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Preheating in new inflation

Mariel Desroche,1 Gary N. Felder,1 Jan M. Kratochvil,2 and Andrei Linde2

1Department of Physics, Clark Science Center, Smith College, Northampton, Massachusetts 01063, USA
2Department of Physics, Stanford University, Stanford, California 94305-4060, USA

(Received 8 February 2005; published 20 May 2005)

During the last ten years a detailed investigation of preheating was performed for chaotic inflation and
for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario
remained practically unexplored. We investigate preheating in new inflation, using a combination of
analytical and numerical methods. We find that the decay of the homogeneous component of the inflaton
field and the resulting process of spontaneous symmetry breaking in the simplest models of new inflation
usually occurs almost instantly: for the new inflation on the GUT scale it takes only about 5 oscillations of
the field distribution. The decay of the homogeneous inflaton field is so efficient because of a combined
effect of tachyonic preheating and parametric resonance. At that stage, the homogeneous oscillating
inflaton field decays into a collection of waves of the inflaton field, with a typical wavelength of the order
of the inverse inflaton mass. This stage usually is followed by a long stage of decay of the inflaton field
into other particles, which can be described by the perturbative approach to reheating after inflation. The
resulting reheating temperature typically is rather low.

DOI: 10.1103/PhysRevD.71.103516 PACS numbers: 98.80.Cq

I. INTRODUCTION

Inflationary cosmology solves a number of problems in
the big bang model and is well supported by observational
evidence. According to this theory the Universe at the end
of the inflationary period consisted almost entirely of the
homogeneous inflaton field. After inflation this field de-
cayed into inhomogeneous fluctuations and other forms of
particles and fields, ultimately giving rise to the forms of
matter that make up the Universe today.

An understanding of this decay period, known as reheat-
ing, can provide crucial links between the inflationary
epoch and the subsequent thermalized hot big bang era.
The reheating period may have involved high energy phase
transitions, symmetry breaking, baryogenesis, and other
effects that could have observable signatures and that could
give us insights into physics at energies beyond the reach
of accelerator experiments.

Early discussions of reheating were based on the as-
sumption that the homogeneous inflaton field decayed
perturbatively as a collection of particles [1]. The pertur-
bative mechanism typically requires thousands of oscilla-
tions of the inflaton field until it decays into usual
elementary particles. More recently, however, it was dis-
covered that coherent field effects such as parametric
resonance can lead to the decay of the homogeneous field
much faster than would have been predicted by perturba-
tive methods, within a few dozen oscillations [2]. These
coherent effects produce high energy, nonthermal fluctua-
tions that could have significance for understanding devel-
opments in the early Universe, such as baryogenesis. This
early stage of rapid nonperturbative decay may be followed
by a period of slower, perturbative effects, so the rapid
early stage is called preheating.

In [3] it was found that another effect known as ta-
chyonic preheating can lead to even faster decay than
parametric resonance. This effect occurs whenever the
homogeneous field rolls down a tachyonic [�d2V=d�2�<
0] region of its potential. When that occurs a tachyonic, or
spinodal, instability leads to exponentially rapid growth of
all long-wavelength modes [k2 < j�d2V=d�2�j]. This
growth can often drain all of the energy from the homoge-
neous field within a single oscillation.

We are now in a position to classify the dominant
mechanisms by which the homogeneous inflaton field de-
cays in different classes of inflationary models. The sim-
plest of these models can be broken into three classes:
small-field, or new inflation models [4], large-field, or
chaotic inflation models [5], and multifield, or hybrid
models [6].

In simple chaotic inflation preheating is generally domi-
nated by parametric resonance, although there are parame-
ter ranges where this cannot occur.1 Tachyonic preheating
does not occur in these models because the curvature of the
potential is always positive. In [3] it is shown that ta-
chyonic preheating dominates the preheating phase in
hybrid models of inflation.

In this paper we explore preheating in new inflationary
models [4]. The first attempt to study parametric resonance
in new inflation was made in Ref. [8]. However, as shown
in [2], a description of parametric resonance given in [8]
was not quite correct. It was also realized that the ta-
chyonic instability may play some role in the process of

1We refer to ‘‘simple’’ models as ones where the field simply
oscillates around a minimum at � � 0, such as V � 1

2m
2�2. In

nonoscillatory models such as exponential potentials the situ-
ation is more complicated. See [7] for a discussion of preheating
in these models.
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preheating in new inflation [2,9]. But until the development
of the methods of lattice simulations [10,11] and of the
theory of tachyonic preheating [3], we were not prepared
for a more complete investigation of this issue.

In our paper we will perform a detailed investigation of
preheating in new inflation and show that, for almost all
realistic parameters of new inflation, tachyonic preheating
works simultaneously with parametric resonance. The
combined effect is very strong: the homogeneous mode
of the inflaton field typically decays within a few oscilla-
tions. This is a rather unexpected result, which was not
anticipated in any of the previous studies of preheating in
new inflation.

We should emphasize, however, that this stage of reheat-
ing is not the last one. The inhomogeneities of the scalar
field can be very long-living in the new inflation scenario;
their decay can be described by the perturbative methods of
Ref. [1].

We do not pretend that the taxonomy given above ex-
hausts the space of all possible inflationary theories. One
can imagine arbitrarily complicated models that combine
aspects of small- and large-field models or theories with
noncanonical kinetic terms, gravitational effects, and so
on. Nonetheless, we believe that by understanding preheat-
ing in these three classes of theories we will have a good
understanding of all of the simplest possibilities, and in
many cases the more complex models will simply involve
combinations of the effects seen in these simpler cases.

In Sec. II we give an analytic investigation of tachyonic
preheating in the simplest model of new inflation.
Section III describes parametric resonance which occurs
in this model. A full treatment, which would unify these
two effects and take into account other important effects
which may occur at the later stages of preheating, requires
lattice calculations [10], which we perform using the pro-
gram LATTICEEASY [11]. In Sec. IV we describe our lattice
simulations and summarize their results, including the
growth of fluctuations, the properties of the resulting spec-
tra, and the formation of domain walls. Finally, we con-
clude with a summary of preheating in new inflation
models and suggestions for further work.

II. TACHYONIC PREHEATING IN NEW
INFLATION

In this paper we are considering tachyonic preheating in
models of new inflation, i.e. models where the inflaton field
rolls from a potential maximum at � � 0 to a minimum at
a symmetry breaking value � � v. For definiteness we
focus primarily on the original new inflation model [4]
based on the Coleman-Weinberg potential [12]

V��� �
1

4
	�4

�
ln
j�j

v
�

1

4

�
�

1

16
	v4; (1)

but the results we present should apply to any new inflation
model (with one small exception noted below.) The poten-

tial energy takes its maximum value V0 � �1=16�	v4 at
� � 0 and vanishes at the minima at � � �v. We are
going to use units Mp � 1, even though sometimes we will
write Mp explicitly.

During inflation the field is near the maximum. Roughly
speaking, inflation ends when H2 � d2V=d�2. Neglecting
factors of order unity (including logarithmic factors), this
occurs at a field value

�0 �
v2

Mp
: (2)

While this result is approximate, we have verified numeri-
cally that for a wide range of values of v this field value
corresponds to a time when kinetic energy is still orders of
magnitude smaller than potential energy, so we can safely
start our lattice simulations at this time without fear of
missing important effects.

First we consider the homogeneous rolling field, ne-
glecting backreaction. The energy lost to Hubble friction
in one oscillation can be estimated as

�V � H _���: (3)

Up to factors of order unity we can approximate H �������
V0

p
=Mp, _� �

������
V0

p
, and �� � v, so

�V � V0
v
Mp

: (4)

Approximating the potential near the top as a negative
quartic potential we can use this formula to find the field
value �1 after the first oscillation

�	�4
0 � 	�4

1 � V0
v
Mp

� 	v4 v
Mp

; (5)

�1 � v
�
v
Mp

�
1=4

: (6)

Continued application of this argument leads to the con-
clusion that after n oscillations the field value will be
roughly

�n � v
�
nv
Mp

�
1=4

: (7)

We wish now to estimate the growth of fluctuations due
to tachyonic preheating. We consider preheating to be
finished when �� � v, at which point it is meaningless
to talk about oscillations of the homogeneous field. To
estimate this growth we consider the growth of a single
mode �k, which to first order obeys the equation of motion


� k � �p2 �m2
eff��k � 0; (8)

where m2
eff � d2V=d�2 is the effective mass of the field

as a function of the value of the homogeneous field h�i and
p is the physical (not comoving) momentum. Because
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m2
eff < 0 modes with p2 < jm2

effj will experience exponen-
tial growth.

To estimate the speed of this growth we can use the
following trick. If we consider a homogeneous field we can
define a variable D � _� and write an equation of motion
for D,

_D�
dV
d�

� 0; (9)


D � �
d2V

d�2

d�
dt

� �m2
effD: (10)

Thus modes with p2  jm2
effj obey the same equation of

motion as the derivative _�. We know the solution to the
equation for _� from energy conservation, though. Treating
the potential as an inverted quartic and neglecting Hubble
friction, _� / �2. The growth of the fluctuations �� is
determined by the modes with p2  jm2

effj, so �� also
grows proportionally to �2.

At the end of inflation

�� � H �

������
V0

p

Mp
�

����
	

p
v2

Mp
: (11)

Thus after the field falls to the minimum at � � v

�� �

����
	

p
v2

Mp

�
v
�0

�
2
�

����
	

p
Mp: (12)

Note that as the field rolls back up the potential the fluc-
tuations will not lose this growth because the waves are
decoherent.

This result says that for v <
����
	

p
, which is typically of

order 10�6, preheating will complete in a single oscilla-
tion. For larger values of v we must consider subsequent
oscillations. In each one �� grows by an amount �v=�n�

2,
which is roughly �Mp=v�

1=2, so after n oscillations the
fluctuations will have grown to roughly

�� �
����
	

p
Mp

�Mp

v

�
n=2

: (13)

The number of oscillations required for �� to reach v in
this approximation is

n �
ln	
ln v

Mp

: (14)

For 	 � 10�12, which corresponds to COBE normalization
of density perturbations, and v� 10�3Mp, which corre-
sponds to the GUT scale, preheating will complete in
roughly 5 oscillations. Of course when ��� v the pertur-
bative approximation will break down, but preheating will
be over. As we will see, the numerical investigation con-
firms this simple estimate.

Qualitatively these results depend only on the fact that
the inflaton feels an inverted polynomial potential as it rolls

from its maximum at � � 0 to the minimum at � � v.
Thus the same type of behavior would result from an
inverted quartic with or without logarithmic corrections,
an inverted cubic potential, or nearly any other symmetry
breaking potential.2

These estimates suggest that for any v  1 tachyonic
preheating will drain the energy from the homogeneous,
oscillating, inflaton field within a few oscillations. We will
see in the next section that there are important corrections
to these rough estimates, and for v sufficiently large
tachyonic preheating does not operate; however for v &

10�2 the behavior is qualitatively as described by these
analytical estimates.

III. PARAMETRIC RESONANCE

In addition to the tachyonic preheating, there is also a
parametric resonance in this model. The most efficient part
of this process occurs far from the minimum of the effec-
tive potential, where it was expected to happen in the
earlier works on reheating in new inflation [8].

Indeed, let us find the range of the values of the field �,
for which the adiabaticity condition is violated and a broad
parametric resonance takes place.

The adiabaticity condition is _w<w2. Here w2 � k2 �

V00 � k2 � 3	�2�lnj�j
v � 1

3�. Instead of investigating the
general case, let us look at the vicinity of the point ��,
where V 00 � 0, i.e. at the point where the low-momenta
modes change their nature from normal to tachyonic. At

that point w2 � k2, whereas _w � 	� _�
k and _�2 � 0:05	v4.

This gives a broad range of momenta k for which the
adiabaticity condition is violated:

k & 0:5
����
	

p
v � 0:5m; (15)

where m �
����
	

p
v is the mass of the inflaton field in the

minimum of V��� at � � v. This means that the para-
metric resonance is powerful enough to excite all modes
and create particles with momenta smaller than (the half
of) the mass of the inflaton field at the minimum of its
effective potential. These momenta, however, are much
higher than the smallest momenta excited by tachyonic
preheating.

But this is also the range of momenta where the ta-
chyonic amplification of fluctuations is operative. In fact,
when the scalar field moves in the region with �<��, its
mass is tachyonic, so many of the modes produced due to
strong nonadiabaticity near � � �� continue growing ex-
ponentially when the field moves in the region �<��.

As a result, parametric resonance and tachyonic growth
amplify each other, which should lead to an even faster

2These results do not hold for the case of an inverted quadratic
potential. However, if you assume that the potential near the
maximum is an inverted quadratic then d2V=d�2 is constant as
the field rolls, so inflation cannot end in this regime.
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decay of the homogeneous scalar field, with the spec-
trum of produced fluctuations spanning a large range of
momenta, from the inflationary Hubble constant H �����
	

p
v�v=Mp� to the mass of the field in the minimum of

its effective potential �
����
	

p
v. The homogeneous scalar

field � should decay within just a few of its oscillations.
In this sense, new inflation takes an intermediate position
between hybrid inflation, where the decay is purely ta-
chyonic and takes just a single oscillation, and the simplest
versions of chaotic inflation scenario, where the decay is
due to parametric resonance and occurs within a few dozen
oscillations. In what follows we will describe the results of
numerical simulations of reheating in new inflation.

IV. NUMERICAL CALCULATIONS

While the estimates in the previous section provide a
useful general description of the process of tachyonic
preheating in new inflation, a full analysis including back-
reaction and rescattering effects requires a lattice simula-
tion. We performed a series of simulations of the Coleman-
Weinberg model (1) using the LATTICEEASY program [11].
We used 	 � 10�12, which is fixed by the normalization of
the cosmic microwave background, but we varied v as a
free parameter. In all of the figures in this section time is
measured in units of �

����
	

p
v��1, wave number k is measured

in units of
����
	

p
v, and the inflaton field � is measured in

units of v. Note that
����
	

p
v is the mass of the inflaton field in

the minimum of the effective potential; we use the gravi-
tational Planck mass Mp � 1=

����
G

p
.

The number of gridpoints required to meet both of these
requirements was quite large, which restricted us to doing
one- and two-dimensional simulations. We verified for
each case that the essential features were unchanged in
going from one to two dimensions, so we tentatively infer
that the same basic results would hold in three dimensions
as well. In the appendix we give all of the parameters and
other details about the simulations.

Figure 1 shows the evolution of the mean value of the
inflaton field for v � 0:1Mp. The Hubble friction has a
slightly greater effect on the field than our rough analytical
estimates suggested. The result of this small correction is
that after falling from the top of the potential the mean of
the field never comes back up into the tachyonic region.
Consequently tachyonic preheating and the parametric
resonance described in the previous section does not occur
for this high value of the symmetry breaking scale.
Fluctuations of the field in this simulation never grew
from their initial vacuum values. The decay of the homo-
geneous component of the inflaton field in this regime
occurs very slowly. In the beginning, it may occur due to
a very narrow and inefficient parametric resonance, as
described in Sec. IV of Ref. [2], but then very rapidly this
resonance completely disappears, and decay continues due
to perturbative effects described in [1].

For smaller values of the parameter v the situation
changes dramatically. Figure 2 shows the mean and vari-
ance of the inflaton field for v � 10�3Mp. In this plot
you can clearly see that the mean field oscillates through
the tachyonic region repeatedly, leading to rapid exponen-
tial growth of fluctuations. After about five or six such
oscillations the zero mode is effectively destroyed. We did
simulations of values of v ranging from 10�1Mp to
10�5Mp and found that the cutoff below which tachyonic

20 40 60 80 100t
0.2

0.4

0.6

0.8

1

1.2

〈φ〉

FIG. 1. Mean value of the inflaton field h�i (zero mode) for
v � 10�1Mp. A horizontal line indicates the field value below
which the potential is tachyonic (negative mass squared). The
amplitude of the field here and in other figures is given in units of
v, whereas the time t is given in units m�1 � �

����
	

p
v��1, where m

is the mass of the scalar field near the minimum of the effective
potential.

800 900 1000t10−12

10−8

10−4

1

〈φ〉2,〈δφ2〉

FIG. 2. Squared mean h�i2 and variance h��2i of the inflaton
field for v � 10�3Mp. A horizontal line indicates the field value
below which the potential is tachyonic (negative mass squared).
As one can clearly see from this figure, the oscillations of the
homogeneous component of the scalar field � are completely
damped out after the first 5 oscillations, whereas the variance
remains much smaller than 1, in units of v. This means that the
process of spontaneous symmetry breaking in this scenario
completes within 5 oscillations.
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preheating was efficient was somewhere in between
10�2Mp and 10�3Mp. Thus for nearly all realistic values
of the parameters, tachyonic preheating may be expected to
dominate the initial decay of the homogeneous inflaton
field in models of the type we are considering. In the rest of
this section we will focus on results for v � 10�3Mp as an
illustrative example, but we found these results to be
typical for parameters for which tachyonic preheating
was possible.

To explore the decay of the homogeneous inflaton in
greater detail we can consider the occupation number nk of
different modes. Figure 3 shows the development of this
spectrum over time. At the first time shown the field has
been slowly rolling near the top of the potential. Only
very long-wavelength modes have been excited by this
point. In the next frame we see continued growth of
long-wavelength modes due to tachyonic preheating.
Tachyonic preheating can only amplify modes with k <
jmeff j. The effective mass of the field varies from zero at
the maximum to a minimum value of jmeffj � 0:5

����
	

p
v, so

modes with momenta above this cutoff were not excited.
Even for modes below the cutoff, lower k modes were
excited more strongly than higher k modes because the
field spent more time in the regime where these low k
modes were tachyonic.

Following this initial stage we see the growth of higher k
modes, leading to the development of a peak around k �����
	

p
v. The modes in this peak region are marginally able to

be excited by tachyonic preheating. Moreover, tachyonic
preheating would be expected to produce a monotonically
decreasing spectrum like the one in the second frame of

Fig. 3, rather than a peak such as we see in the third frame.
This peak must therefore be the result of parametric reso-
nance, as described in Sec. III. As a further check, we
examined whether the formation of this peak was purely
attributable to parametric resonance produced by the os-
cillating zero mode, or whether it was also influenced by
scattering from the already-produced long-wavelength
modes. To this end we solved the coupled equations for
the evolution of the zero mode (neglecting backreaction)
and a single mode from the peak.

Figure 4 compares the growth of this mode in the lattice
simulation to its growth when coupled only to the zero
mode. The two plots are nearly identical until the point
when backreaction from the long-wavelength modes sig-
nificantly affects the zero mode. Thus the formation of the
peak in the third frame of Fig. 3 is purely a result of
parametric resonance resulting from the oscillations of
the zero mode. Note, however, that this plot also shows
the need for lattice simulations; a linear analysis would not
show the effects of backreaction and the point at which the
decay of the homogeneous mode completes.

Figure 5 shows a zoomed in view of the growth of the
mode depicted in Fig. 4. The growth of the occupation
number occurs when the field is high on the potential hill
and this growth alternates with periods of unchanging
occupation number as the field moves through the mini-
mum. This figure can be compared with the images show-
ing broad parametric resonance in [2]. In both cases the
growth occurs when m2

eff passes through zero, but in the
case considered in [2] that occurred around the potential
minimum, whereas here it occurs on the side of the poten-
tial hill.

0.01 0.1 1 10 k1

1010

1020
nk t=876

0.01 0.1 1 10 k1

1010

1020
nk t=903

0.01 0.1 1 10 k1

1010

1020
nk t=801

0.01 0.1 1 10 k1

1010

1020
nk t=839

FIG. 3. Spectra of occupation number nk as a function of momentum k at different times for v � 10�3Mp.
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In summary, the fluctuations of the field pass through
several distinct stages. Initially modes with k & 0:5

����
	

p
v

are excited by tachyonic preheating. Later modes with k �

0:5
����
	

p
v are excited by parametric resonance with the still

oscillating zero mode, producing a peak in the spectrum.
Later still this peak smooths out due to rescattering, the
oscillations of the zero mode cease, the peak in the spec-
trum is smoothed out, and we end up with a flat spectrum in
the IR followed by an exponential cutoff near k � v, as
shown in the final frame of Fig. 3. This is similar to the
spectrum that would be produced by parametric resonance

in a large-field inflationary model, but the decay is signifi-
cantly more rapid in this case. As a result, the total energy
available to the high energy modes is very large.

These processes are illustrated by a series of four panels
in Fig. 6, which show a two-dimensional distribution of the
inflaton scalar field � at different stages of our calcula-
tions. The simulation was done for v � 10�3Mp on a
2048� 2048 lattice, and the output was averaged over 8
lattice points for display in the figure.

The first of the four panels in Fig. 6 shows the distribu-
tion of the field � at the time t � 740, at the very early
stages of rolling of the field towards the minimum of its
effective potential. At that time the average amplitude of
the field was still very small � � 0:00755. The interval of
change shown in this panel is 0.0001. As we see, the
amplitude of fluctuations of this field at that time is well
below this level: the field looks almost completely homo-
geneous, apart from small quantum fluctuations which did
not grow much at that stage.

The second panel shows the distribution of the field � at
the time t � 830. The field still continues rolling down
during the first oscillation, but the average amplitude of the
field at that time has grown up to � � 0:15395. The
interval of change shown in this panel is also 0.0001, as
large as in the previous panel. We see that the long-
wavelength perturbations have already grown up signifi-
cantly, and have magnitude ��� 0:00005.

The third panel shows the distribution of the field � at
the time t � 850. At that time the field already made one
oscillation and started its way down during the second
oscillation; compare with Fig. 2. Its average amplitude at
that time is � � 0:39785. The interval of change shown in
this panel is 0.0002, i.e. 2 times greater than in the previous
panels. As we can see, the amplitude of the long-
wavelength perturbations experienced an additional
growth, but new perturbations with a much shorter wave-
length have grown up on top of the long-wavelength
perturbations.

Finally, the last panel in Fig. 6 shows the distribution of
the field t � 1000. At that time the short-wavelength fluc-
tuations completely dominate the field distribution. The
average value of the scalar field h�i no longer oscillates. Its
value is close to 1, though it is slightly smaller than 1
because of the partial symmetry restoration due to the
contribution of the fluctuations h�2i to the effective poten-
tial. The energy of the field � is concentrated in the waves
of the field � with momenta k & 1 produced by amplifi-
cation of quantum fluctuations during preheating.

If one would use perturbation theory to estimate the total
time which it takes for the decay of the homogeneous
component of the scalar field following [1], one would
find that this decay occurs only after O�	�1� � 1012 oscil-
lations for 	� 10�12. It is quite amazing therefore that the
nonperturbative effects lead to this decay within only 5
oscillations. The resulting field distribution after 5 oscil-

800 850 900
t

1

1010

nk,〈φ〉2

FIG. 5. This figure is the same as Fig. 4 except showing only
the lattice results and zoomed in to show features more clearly.
As we see, the exponential growth of the occupation numbers
occurs each time when the average value of the scalar field
becomes much smaller than v.

800 900 1000
t

1

1010

1020
nk,〈φ〉2

FIG. 4 (color online). Growth of a fluctuation in the peak (k �
0:58). The lower curves show the evolution of the zero mode and
the upper curves show the occupation number nk of this mode.
The solid lines show results from LATTICEEASY. The thin lines
show results from a MATHEMATICA calculation in which the zero
mode was evolved with no backreaction. These results confirm
our expectations that the growth of the modes with k� 0:5 occur
due to parametric resonance practically independently of the
tachyonic preheating.

DESROCHE, FELDER, KRATOCHVIL, AND LINDE PHYSICAL REVIEW D 71, 103516 (2005)

103516-6



lations, shown in the last panel of Fig. 6, is quite different
from what one could expect on the basis of the perturbative
approach to reheating or on the theory of parametric reso-
nance in models of chaotic inflation.

As we see from Fig. 3, the occupation numbers of �
particles produced by the decaying inflaton field are ex-
ponentially large. This means that the initially homogene-
ous field � decays into semiclassical waves of the field �.
Since the main contribution to the occupation numbers of
produced particles is given by particles (waves) with very
small momenta, one could be tempted to conclude that the
main reason for the rapid decay of the homogeneous
component of the scalar field is the tachyonic preheating.
On the other hand, the phase volume of these modes
is relatively small. We have verified that for v� 10�3

the main reason for the rapid decay of the homogeneous
field � in our computer simulations is the production of
the particles with momenta k� 0:5 due to parametric
resonance combined with the tachyonic effects; see
Sec. III. We expect, however, that for v  10�3, the

main mechanism of the decay of the homogeneous mode
will be related to the tachyonic preheating described in
Sec. II.

We should note that in our investigation we neglected
gravitational effects (for a discussion of such effects see
e.g. [13] and references therein.) We believe that this was a
legitimate approximation for v� 10�3 � 10�4 studied in
our paper, because in this case the leading contribution to
the perturbations of the energy-momentum tensor pro-
duced during preheating corresponds to the scale much
smaller than the scale of the horizon. Even though the
perturbations of the energy-momentum tensor on such
scales may be O�1�, these perturbations should not lead
to substantial perturbations of metric. However, it would be
interesting to see whether the situation may change for
much smaller values of v, in which case the contribution of
perturbations with the wavelengths comparable to the scale
of horizon may be more significant. If this is the case, one
might encounter a non-negligible production of primordial
black holes after new inflation.

FIG. 6 (color online). Lattice images of a two-dimensional simulation with v � 10�3Mp. In the beginning of the process, the scalar
field � is practically homogeneous due to inflation; see the first panel. When it starts falling down, tachyonic instability generates long-
wavelength fluctuations of the scalar field, shown by the second panel. Then the short-wavelength fluctuations are generated, and
eventually the field distribution stabilizes near the minimum of the effective potential, which corresponds to �� 1 in this figure.
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V. THE FINAL STAGE OF REHEATING: DECAY OF
THE INFLATON TO OTHER FIELDS

So far we have described analytically and numerically
how tachyonic preheating and parametric resonance cause
the homogeneous inflaton field to rapidly decay into its
own fluctuations. This process leads to the decoherence of
the inflaton field and to spontaneous symmetry breaking,
i.e. to the disappearance of the amplitude of oscillations of
its homogeneous component. However, this is only the first
part of reheating, which involves the decay of the inflaton
into other degrees of freedom. In this section we discuss
what happens when the inflaton is coupled to an additional
field. We focus on the simplest case, a g2�2�2 interaction
with a second scalar field. Our basic conclusions, however,
should be valid for a range of possible models including
ones where reheating produces vectors and spinors as well
as scalars.

Adding this field to the model gives us the potential

V��� �
1

4
	�4

�
ln
j�j

v
�

1

4

�
�

1

2
g2�2�2 �

1

16
	v4: (16)

It is known that when fluctuations of one field, here �, are
excited to exponentially large occupation numbers, that
will lead to rapid production of particles of other fields to
which it is coupled [14]. In this case, however, this is
complicated by the fact that the symmetry breaking of
the inflaton field also produces an effective mass for the
additional field �, which tends to suppress its production.
The mass of � in the minimum of its potential is given by
m� �

����
	

p
v, while the mass of � is given by m� � g� �

gv. The parametric resonance near the minimum of V���
is rather narrow; it occurs only when m� > 2m�. Thus the
condition for � to be efficiently excited is g2 & 	.

But this means that the decay to particles � occurs only
if the decay rate is strongly suppressed by the small cou-
pling constant g2 & 	� 10�12.

Figure 7 shows the number density of particles of the �
and � fields for this model. In both cases we take v �

10�3Mp, which we know produces efficient tachyonic
preheating. In the case where g2 � 	 we see very little
production of � particles. When g2 � 	=10, the � field is
driven up to exponentially large occupation numbers some
time after the field � grows. We also tested g2 � 100	 and
as expected found virtually no growth of the � field.

The results of our calculations show that even in the
cases when the nonperturbative effects lead to the expo-
nentially growing number of particles �, this number al-
ways remains exponentially smaller than the number of
particles �. This means that nonperturbative effects in this
simple model lead to a rapid decay of the nearly homoge-
neous oscillating field into particles or waves of this field,
but not to the final stage of reheating when all particles of
the field � decay to other particles.

This suggests that the decay of the field � eventually
ends up by a perturbative stage when the field � no longer
oscillates coherently, and therefore one can use an ap-
proximation where each particle of the field � decays
independently, according to elementary theory of
reheating developed in [1,2]. In this case the final tem-
perature of reheating is given by Tr �

����
�

p
, where � �

�g4v�=�8�
����
	

p
� � �g4m�=�8�	� is the rate of decay � !

�� in our model [2]; m �
����
	

p
v.

Simple estimates based on the decay rates for this model
calculated in [2] show that for g2 � O�	� the perturbative
decay requires O�	�1� oscillations, i.e. about 1012 oscil-
lations in the model of new inflation with 	� 10�12. The
resulting temperature of reheating for v� 10�3, g2 & 	 is
Tr & 107 GeV.

Whereas this scenario of the last stage of reheating
seems rather general, there could be some important ex-
ceptions. For example, some fields interacting with the
inflaton field may remain light even though their interac-
tion with the inflaton field is very strong. This is possible if
their mass is protected by some symmetry or if their mass

800 1400 2000
t105

1015

1025
n g2=λ

800 1400 2000
t105

1015

1025
n g2=λ/10

FIG. 7. Growth of the occupation numbers of � and � in the model (16). In both plots the upper line shows n� and the lower line
shows n�.
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is small in the minimum of the effective potential due to
some cancellation mechanism. In this case the decay rate
of the inflaton field into such fields can be quite large, the
final stage of reheating may also be very rapid, and the
resulting reheating temperature can be much higher.

VI. CONCLUSIONS

The first papers on reheating of the Universe after in-
flation were devoted to investigation of this process in the
new inflation scenario [1]. It was assumed that after in-
flation the nearly homogeneous scalar field oscillates for a
very long time and eventually decays into particles of other
fields in a process which can be described by a simple
particle-by-particle decay of the scalar field �.

The subsequent investigation of reheating in chaotic
inflation and in hybrid inflation have shown that reheating
may occur much faster, due to nonperturbative effects such
as parametric resonance [2] and exponential growth of
tachyonic modes [3]. In this paper we study nonperturba-
tive effects during reheating in new inflation.

We have found that for the simplest models of new
inflation with a large amplitude of symmetry breaking, v >
10�2, the nonperturbative effects are relatively insignifi-
cant. After the first oscillation, the field � never acquires
the tachyonic mass. There can be a short stage of narrow
parametric resonance, but it is inefficient, it shuts down
very quickly, and the system enters the stage of perturba-
tive particle-by-particle decay. A description of this regime
can be found in Sec. IV of Ref. [2].

On the other hand, in the versions of new inflation with
v & 10�2, which includes the original new inflation model
[4], the nonperturbative effects can be very powerful. As
we have shown, a combination of tachyonic preheating and
parametric resonance leads to a rapid dumping of energy of
the oscillating inflaton field. For example, for v� 10�3 the
homogeneous oscillating inflaton field � completely de-
cays within 5 or 6 oscillations. For smaller values of v, the
decay occurs even much faster.

However, during this decay, the homogeneous oscillat-
ing inflaton field � decays to decoherent waves of the field
�; its decay to the matter particles � at this stage typically
is rather inefficient. Therefore the rapid nonperturbative
stage of preheating is not the end of the story but only a
prelude to a lengthy stage of perturbative decay, which
eventually gives the reheating temperature that could be
calculated by the methods developed more than 20 years
ago [1].

In this respect, the new inflationary scenario differs
strongly from the simplest versions of chaotic inflation
where the effect of parametric resonance and the subse-
quent violent stage of rescattering of produced particles
makes thermalization much faster [14]. It differs even more
from the hybrid inflation, where the process of decay of the
zero mode of the inflaton takes just a single oscillation, and
the subsequent stage of perturbative decay can occur rela-

tively fast because the corresponding coupling constants
there can be relatively large.

The main reason for the slow decay of the inflaton field
is related to the fact that the fields with which the inflaton
field � interacts strongly are getting heavy because of this
interaction (this does not happen in the simplest versions of
the chaotic inflation scenario). As a result, the inflaton field
can only decay to the particles with which it almost does
not interact [15]. This strongly suppresses the decay proba-
bility and the resulting reheating temperature in the sim-
plest models of new inflation. However, even in such
models the reheating temperature can be sufficiently high
for the subsequent stage of the low-scale baryogenesis.
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APPENDIX: PARAMETERS OF THE LATTICE
CALCULATIONS

The lattice simulation results shown in this paper were
all calculated using LATTICEEASY [11], a publicly available
program for simulating interacting scalar fields in an ex-
panding universe. The model (1) is encoded in the ‘‘cole-
manweinberg.h’’ model file on the LATTICEEASY website
[16]. The website contains documentation on using
LATTICEEASY and details on the algorithms employed. In
this appendix we simply report the parameters used for
these runs. These parameters, along with the Coleman-
Weinberg model file, should be sufficient for anyone to
reproduce all of the results reported here.

The lattice spacing had to be chosen to be small enough
to include modes with wavelengths k >

����
	

p
v, the effective

mass at the minimum of the potential, while the total size
of the box had to be large enough to include significant

numbers of modes with k <
������������������������
	 ln�v=Mp�

q
v2=Mp, the ta-

chyonic mass at the end of inflation. This moment, � �

v2=Mp, was taken as the start of the simulations. The initial
velocity _� was set to zero. Note, however, that the program
uses rescaled variables

�program � a3=2
�
v
; (17)

tprogram �
����
	

p
vt; (18)

so that in program units the initial values of � and _� are set
to v and v2

������������
3�=8

p
. (This latter result accounts for the

derivative of the scale factor as well as �.)
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Most of the results in Sec. IV are for a run with v �

10�3Mp. For this run we used a one-dimensional grid of
16 384 gridpoints, a total box size L of 1500, and a time
step of 0.01. We ran the simulation to a time t � 1000 but
only began recording spectra at t � 800, the point when
the field first started growing significantly. Various two-
dimensional simulations were used to crosscheck many of
the results in this section. The particular one shown in
Fig. 6 was done on a 2048� 2048 lattice using a time
step of 0.05 (other parameters as just listed above). Note

that all of these values are in program units. For example,
L � 1500 in program units corresponds to a physical box
size of 1500=�

����
	

p
v� � 5� 1012M�1

p .
The results in Sec. V used the same parameters as the

v � 10�3Mp run described above, but with the addition of
an extra field coupled to � with coupling g2 � 	 or g2 �
	=10.

Figure 1 shows results from a run with v � 10�1Mp. For
this run we used 512 gridpoints, a total box size L � 40, a
time step of 0.01, and a final time t � 100.
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