population of Botswana is smaller than the total number of poor people in the United States, 

but economists reasonably do not consider the United States to be poorer than Botswana. Similar 

insights apply to FGT(2) where students readily understand how it measures the severity of 

poverty by squaring an individual’s  poverty gap and thus weighting people further from the 

poverty line more heavily. 

Inequality 

Many ways to measure inequality exist in the economics literature. I focus on two measures: the 

Gini index and the Palma.2 The Gini index is taught graphically as the difference between the 

Lorenz curve, or the cumulative distribution of income in an economy relative to cumulative 



 

9 

population, and the line of perfectly distributed income, divided by the total area beneath the 

curve of the line of perfect equality. Thus, the Gini (G) index is given by: 

 𝐺 =
𝐴

𝐴+𝐵
 (3) 

where A is the area between the Lorenz curve and the line of equality and A + B is the area 

beneath the line of equality, as illustrated in figure 1. 

[Insert figure 1 about here] 

The Gini index can also be measured with household and individual data (Pyatt, Chen, and Fei 

1980) as follows:  

 𝐺 = 𝑐𝑜𝑣(𝑦, 𝐹(𝑦))
2

�̅�
 (4) 

where cov is the covariance of income level y, the cumulative distribution of y given by F(y), and 

�̅� is average income. 

The relationship between the Lorenz curve and the Gini helps students to understand how 

the Gini depends on the extent to which those individuals or households at different parts of the 

cumulative income distribution deviate from equal income shares. But, the Gini index, by 

construction, is not particularly sensitive to changes at the tails of the income distribution.3 The 

Gini therefore fails to correspond to the intuitions that students have about the definition of 

inequality: that it should be higher for differences between the highest and lowest parts of the 

income distribution rather than differences within the middle of the distribution. 

As an alternative, the Palma (P) measure (Palma 2011) is an intuitive measure of 

inequality in wealth or income: 

𝑃 =
𝑌10

∑ 𝑌𝑖
4
𝑖=1
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where incomes shares (divided by decile) are ranked from lowest (Y1) to highest (Y10), the Palma 

takes the income share of the top 10 percent of the income distribution (Y10) and divides it by the 

income share of the bottom 40 percent of the income distribution (Y1 + Y2 + Y3 + Y4). Cobham 

and Sumner (2013b) show that the Palma ranges from 0.757 (Belarus in 1988) to 15.081 

(Namibia in 1993) using the World Bank’s PovCal dataset. Cobham and Sumner argue that this 

measure captures the main insights of what people intuit when thinking about inequality and that 

it reflects the fact that the “middle 50%” (income shares 5 through 9 in 10 percent increments) 

has remained relatively stable over time (the Gini coefficient is sensitive to relatively small such 

changes, but the Palma is not). Cobham and Sumner’s result shows how the Palma accords with 

a popular conceptualization of inequality: inequality is driven not by changes in income for those 

whose positions in the middle and upper-middle of the distribution are relatively stable, but by 

differences between those at the top and those at the bottom of the income distribution. 

THE EXERCISE 

The exercise unfolds in several steps. First, students are introduced to the idea of a 10-person 

artificial economy ranked by income from poorest to richest. Students use artificial economies to 

compute the measures of income, poverty and inequality. Students are then provided a 10-row 

(10 households) dataset extracted from a real-world economy and repeat the process of 

compiling income, poverty and inequality measures using MS Excel (see online appendix C.2). 

Students repeat the analysis with a full dataset of households. In this and subsequent sections, I 

refer liberally to the online appendix at 

simondhalliday.com/data_literacy_in_economic_development/. 

Table 1 presents the economies given to the students in the exercise (see online appendix 

B.2). Groups of 3 to 5 students are each given an economy corresponding to the rows in the 

http://simondhalliday.com/data_literacy_in_economic_development/
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table. The economies (A through J) comprise 10 people with incomes given by the columns (P1 

to P10). Each economy has a total daily income ranging from 35 monetary units to 100 monetary 

units. Ten people are used because each person corresponds to an income decile, which is 

necessary for later computation of the Palma and Gini measures. 

[Insert table 1 about here] 

Income  

Students start by working in teams to compute daily total and per capita incomes for their 

economy (also converting them to annual measures). They then compare the economies across 

groups. The relevance of computing per capita income and how per capita income differs from 

individual income becomes immediately apparent, which is an insight students sometimes fail to 

grasp when first thinking about GDP in the abstract. Students should do this task before their 

class on poverty, typically at the end of a class on income and GDP. 

Poverty 

Having seen the income calculations in a previous class, students are then told that in each of the 

economies there are two poverty lines: $2 per person per day and $3 per person per day 

(corresponding roughly to the current $1.90 and $3.10 World Bank poverty lines). The purpose 

is to achieve four learning outcomes: 

1. The choice of poverty lines is crucial to understanding how much poverty exists in an 

economy. 

2. Two countries that have an identical income per capita (low or high) need not have 

identical rates of poverty. 
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3. Countries with different incomes per capita (low vs. high) need not have different 

rates of poverty. On the contrary, rates of poverty and income per capita may be 

unrelated. 

4. Fiscal policy and redistribution of income can alleviate poverty. 

Each group of 4 to 6 students receives the information about a given economy, computes 

the relevant poverty measures using the FGT(α) formula, and compares their values with 

members of other groups with different incomes. The results they obtain are summarized in table 

2. They also consider the different scenarios for fiscal policy, altruism and aid outlined below. 

[Insert table 2 about here] 

Inequality 

Students develop a deeper understanding of how to measure poverty by building up to each part 

of the Gini index formula. First, they compute equal shares of income and sketch a line of 

equality, which for 10 people will be 0.1, 0.2, and so on to 1. Second, they find each decile’s 

income share. Third, they accumulate these shares and sketch them as a bar chart or line graph 

equivalent to a Lorenz curve to find the value of the area B (see online appendix C.4 for 

solutions). Fourth, they calculate the difference between the cumulative income and the line of 

equality to find the value of area A. Once they have calculated the values of areas A and B, they 

can use them to find the Gini index using equation 3. The values are shown in table 3 and 

illustrated in figure 2 using a bar chart to compute the Gini index for example economy D. 

Lastly, they use the income shares to compute the Palma. The process allows students to hone 

their data literacy through hands-on manipulation and visualization of their data. 

[Insert table 3 about here] 

[Insert figure 2 about here] 
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Individually, students may struggle with some of the steps in the exercise, but putting 

them in groups to discuss how to achieve the outcomes helps substantially. Most students are 

able to calculate equal shares of income and accumulate them. Finding the cumulative income 

shares for area B and using that to find area A challenges more students because it requires them 

to consider what a cumulative share—and what the Gini index itself—means empirically. 

Consider economy D as an example. The total daily income is 50. The bottom person’s income is 

1, meaning their income share is 1/50 = 0.02. If the poorest 10 percent were to have had an equal 

share of 5/50 = 0.1, then they would require an additional 4/50 = 0.08 of income. Therefore, the 

portion of area A (for the Gini index) for the lowest decile is 4/50. The share of incomes needs to 

be computed for the 10 households cumulatively, after which students sum the 10 cumulative 

shares to find a total area of A. Area A must be divided by the total area beneath the line of 

equality resulting in the country’s Gini Index, as shown in table 4.4 Students also sketch Lorenz 

curves like those in figure 3 (see online appendix C.2). Most students do not have problems 

computing the Palma. 

[Insert table 4 about here] 

[Insert figure 3 about here] 

Having completed these exercises, students are put in groups and re-paired with students 

from different country-groups to facilitate discussion of the following ideas: countries with the 

same/similar incomes can have different levels of inequality; countries with different total and 

per capita incomes can have similar levels of inequality; and, fiscal policy to redistribute income 

can address income inequality. 

Extending the Exercise: Fiscal Policy, Altruism and Aid 
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Upon learning the preceding measures, students regularly want to think about how to “do 

something about it.” The artificial economies allow students to think about what role 

communities, governments and people could play in confronting poverty and inequality. Fiscal 

policy can take different paths. Using fiscal policy a government can provide transfers to people 

who have low incomes using tax revenue provided by those with higher incomes. Fiscal policy 

also could provide public goods from which people of different groups cannot be excluded 

(nonexcludable) and for which the benefits do not decrease as more people consume it (nonrival) 

—this provides a basis for talking about a government using progressive taxation and providing 

public goods with flat benefits. Similarly, students can discuss the effects of altruistic donations 

to others in the community or internationally through aid. Each of the examples creates different 

dynamics for considering the effectiveness of policy and the implementation of policy through 

local communities, state bureaucracies and international organizations with various levels of 

transactions costs. 

PROCEEDING TO REAL-WORLD DATA 

I use two kinds of data: aggregated national data from the World Bank Development Indicators 

(WDI) and a relevant household dataset. I have used three sets of household data so far: the 

Mexico Rural Household Survey (ENHRUM), the 2008/9 wave (wave 1) of the South African 

National Income Dynamics Study (NIDS) and the 2014/15 wave (wave 4) of NIDS as cross-

sectional surveys. NIDS is a panel data survey that has been run consistently since 2008 

(SALDRU 2016). The datasets are helpful for teaching the learning outcomes because of the 

variables (specified below) that allow analysis of incomes, poverty and inequality and how these 

measurements respond to government policy to redistribute income and alleviate poverty. 

Having encountered smaller datasets, students have the basic data literacy that is required to 
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move to larger datasets: understanding the components of data (observations and variables), 

using data to produce new variables, and using formulas to find aggregate properties of data and 

to visualize data. 

In the dataset, students are given a spreadsheet with eight variables: a household 

identifier (hhid); household size (hhsize); household income net of remittances and government 

transfer (hhynet); government transfers received by the household (transfers); remittances 

received by the household (remittances); per capita net income (pcy), which is measured as net 

income divided by household size; the household’s income rank from lowest to highest 

(rank(pcy)); and the distribution of the ranks (F(pcy)).5 The exercises apply equally well to other 

datasets that include these variables. 

Prior to giving students the full dataset for problem sets and the midterm exam, students 

are first shown a 10-row sample dataset. The 10-row dataset, the idea of which is now familiar to 

students from the artificial economies, comprises a sub-sample of 10 households randomly 

selected from the full dataset where each household has the variables in the final dataset. We 

discuss how each of the measures we found for income, poverty, and inequality can be applied to 

the sub-sample dataset. Students can then re-apply these insights to the full dataset and think 

through the roles of government transfers and remittances. 

Income  

Students can easily learn the difference between a country’s per capita GDP and the average 

incomes from a household survey. I ask students to identify how a country should be classified 

according to the World Bank Development Indicator (WDI) data in a given household survey 

year, e.g., 2008/9, and how that same country would be classified if the income classification 

were done based on the average incomes from a household survey. Students compute the local 
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country average annual incomes from the household data and convert the average income to PPP 

dollars for comparison with the WDI incomes. Students gain two skills from doing this: they 

recognize the difference between exchange rates without purchasing power parity, which is the 

number with which they are most familiar if they were to convert their own money to a foreign 

currency, and they realize that local prices and consumption must be catered for when comparing 

countries. Students develop an understanding of what it means to (linearly) transform data to 

enable comparison. Lastly, average incomes from household surveys often differ from the per 

capita income computed from GDP data, clarifying the difference between per capita GDP and 

household survey means. In-class discussion of how household surveys are conducted and how 

incomes are measured (under-reporting of top incomes, for example) also provides valuable 

lessons in data literacy: how social scientists think through how people respond in surveys, and 

the problems social scientists face in measurement. 

Poverty 

Having computed and compared incomes, students use the per capita income data to compute 

different values of the Foster-Greer-Thorbecke index to understand poverty. Students need 

familiarity with using mathematical formulas in Excel (addition, multiplication, etc.) and IF() 

statements. They need IF() statements to ensure that when they calculate the poverty measures, 

they count only individuals in households with income below the poverty line and they use 

mathematical formulas to compute the household’s poverty gap and the household’s poverty 

gap-squared (see online appendix C.5).6 Later, students repeat the analysis using transfers and 

remittances and see how anti-poverty policies can alleviate the incidence, depth and severity of 

poverty (see online appendices C.4 and E.2). 

Inequality 
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Having examined poverty and the effects of transfers and remittances on it, students use the same 

data to compute a Gini index.7 Students use the covariance formula (equation 4) to compute the 

Gini index, which requires two pieces of information: first, the rank of each household in terms 

of the overall income distribution to form a distribution and, second, each household’s per capita 

income. Using the formula for the NIDS 2008 data, for example, they would find a Gini index 

value of 0.6727, which is roughly consistent with more rigorous estimates of the Gini index 

using survey weights.8 

Students can then proceed to analyze the effects of either remittances or government 

transfers on poverty and inequality (the steps are outlined in the supplementary materials). For 

example, using the 2008 NIDS data and including remittances and government transfers, the 

students find that the Gini decreases to 0.4787. This is an approximate decrease of 20 percentage 

points or a 40 percent decrease in inequality as a result of the transfers and remittances, showing 

the extent to which transfers and remittances alleviate inequality. 

My students have generally navigated moving from the sample datasets to the real-world 

dataset with some struggles, but eventual ease. Moving from a 10-row dataset to a several-

thousand-row dataset, students confront the challenge of moving around a large spreadsheet and 

realizing that it is easier to type in the values of the cells to which they are referring rather than 

highlighting cells when they write formulas. Furthermore, it is important for an instructor to 

show students shortcuts for navigating around a spreadsheet and how to apply formulas to many 

rows or columns.9 

CONCLUSION AND EXTENSIONS 

Using only five variables (household income, household size, government transfers, remittance 

receipts and a unique household identifier), students contrast the effects of government policy 
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and private remittances as anti-poverty and inequality-alleviating measures, as well as 

identifying the differences between national income measures (such as GDP and per capita GDP) 

with more granular measures of income, poverty and inequality. 

The in-class exercises and the Excel-based problems provide the basis for data literacy as 

the architecture for team projects: thinking about observations and variables, producing data 

visualizations, and using the data to produce aggregate measures. Students glean the main 

understanding that, with a limited number of variables, they can deduce powerful insights about 

what the status quo is prior to a policy, such as government transfers to the poor, and what such a 

policy might achieve. Students went on to use data to tackle team projects on many topics, such 

as levels of awareness and knowledge about HIV/AIDS, malaria and TB in Nigeria, to the 

distribution of fertilizer investments in Malawi. Two projects highlight the skills that students 

gained, which they could transfer outside the class. In each case, the data literacy that they 

acquired enabled their investigations. 

In the first project, a team of students used the China Health and Nutrition Survey to 

study Chinese health insurance, trying to understand the differences between rural and urban 

enrollment at two different time periods (2000 and 2009) and the mechanisms surrounding 

insurance in China. They began their investigation using spreadsheets where IF() statements 

allowed them to code dummy variables (1 for rural, 0 for not), to use a Pivot Table in MS Excel 

to evaluate the different choices to buy insurance (also a dummy variable they coded), and to 

produce corresponding bar charts. They therefore demonstrated basic data literacy skills in 

working with different observations, understanding variables, and creating aggregate properties 

of their data from their newly generated variables. They also explored mechanisms behind the 

differences they found, from changes in government expenditure to demographic trends. 
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In a second project, a team of students examined inequality in South Africa and they 

employed more directly the tools on poverty and inequality analysis. The students were 

interested both in the overall inequality in the country over time and, motivated by the country’s 

history, the inequality within and among race groups in the country. They used two waves of the 

National Income Dynamics Study (NIDS) to assess inequality at two different time points in 

South Africa. Although they could not take account of the survey design in basic analysis in 

Excel (e.g., stratification and clustering), they could nonetheless draw conclusions about 

increasing within-race inequality in South Africa over time by comparing the Gini index values 

by race group using IF() statements, using the covariance formula for the Gini index, drawing 

Lorenz curves using new variables they created, and employing other economic analysis and data 

literacy learned in the course. 

Filling a gap in the literature with respect to the teaching of data literacy in economic 

development, I hope to contribute to an ongoing discussion about experiential learning, 

transparency in research, knowledge and application of basic statistics, and the uses of empirics 

in undergraduate economics field courses. Future research should focus on the related ways in 

which activities such as these can impact learning directly, rather than on the construction and 

motivation of these activities such as I have provided here. 
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NOTES 

1 Although values of α larger than 2 can be used, their value in terms of instruction is limited. 

Unless a student has taken political philosophy, for example, she would not understand that as α 

tends to infinity the value of the FGT index tends towards a Rawlsian Rule by which society 

judges poverty only on the basis of the poorest of the poor. 

2 Five axioms for inequality measurement are considered important in the literature: 1) The 

Pigou-Dalton transfer principle, 2) income scale independence, 3) Dalton’s principle of 

population, 4) anonymity or symmetry, and 5) decomposability (see Cowell [2000] and 

Litchfield [1999]). Measures like the Atkinson index and the Theil Index (or the class of 

generalized entropy measures) are beyond this course. 

3 See Palma (2011) and Cobham and Sumner (2013a, b) for a fuller explanation as to why the 

Gini index is insensitive to changes in the tails of the income distribution: the basic intuition is 

that substantial weight is given to deciles 2 through 5 of the income distribution and the tails are 

not given substantial weight in the Gini as each part of the distribution is equally weighted. This 

characteristic of the Gini is likely to be axiomatically true (Shorrocks 1980). 

4 To give an accurate Gini coefficient, the cumulative income total should be divided by 5, which 

is the equivalent of the area of a smooth triangle. Note, though, that this produces a different Gini 

if a student cumulatively sums the heights of 10 columns, which would give a total area for A + 

B of 5.5. I accepted both answers in the class exercise, although the cumulative sum of columns 

results in a lower Gini coefficient. 

5 Taylor and Lybbert (2015) include the Mexico Rural Household Survey in their supporting 

material for their textbook along with some exercises similar to those I ask students to perform 
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with these data. However, my exercises are grounded in initial exercises in-class as presented 

earlier, along with additional questions and ideas that Taylor and Lybbert do not include. 

6 A variety of work has used the NIDS to understand South African poverty. See Leibbrandt, 

Finn, Argent  and Woolard[2010], Leibbrandt and Levinsohn [2011], Finn and Leibbrandt 

[2013a], and Jansen et al. [2014]. 

7 Because each row corresponds to a household and we cannot easily manipulate this to create an 

individual-level dataset, we can compute only a household income-based Gini index. Although 

this is unfortunate from the perspective of consistency, in terms of pedagogy and learning 

outcomes the main concern is for students to think through what is required to find a Gini index 

and what the unit of observation implies about what gets computed. 

8 I cannot provide the full NIDS data (for 2008 or 2014/15) as a spreadsheet, but this value is 

produced from the NIDS data in the spreadsheet that I can provide to those interested who 

request the data from the DataFirst at the University of Cape Town (www.datafirst.uct.ac.za). 

The Gini is found using the covariance formula as shown in the supplementary content. As with 

poverty, several authors have used the NIDS to examine inequality in South Africa and found 

results similar to those that I found, such as Leibbrandt, Finn and Woolard (2012), Finn and 

Leibbrandt (2013b), and Finn, Leibbrandt, and Levinsohn (2014). Admittedly, the measures 

should be weighted by their survey weights, but such a discussion is beyond the ambit of the 

course I teach. 

9 Showing students shortcuts to highlight many cells at once, e.g., CMD + SHIFT + 

DOWNARROW on a Mac or CTRL + SHIFT + DOWNARROW on a PC with Windows, 

results in them saving time. I also recommend demonstrating to students how to double-click on 

the bottom corner of a cell for a formula to be applied to a whole column. 
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APPENDIX 

List of Online Appendix Resources 

A. Class Context and Syllabus 

1. Syllabus for my class Economic Development (ECO211) in the Economics Department 

at Smith College pdf 

B. Example Economy Exercises 

1. Printout for students with example economies pdf and docx 

2. Income and poverty instructions for Students pdf and docx 

3. Inequality instructions for Students pdf and docx 

4. Guidelines for instructors for the exercises pdf and docx 

5. Solutions for instructors for example economies xlsx 

C. Excel Real-World Data Exercise Sample Documents 

1. Note: I cannot provide the data on a public site, a potential user can request the NIDS and 

upon that request I can share data and/or do files. The data are publicly available, but the 

user should preferably access the data herself at the DataFirst Research Unit. 

2. Sample sheet mirroring the data with 10 household rows xls 

3. Accompanying description in docx and pdf 

4. Solutions for instructors for sample data xlsx 

5. Additional sample economy with nested IF() statement as exercise xls 

D. Stata Files for Generating Spreadsheets 

1. Stata .do files for converting South African National Income Dynamics Study (NIDS) to 

a workable spreadsheet: 

a. Working with 2008 NIDS: nids_data_setup.do 

b. Working with 2014 NIDS: nids2014.do 

E. Additional Documents 

1. Example spreadsheet to teach students about if statements (the basics) xls 

2. Example spreadsheet for FGT(αα) and understanding the poverty Head Count Ratio, 

Poverty Gap, etc. xls 

3. Example spreadsheet to teach students about matching and indexing xls 

4. Example spreadsheet to teach the human development index and using math in Excel: 

xls 

F. Problem Sets with Solutions and Examples 

1. Problem Set 1: PS1, PS1 Data xls, PS 1 Data Solutions xls 

2. Problem Set 2: PS2, PS 2 Data Solutions xls 

3. Problem Set 3: PS3, PS3 Data xls, PS 3 Data Solutions xls 

  

https://drive.google.com/open?id=19LTRxGW6fYIELHWc9tzKhKDsAuzO0y9F
https://drive.google.com/open?id=1uRtUrlHkp2UcWuUI7bgvSzrHAbT2UF1u
https://drive.google.com/open?id=0B9jjwkjdUJU7T1JWYzNnOXkyZVk
https://drive.google.com/open?id=12INhXjbdCvHrW5K9F89UPsJcGTmcJb9-
https://drive.google.com/open?id=12sSyru5o1h3drgvlImr6-vrr_9y4pV4Z
https://drive.google.com/open?id=1kW-qVRmDicvrBRyfdJnwnAJNXvRQE-W4
https://drive.google.com/open?id=1MXDfV6_5uzh-eu247PcR5f2FV7Xo8KUS
https://drive.google.com/open?id=1k8A9JSOEyPAb1Fnh7Uq8vb2VZK0hI4FJ
https://drive.google.com/open?id=1y_0389KxNGOd_7_Dj4cZ5YX5VQp9vA8E
https://drive.google.com/open?id=0B9jjwkjdUJU7Y1N5aFVLeG51eHc
https://drive.google.com/file/d/18nSoDTf9iwS2PlLdqwXK_asz64QQahWT/view?usp=sharing
https://drive.google.com/open?id=1zSQqzoeawRKjDEOjdR5wMfj9dV0eXfE1
https://drive.google.com/open?id=15pg1xAvCBTFIV2JthVd4zL1z-yEgsLLq
https://drive.google.com/file/d/1GgA9RkJHhWJaK1n5BG4UvmlKphmX1yIX/view?usp=sharing
https://drive.google.com/open?id=0B9jjwkjdUJU7b1BtaUxNUElzREk
https://github.com/simondhalliday/simondhalliday.github.io/blob/master/data_literacy_for_development/nids_data_setup.do
https://github.com/simondhalliday/simondhalliday.github.io/blob/master/data_literacy_for_development/nids2014.do
https://drive.google.com/open?id=1s6dE0Pl5l7Y5nz8YRTmXHan1ooztuvQC
https://drive.google.com/open?id=1VQvYmfEnq52PsFtBerYJ_g9aymg9pc_U
https://drive.google.com/open?id=1pOGwwQkQusmczmxRDWf-8yIFbEcK-9p8
https://drive.google.com/open?id=1MG-ME2VJF22UFdviBYJ7Nl-8uYGPQQmm
https://drive.google.com/open?id=0B9jjwkjdUJU7UWpCa3FscXZUeDA
https://drive.google.com/open?id=0B9jjwkjdUJU7NjhyTm5qZFNZRUk
https://drive.google.com/open?id=0B9jjwkjdUJU7dDYwbnBpaTVFRnM
https://drive.google.com/open?id=0B9jjwkjdUJU7RGdtbDEwb050WEk
https://drive.google.com/open?id=0B9jjwkjdUJU7WUxJVlEta3ZVYzQ
https://drive.google.com/open?id=0B9jjwkjdUJU7czRLVEFuMWVOSHc
https://drive.google.com/open?id=0B9jjwkjdUJU7cV9uYVpQSnFSQU0
https://drive.google.com/open?id=0B9jjwkjdUJU7MDBUeVNQbF9tcUk
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G. R Code for figures in the paper 

I coded all of the figures in the paper in R. I provide links to the R code for the figures. This 

is intended for instructors or interested advanced students and should not be viewed as part of 

the exercise itself. 

1. Figure 1: “The Lorenz Curve for Economy J is shown by the solid black line. The line of 

perfect equality is shown by the dashed line.”Code 

2. Figure 2: “Bar chart to calculate Gini for economy D. Data are from table 3” Code 

3. Figure 3: “Lorenz curves for artificial countries. Data are from table 3.” Code 

  

https://github.com/simondhalliday/simondhalliday.github.io/blob/master/data_literacy_for_development/lorenz_employment_numeric.R
https://github.com/simondhalliday/simondhalliday.github.io/blob/master/data_literacy_for_development/lorenz_barchart_economyD.R
https://github.com/simondhalliday/simondhalliday.github.io/blob/master/data_literacy_for_development/halliday_inequality_lorenz_set.R
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TABLE 1: Individual Incomes in Each Artificial Economy with their Corresponding 

Daily Incomes (Y) and Per Capita Daily Incomes (PCY) 

 PERSON   

COUNTRY P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Y PCY 

A 1 1 1 2 2 3 4 5 6 10 35 3.5 

B 2 2 2 2 2 3 3 5 6 8 35 3.5 

C 1 1 1 1 2 2 2 10 12 18 50 5 

D 1 2 2 3 4 4 4 8 10 12 50 5 

E 1 1 1 1 6 6 9 10 15 20 70 7 

F 2 3 3 4 4 4 5 6 9 30 70 7 

G 1 2 3 3 4 4 6 12 20 30 85 8.5 

H 1 1 5 5 8 9 10 12 16 18 85 8.5 

I 2 2 3 5 7 9 13 15 18 26 100 10 

J 1 1 2 2 8 8 14 15 19 30 100 10 
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TABLE 2: Poverty Measures for Each Economy at the Two Poverty Lines 

 POVERTY LINE, z = 2  POVERTY LINE, z = 3 

COUNTRY HC PG PG2 FGT(0) FGT(1) FGT(2)  HC PG PG2 FGT(0) FGT(1) FGT(2) 

A 3 3 3 0.3 0.15 0.075  5 8 14 0.5 0.4 0.35 

B 0 0 0 0 0 0  5 5 5 0.5 0.25 0.125 

C 4 4 4 0.4 0.2 0.1  7 11 19 0.7 0.55 0.475 

D 1 1 1 0.1 0.05 0.025  3 4 6 0.3 0.2 0.15 

E 4 4 4 0.4 0.2 0.1  4 8 16 0.4 0.4 0.4 

F 0 0 0 0 0 0  1 1 1 0.1 0.05 0.025 

G 1 1 1 0.1 0.05 0.025  2 3 5 0.2 0.15 0.125 

H 2 2 2 0.2 0.1 0.05  2 4 8 0.2 0.2 0.2 

I 0 0 0 0 0 0  2 2 2 0.2 0.1 0.05 

J 2 2 2 0.2 0.1 0.05  4 6 10 0.4 0.3 0.25 
 

Note: HC = head count, PG = poverty gap, PG2 = poverty gap-squared, FGT(.) corresponds to the Foster-Greer-Thorbecke measure for each 
economy at the relevant poverty line (z = 2, 3) for each of α = 0, 1, 2. 
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TABLE 3: Cumulative Income Shares for Each Economy Used to Compute the Gini Index  
CUMULATIVE SHARE OF INCOME 

COUNTRY 10 20 30 40 50 60 70 80 90 100 

A 0.03 0.06 0.09 0.14 0.20 0.29 0.40 0.54 0.71 1.00 

B 0.06 0.11 0.17 0.23 0.29 0.37 0.46 0.60 0.77 1.00 

C 0.02 0.04 0.06 0.08 0.12 0.16 0.20 0.40 0.64 1.00 

D 0.02 0.06 0.10 0.16 0.24 0.32 0.40 0.56 0.76 1.00 

E 0.01 0.03 0.04 0.06 0.14 0.23 0.36 0.50 0.71 1.00 

F 0.03 0.07 0.11 0.17 0.23 0.29 0.36 0.44 0.57 1.00 

G 0.01 0.04 0.07 0.11 0.15 0.20 0.27 0.41 0.65 1.00 

H 0.01 0.02 0.08 0.14 0.24 0.34 0.46 0.60 0.79 1.00 

I 0.02 0.04 0.07 0.12 0.19 0.28 0.41 0.56 0.74 1.00 

J 0.01 0.02 0.04 0.06 0.14 0.22 0.36 0.51 0.70 1.00 

Equality 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00 
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TABLE 4: Value of Area A at Each Decile, Providing the Total A Area for Each Economy and Therefore 

Each Economy's Gini Index  
AREA A AT EACH 10% SHARE Total  

 

 
10 20 30 40 50 60 70 80 90 100 Area A Gini Palma 

A 0.07 0.14 0.21 0.26 0.30 0.31 0.30 0.26 0.19 0.00 2.04 0.41 2 

B 0.04 0.09 0.13 0.17 0.21 0.23 0.24 0.20 0.13 0.00 1.44 0.29 1 

C 0.08 0.16 0.24 0.32 0.38 0.44 0.50 0.40 0.26 0.00 2.78 0.56 4.5 

D 0.08 0.14 0.20 0.24 0.26 0.28 0.30 0.24 0.14 0.00 1.88 0.38 1.5 

E 0.09 0.17 0.26 0.34 0.36 0.37 0.34 0.30 0.19 0.00 2.41 0.48 5 

F 0.07 0.13 0.19 0.23 0.27 0.31 0.34 0.36 0.33 0.00 2.23 0.46 2.5 

G 0.09 0.16 0.23 0.29 0.35 0.40 0.43 0.39 0.25 0.00 2.59 0.52 3.33 

H 0.09 0.18 0.22 0.26 0.26 0.26 0.24 0.20 0.11 0.00 1.82 0.36 1.5 

I 0.08 0.16 0.23 0.28 0.31 0.32 0.29 0.24 0.16 0.00 2.07 0.41 2.17 

J 0.09 0.18 0.26 0.34 0.36 0.38 0.34 0.29 0.20 0.00 2.44 0.49 5 
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FIGURE 1: The Lorenz Curve for economy J is shown by the solid black line. The line of perfect 

equality is shown by the dashed line. 
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FIGURE 2: Bar chart to calculate Gini Index for economy D. Data are from table 3. 
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FIGURE 3: Lorenz curves for artificial countries. Data are from table 3. 
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