Masthead Logo

Smith ScholarWorks

Geosciences: Faculty Publications

Geosciences

1-6-2009

Surface Cracks Record Long-Term Seismic Segmentation of the Andean Margin

John P. Loveless Cornell University, jloveles@smith.edu

Richard W. Allmendinger Cornell University

Matthew E. Pritchard Cornell University

Jordan L. Garroway Cornell University

Gabriel González Universidad Católica del Norte

Follow this and additional works at: https://scholarworks.smith.edu/geo_facpubs

Part of the Geology Commons

Recommended Citation

Loveless, John P.; Allmendinger, Richard W.; Pritchard, Matthew E.; Garroway, Jordan L.; and González, Gabriel, "Surface Cracks Record Long-Term Seismic Segmentation of the Andean Margin" (2009). Geosciences: Faculty Publications, Smith College, Northampton, MA.

https://scholarworks.smith.edu/geo_facpubs/13

This Article has been accepted for inclusion in Geosciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu

- ¹ Surface cracks record long-term seismic segmentation of
- 2 the Andean margin
- **3** John P. Loveless^{1, 2}, Richard W. Allmendinger¹, Matthew E. Pritchard¹, Jordan L.
- 4 Garroway¹, Gabriel González³
- ⁵ ¹Department of Earth and Atmospheric Sciences, Cornell University, Snee Hall, Ithaca,
- 6 New York 14853, USA
- 7 ²Current address: Department of Earth and Planetary Sciences, Harvard University, 20
- 8 Oxford Street, Cambridge, Massachusetts 02138, USA
- 9 ³Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280,
- 10 Antofagasta, Chile

11 ABSTRACT

12 Understanding the long-term patterns of great earthquake rupture along a 13 subduction zone provides a framework for assessing modern seismic hazard. However, 14 evidence that can be used to infer the size and location of past earthquakes is typically 15 erased by erosion after a few thousand years. Meter-scale cracks that cut the surface of 16 coastal areas in northern Chile and southern Peru preserve a record of earthquakes 17 spanning several hundred thousand years owing to the hyperarid climate of the region. 18 These cracks have been observed to form during and/or shortly after strong subduction 19 earthquakes, are preserved for long time periods throughout the Atacama Desert, 20 demonstrate evidence for multiple episodes of reactivation, and show changes in 21 orientation over spatial scales similar to the size of earthquake segments. Our

22	observations and models show that crack orientations are consistent with dynamic and
23	static stress fields generated by recent earthquakes. While localized structural and
24	topographic processes influence some cracks, the strong preferred orientation over large
25	regions indicates that cracks are primarily formed by plate boundary-scale stresses,
26	namely repeated earthquakes. We invert the crack-based strain data for slip along the
27	well-known Iquique seismic gap segment of the margin and find consistency with gravity
28	anomaly-based inferences of long-term earthquake slip patterns, as well as the magnitude
29	and location of the November 2007 Tocopilla earthquake. We suggest that the meter-
30	scale cracks can be used to map characteristic earthquake rupture segments that persist
31	over many seismic cycles, which encourages future study of cracks and other small-scale
32	structures to better constrain the persistence of asperities in other arid, tectonically active
33	regions.
34	INTRODUCTION
35	The characteristic earthquake model of seismic recurrence suggests that a given
36	fault segment ruptures repeatedly in earthquakes of similar magnitude and areal extent
37	(Schwartz and Coppersmith, 1984). While some historical (Comte and Pardo, 1991) and

38 paleoseismic (Sieh, 1996) records support this model, it is unclear whether these seismic

39 segments are truly long-lived, because geologic indicators of distinct earthquakes usually

40 persist for only a few k.y. (up to ~10 events). To assess the longevity of the segmented
41 nature of seismicity, we require data that reflect deformation caused by 100s to 1000s of
42 repeated earthquakes.

43	Arrays of meter-scale surface cracks that penetrate coastal regions of the northern
44	Chile and southern Peru forearc provide insight into the long-term nature of great
45	earthquakes (magnitude 8 and larger) along the plate boundary. We use 2.5-m resolution
46	satellite imagery available in Google Earth to map concentrations of cracks throughout
47	the Andean forearc between 17.5° and 23.5°S (Fig. 1); examination of regions outside
48	these latitudinal bounds yields only sparse examples of cracking, likely due to slightly
49	wetter climatic conditions (Ewing et al., 2006) and presence of unconsolidated sediment
50	(Rech et al., 2003), both of which inhibit crack preservation. We complement the remote
51	sensing with field observations at several localities (Loveless, 2008; Loveless et al.,
52	2005) and, because cracks throughout the study area are morphologically similar, we
53	generalize our field results to regions we have not visited. In general, crack clusters show
54	preferred orientations that vary on spatial scales similar to great earthquake rupture areas.
55	Between 19° and 23°S, which mark the estimated latitudinal bounds of the great 1877
56	Iquique earthquake (Comte and Pardo, 1991), mean length-weighted crack strike rotates
57	from NW to NNE. At several localities including east of the Mejillones Peninsula (23°S),
58	there are populations of cracks showing a bimodal distribution in strike, with one set
59	striking NE and the other NW (Fig. 1). Cracks near Ilo, Peru strike at a high angle to the
60	coastline and plate boundary, approximately parallel to the direction of plate
61	convergence.
62	Hyperaridity in the region, which has persisted for at least the last 6 M.y. (Hartley
63	and Chong, 2002), if not since before 16-18 Ma (Dunai et al., 2005; Rech et al., 2006),

64 allows for long-term preservation of the cracks. The gypsum-indurated soil that covers

65	much of the coastal region between elevations of 300 and 1200 m (Rech et al., 2003)
66	provides a durable surface crust that further enhances crack preservation. Our field
67	observations reveal crack apertures ranging from 10s of cm to more than 1 m; these
68	cracks can be mapped using the imagery, but we cannot comprehensively define their
69	apertures. Although many cracks are preserved in the gypsum-indurated crust (Fig. 1,
70	inset), there are numerous fissures penetrating up to 12 m into bedrock. We interpret the
71	numerous layers of gypsum plated vertically onto crack walls as indication of repeated
72	episodes of sealing and reopening. The rate of gypsum accumulation is unknown,
73	limiting the information that it can provide about the age of cracks. However, based on
74	cosmogenic dating of the geomorphic surfaces into which the cracks cut and
75	morphologically similar neotectonic structures (González et al., 2006), we propose that
76	the cracks represent deformation as old as several hundred k.y., encompassing 1000s of
77	~100 yr interplate earthquake cycles (Loveless et al., 2005).
78	Local structural, topographic, and/or geomorphic effects and stresses related to
79	earthquakes within the subducting slab (Marquardt et al., 2006) influence formation of
80	some cracks. In particular, some cracks strike parallel to crustal faults (González et al.,
81	2008) and drainages (Keefer and Moseley, 2004), indicating that pre-existing linear
82	features can affect crack strike. However, the large scale patterns of strike change (Fig.
83	1) and the fact that cracks were generated by the 1995 M_w 8.1 Antofagasta, Chile
84	(González and Carrizo, 2003) and 2001 M_w 8.5 Arequipa, Peru events (Keefer and
85	Moseley, 2004) indicate that interplate earthquakes are the principal driver of formation.
86	Mode 1 cracks – which, based on the paucity of observed lateral offset, we infer most

87	cracks to be (Loveless et al., 2005) - open in the direction of least compressional
88	principal stress (σ_3) and therefore strike parallel to the most compressional direction (σ_1)
89	(Pollard and Segall, 1987). By constructing a regional map of crack strikes, we
90	effectively map the orientations of the principal stress axes responsible for their
91	formation. The stress field produced by a subduction zone earthquake varies as a function
92	of the slip distribution on the fault, with σ_1 axes varying from nearly parallel to the fault
93	slip vector around the center of the rupture zone to oblique to the slip direction near the
94	rupture terminations (Fig. 2).
95	MODELING COSEISMIC STRESS FIELDS
96	In order to explore the relationships between the mode 1 surface cracks and plate
97	boundary earthquakes, we calculate the coseismic principal deviatoric stress fields related
98	to great earthquakes on four segments of the Andean margin: the 2001 Arequipa, 1868
99	M~8.5 southern Peru, 1877 M~8.5 Iquique, Chile, and 1995 Antofagasta events (rupture
100	areas shown in Figure 1; Detailed discussion appears in data repository ¹). We use
101	published solutions for slip distributions of the 1995 (Pritchard et al., 2006) and 2001
102	(Pritchard et al., 2007) events and approximations of the historical earthquake slip
103	patterns (Comte and Pardo, 1991). Figs. DR1-DR4 illustrate the relationships between the
104	forward models of coseismic static stress fields and the permanent strain demonstrated by
105	the surface cracks.
106	In general, there is good agreement between the observed mean strikes of cracks
107	and the orientation of modeled σ_1 axes. In the case of the bimodal strike crack
108	populations east of the Mejillones Peninsula, we find that the NW striking cracks are

109	consistent with the NE-SW directed σ_3 axes induced by events on the Antofagasta
110	segment (Fig. DR1), while the NE striking cracks are opened by the NW-SE trending σ_3
111	axes related to seismicity on the Iquique segment (Fig. DR2). Similarly, the bimodal
112	crack clusters in northernmost Chile are affected by stress related to earthquakes on the
113	Iquique and southern Peru segments of the margin (Figs. DR2, DR3).
114	The rotation of mean crack strike from NNE to NW from south to north along the
115	length of the Iquique segment (Fig. 1) agrees with the stress field predicted by the
116	forward models (Figs. 2, DR2). The cracks mapped near the city of Ilo, Peru lie near the
117	center of the estimated rupture zone of the 1868 earthquake and strike nearly
118	perpendicular to the σ_1 orientation predicted by the 1868 model, indicating that these
119	cracks are minimally affected by the static stress caused by earthquakes on this segment,
120	on which the great 1604 earthquake also occurred (Comte and Pardo, 1991). The mapped
121	cracks are suggested to have formed either during or shortly after the 2001 Arequipa
122	earthquake (Keefer and Moseley, 2004). En echelon map patterns of these cracks suggest
123	accommodation of WSW-directed left-lateral shear in addition to opening, consistent
124	with the kinematics reported for nearby faults (Audin et al., 2008). This indicates that the
125	cracks near IIo are mixed-mode (1 and 2) and thus we expect that σ_1 for the stress field
126	that created them should be oblique to the crack strike as predicted by our model of the
127	2001 event (Fig. DR4).
128	INVERTING CRACK DATA FOR PALEOSEISMIC SLIP

Studies of historical seismicity have relied on qualitative written records of
sustained damage (Comte and Pardo, 1991) to estimate event magnitude and location.

131	Given the agreement between predicted stress fields and observed crack strikes, we
132	propose that cracks can provide quantitative constraints on the slip distribution of paleo-
133	earthquakes. Because the inferred rupture limit of the 1877 earthquake encompasses 16
134	of the 17 cracked regions, we use the cracks to invert for plausible slip distributions
135	related to that event, or a sum of events occurring on the segment. In doing so, we make
136	the assumption that cracks used to constrain the slip pattern open exclusively due to
137	coseismic stress earthquakes on this segment, plus a contribution from regional stress
138	(see text in data repository).
139	The mean residual magnitude between the observed crack strikes and those
140	predicted by our preferred inversion is 8.2° (Fig. 3). While the solution for coseismic slip
141	is non-unique (see text in data repository), several robust features are notable. The
142	greatest resolved slip is concentrated ~35 km deep offshore Iquique (20.25°S), consistent
143	with the depth of maximum slip during the 1995 earthquake and $\sim 1^{\circ}$ north of the
144	epicenter of the 1877 earthquake inferred from historical data (Comte and Pardo, 1991).
145	Smaller loci of moment release are located around 22.5°S and 23.5°S. The distance
146	between slip patches suggests that they may represent separate earthquakes or widely
147	spaced asperities that rupture during a single event. Because of the lack of temporal
148	information contained in the data set, the crack-based strain field cannot distinguish a
149	single earthquake with a heterogeneous slip distribution from several smaller events.
150	Based on aftershocks mapped by the United States Geological Survey, the November
151	2007 M_w 7.7 Tocopilla earthquake ruptured the margin between ~22° and 23°S (Fig. 3),
152	indicating that it broke a portion of the plate boundary on which little Iquique event slip

is predicted by the inversion. This suggests that much of the segment ruptures during
truly great earthquakes such as that of 1877 but the portions remaining unbroken slip in
smaller events.
DISCUSSION

157 Recent studies (Llenos and McGuire, 2007; Song and Simons, 2003; Wells et al., 158 2003) have found a correlation between negative forearc trench-parallel gravity 159 anomalies (TPGA) and zones of large-magnitude slip during strong subduction zone 160 earthquakes. We construct a TPGA (Sandwell and Smith, 1997; Song and Simons, 2003) 161 field for the Iquique segment to compare with the slip distribution resolved from our 162 inversion of the crack-based strain data (Fig. 3). The region in which resolved slip is 163 greatest coincides with an area of strongly negative TPGA. The lack of resolved slip at 164 shallow depths south of 21°S and occurrence of the smaller Tocopilla earthquake near 165 22°S are consistent with the prevalence of positive TPGA, which predicts slip of lower 166 magnitude during the characteristic Iquique event. The forearc gravity field is not a 167 transient property, thus both the gravity field and our inversion of geological data place 168 constraints on long-term patterns of great earthquake slip. 169 In addition to the static stresses, dynamic stresses associated with the passage of 170 seismic waves can also cause cracking of the surface (Dalguer et al., 2003). We calculate

and find that stress axes calculated from static dislocation models are reasonably similar

the temporal evolution of stress induced at the surface by the 1995 and 2001 earthquakes

173 in orientation to the dynamic principal stresses (Fig. DR7). This indicates that our

171

174 regional-scale mapping of cracks places constraints on the extent and distribution of slip

175	associated with plate boundary earthquakes, regardless of whether static or dynamic
176	stress is the primary driver of crack evolution. The method used to calculate dynamic
177	stress (Cotton and Coutant, 1997) does not take into account changes in material
178	properties such as the presence of existing faults and lithologic heterogeneity that may
179	localize deformation. We suggest that dynamic stressing is responsible for the formation
180	of the cracks near Antofagasta, which formed in poorly consolidated sediments parallel to
181	a nearby NE-striking fault scarp during the 1995 event (González and Carrizo, 2003) and
182	may have been impacted by the soil characteristics and fault structure.
183	We suggest that great earthquakes along the northern Chile and southern Peru
184	margin repeatedly rupture areas several hundred km in length in quasi-characteristic
185	earthquakes. If the location of segment boundaries varied substantially on hundred k.y.
186	timescales, we would expect cracks to show a range of strikes rather than one or two
187	preferred orientations, or a greater frequency of lateral offset. Historic records show that
188	not all segments completely re-rupture in single earthquakes but may sometimes break in
189	several smaller events (Kanamori and McNally, 1982). However, our models of
190	earthquake slip and crack formation indicate that on a regional scale, the stress field is
191	more sensitive to the extent of slip than details of its distribution (Fig. DR6). This
192	suggests that earthquakes on a given segment of the plate boundary may vary in their slip
193	distribution, but the accumulated strain exhibited by surface cracks implies that the
194	dimensions and boundaries of characteristic earthquake rupture remain relatively
195	constant.

196	The existence of long-lived earthquake segments has several implications.
197	Knowledge of segment dimensions and boundary locations is important for determining
198	earthquake recurrence intervals and thus assess seismic hazard. Numerous explanations
199	for the segmented nature of subduction zone earthquakes have been proposed, including
200	topographic features on the slab, interaction with upper plate faults (Audin et al., 2008),
201	and changes in upper plate structure, and our suggestion that segments are long-lived and
202	can be mapped by surface features will provide important constraints on these
203	hypotheses. Finally, surface cracks have been observed to form coseismically in
204	numerous tectonic settings, including along strike-slip faults on the Tibetan Plateau (Bhat
205	et al., 2007) and in the Middle East (Fielding et al., 2005), and our work motivates large-
206	scale mapping of these features using high-resolution global imagery, such as that
207	available in Google Earth, to determine whether long-lived seismic segmentation exists in
208	these and other areas.
209	ACKNOWLEDGMENTS
210	This research is supported by NSF grants EAR-0337496 (to RWA) and EAR-
211	0738507 (to RWA and MEP) and a NASA graduate research fellowship (NNG-04-
212	GQ-94-H, to JPL). Several figures were plotted using GMT (Wessel and Smith,
213	1991). We thank G. Hilley and D. Keefer for careful reviews, and B. Meade and F.
214	Maerten for helpful discussion.

215 **REFERENCES CITED**

- 216 Audin, L., Lacan, P., Tavera, H., and Bondoux, F., 2008, Upper plate deformation and
- 217 seismic barrier in front of Nazca subduction zone: The Chololo fault system and

218 active tectonics along the Coastal Cordillera, southern Peru: Tectonophysics, In

219 press, doi: 10.1016/j.tecto.2007.11.070.

- 220 Bhat, H., Dmowska, R., King, G.C.P., Klinger, Y., and Rice, J.R., 2007, Off-fault
- damage patterns due to supershear ruptures with application to the 2001 M_w 8.1
- 222 Kokoxili (Kunlun) Tibet earthquake: Journal of Geophysical Research, v. 112,
- 223 B06301, doi: 10.1029/2006JB004425.
- 224 Comte, D., and Pardo, M., 1991, Reappraisal of great historical earthquakes in the
- 225 northern Chile and southern Peru seismic gaps: Natural Hazards, v. 4, p. 23–44, doi:
- 226 10.1007/BF00126557.
- 227 Cotton, F., and Coutant, O., 1997, Dynamic stress variations due to shear faults in a
- 228 plane-layered medium: Geophysical Journal International, v. 128, p. 676–688, doi:
- 229 10.1111/j.1365-246X.1997.tb05328.x.
- 230 Dalguer, L.A., Irikura, K., and Riera, J.D., 2003, Simulation of tensile crack generation
- by three-dimensional dynamic shear rupture propagation during an earthquake:
- 232 Journal of Geophysical Research, v. 108, 2144, doi: 10.1029/2001JB001738.
- 233 Dunai, T.J., González L., G.A., and Juez-Larré, J., 2005, Oligocene–Miocene age of
- aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive

235 landforms: Geology, v. 33, p. 321–324, doi: 10.1130/G21184.1.

- 236 Ewing, S., Sutter, B., Owen, J., Nishiizumi, K., Sharp, W., Cliff, S.S., Perry, K., Dietrich,
- 237 W., McKay, C.P., and Amundson, R., 2006, A threshold in soil formation at Earth's
- arid–hyperarid transition: Geochimica et Cosmochimica Acta, v. 70, p. 5293–5322,
- doi: 10.1016/j.gca.2006.08.020.

240	Fielding, E.J., Talebian, M., Rosen, P.A., Nazari, H., Jackson, J.A., Ghorashi, M., and
241	Walker, R., 2005, Surface rupture and building damage of the 2003 Bam, Iran
242	earthquake mapped by satellite synthetic aperture radar interferometric correlation:
243	Journal of Geophysical Research, v. 110, B03302, doi: 10.1029/2004JB003299.
244	González, G., and Carrizo, D., 2003, Segmentación, cinemática y chronología relativa de
245	la deformación tardía de la Falla Salar del Carmen, Sistema de Fallas Atacama,
246	(23°40'S), norte de Chile: Revista Geológica de Chile, v. 30, p. 223–244.
247	[[Q1: There is some discrepancy between "Gonzalez L." or just "Gonzalez."
248	Please choose one and make it consistent for all references to this author.
249	Q1]]González, G., Dunai, T., Carrizo, D., and Allmendinger, R., 2006, Young
250	displacements on the Atacama Fault System, northern Chile from field observations
251	and cosmogenic ²¹ Ne concentrations: Tectonics, v. 25, TC3006, doi:
252	10.1029/2005TC001846.
253	González, G., Gerbault, M., Martinod, J., Cembrano, J., Carrizo, D., Allmendinger, R.,
254	and Espina, J., 2008, Crack formation on top of propagating reverse faults of the
255	Chuculay Fault System, northern Chile: Insights from field data and numerical
256	modelling: Journal of Structural Geology, v. 30, p. 791-808, doi:
257	10.1016/j.jsg.2008.02.008.
258	Hartley, A.J., and Chong, G., 2002, Late Pliocene age for the Atacama
259	Desert:Implications for the desertification of western South America: Geology, v. 30,
260	p. 43-46, doi: 10.1130/0091-7613(2002)030<0043:LPAFTA>2.0.CO;2.

261	Kanamori, H., and McNally, K., 1982, Variable rupture mode of the subduction zone
262	along the Ecuador-Columbia coast: Bulletin of the Seismological Society of
263	America, v. 72, p. 1241–1253.
264	Keefer, D.K., and Moseley, M.E., 2004, Southern Peru desert shattered by the great 2001
265	earthquake: Implications for paleoseismic and paleo-El Niño-Southern Oscillation
266	records: Proceedings of the National Academy of Sciences of the United States of
267	America, v. 101, p. 10878–10883, doi: 10.1073/pnas.0404320101.
268	Llenos, A.L., and McGuire, J.J., 2007, Influence of fore-arc structure on the extent of
269	great subduction zone earthquakes: Journal of Geophysical Research. Solid Earth,
270	v. 112, B09301, doi: 10.1029/2007JB004944.
271	Loveless, J.P., 2008, Extensional tectonics in a convergent margin setting: Deformation
272	of the northern Chilean forearc [PhD. thesis]: Ithaca, NY, Cornell University.
273	Loveless, J.P., Hoke, G.D., Allmendinger, R.W., González, G., Isacks, B.L., and Carrizo,
274	D.A., 2005, Pervasive cracking of the northern Chilean Coastal Cordillera: New
275	evidence for forearc extension: Geology, v. 33, p. 973-976, doi: 10.1130/G22004.1.
276	Maerten, F., Resor, P., Pollard, D.D., and Maerten, L., 2005, Inverting for slip on three-
277	dimensional fault surfaces using angular dislocations: Bulletin of the Seismological
278	Society of America, v. 95, p. 1654–1665, doi: 10.1785/0120030181.
279	Marquardt, C., Naranjo, J.A., and Lavenu, A., 2006, Efectos geológicos del sismo del 13
280	de junio 2005, Región de Tarapacá, XI Congreso Geológico Chileno, Volume 2:
281	Antofagasta, Chile, p. 435–438.

282	Pollard, D.D., and Segall, P., 1987, Theoretical displacements and stresses near fractures
283	in rock: With applications to faults, joints, veins, dikes, and solution surface, in
284	Atkinson, B.K., ed., Fracture Mechanics of Rock: London, Academic Press, p. 277-
285	349.
286	Pritchard, M.E., Ji, C., and Simons, M., 2006, Distribution of slip from $11 M_w > 6$
287	earthquakes in the northern Chile subduction zone: Journal of Geophysical Research,
288	v. 111, B10302, doi: 10.1029/2005JB004013.
289	Pritchard, M.E., Norabuena, E.O., Ji, C., Boroschek, R., Comte, D., Simons, M., Dixon,
290	T., and Rosen, P.A., 2007, Geodetic, teleseismic, and strong motion constraints on
291	slip from recent southern Peru subduction zone earthquakes: Journal of Geophysical
292	Research, v. 112, B03307, doi: 10.1029/2006JB004294.
293	Rech, J.A., Currie, B.S., Michalski, G., and Cowan, A.M., 2006, Neogene climate change
294	and uplift in the Atacama Desert, Chile: Geology, v. 34, p. 761-764, doi:
295	10.1130/G22444.1.
296	Rech, J.A., Quade, J., and Hart, W.S., 2003, Isotopic evidence for the source of Ca and S
297	in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile: Geochimica et
298	Cosmochimica Acta, v. 67, p. 575-586, doi: 10.1016/S0016-7037(02)01175-4.
299	Sandwell, D.T., and Smith, W.H.F., 1997, Marine gravity anomaly from Geosat and ERS
300	1 satellite altimetry: Journal of Geophysical Research, v. 102, p. 10,039-10,054, doi:
301	10.1029/96JB03223.

302	Schwartz, D.P., and Coppersmith, K.J., 1984, Fault behavior and characteristic
303	earthquakes: Examples from the Wasatch and San Andreas fault zones: Journal of
304	Geophysical Research, v. 89, p. 5681–5698, doi: 10.1029/JB089iB07p05681.
305	Sieh, K., 1996, The repetition of large-earthquake ruptures: Proceedings of the National
306	Academy of Sciences of the United States of America, v. 93, p. 3764–3771, doi:
307	10.1073/pnas.93.9.3764.
308	Song, TR.A., and Simons, M., 2003, Large trench-parallel gravity variations predict
309	seismogenic behavior in subduction zones: Science, v. 301, p. 630-633, doi:
310	10.1126/science.1085557.
311	Wells, R.E., Blakely, R.J., Sugiyama, Y., Scholl, D.W., and Dinterman, P.A., 2003,
312	Basin-centered asperities in great subduction zone earthquakes: A link between slip,
313	subsidence, and subduction erosion?: Journal of Geophysical Research, v. 108, 2507,
314	doi: 10.1029/2002JB002072.
315	FIGURE CAPTIONS
316	Figure 1. Map of the northern Chile and southern Peru forearc regions. Ovals indicate the
317	approximate rupture segments of the most recent earthquakes on four segments of the
318	plate boundary; large dots represent the inferred epicenters. Rose diagrams show the
319	length-weighted distribution of crack strikes, with the black vector denoting the mean
320	strike. Inverted triangles show the position of the population; filled symbols denote
321	bimodal distribution in strike (see data repository). The dark gray region onshore shows
322	the area lying between 300 m and 1200 m elevation, delineating the bounds within which
323	gypsum precipitates from the dense coastal fog (Rech et al., 2003). The inset IKONOS

324 satellite image in the upper right corner shows an example of surface cracking. Cracks 325 are concentrated in gypsum-indurated sediment and are identified as parallel, N-S striking 326 dark lines in the light colored sediment. The darker regions are unconsolidated sediments 327 in which cracks are not well preserved. 328 Figure 2. Schematic relationship between subduction zone earthquake rupture area 329 (offshore ellipse with bold arrows denoting the coseismic slip vector) and principal stress 330 exerted at the surface. Gray arrows show σ_3 axes, which are approximately parallel to the 331 slip vector near the center of the rupture segment, opening cracks (narrow white ovals) 332 that strike in a perpendicular direction, parallel to the σ_1 direction (black axes). Near the 333 rupture terminations, cracks strike oblique to the earthquake slip vector. 334 Figure 3. Preferred inverse model of the 1877 Iquique earthquake, shown as 1 m interval 335 contour lines of coseismic slip. The slip distribution was calculated by inverting (Maerten 336 et al., 2005) the strain field represented by the populations of surface cracks for slip on 337 the subduction interface. The mean crack strike at each mapped locality is shown by a red 338 bar and the calculated σ_1 orientation at the same location is indicated by a blue bar; the 339 mean residual angle between the observed and predicted crack strike is 8.2°. The contours 340 are overlain on the trench-parallel gravity anomaly (TPGA) constructed for the Iquique 341 segment. The region of greatest resolved slip for the Iquique event coincides with 342 strongly negative TPGA, consistent with recent studies (Llenos and McGuire, 2007; Song 343 and Simons, 2003; Wells et al., 2003). The approximate rupture area of the November 344 2002 M_w 7.7 Tocopilla earthquake is shown as the dashed rectangle, based on 345 information from the United States Geological Survey.

- ¹ Data repository contains supplementary text, 7 figures, 3 tables.
- 347 ²GSA Data Repository item 2008xxx, xxxxxxx, is available online at
- 348 www.geosociety.org/pubs/ft2008.htm, or on request from editing@geosociety.org or
- 349 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Total Angular Error: 131