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SUMMARY

The statistical analysis of social networks is increasingly used to understand social processes and patterns.
The association between social relationships and individual behaviors is of particular interest to sociolo-
gists, psychologists, and public health researchers. Several recent network studies make use of the fixed
choice design (FCD), which induces missing edges in the network data. Because of the complex depen-
dence structure inherent in networks, missing data can pose very difficult problems for valid statistical
inference. In this article, we introduce novel methods for accounting for the FCD censoring and introduce
a new survey design, which we call the augmented fixed choice design (AFCD). The AFCD adds consider-
able information to analyses without unduly burdening the survey respondent, resulting in improvements
over the FCD, and other existing estimators. We demonstrate this new method through simulation studies
and an analysis of alcohol use in a network of undergraduate students living in a residence hall.

Keywords: Augmented fixed choice design; Fixed choice design; Missing data; Right censoring by degree; Social
network.
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1. INTRODUCTION

The statistical analysis of social networks is increasingly used to understand social processes and patterns
(Knoke andYang, 2008). Of particular interest to sociologists, psychologists, and public health researchers
is the association between social relationships and individual behaviors. Social relationships are often
measured through nominations, such as when collecting information on a friend network, the nomination
from person i to person j indicates that person i claims person j as their friend. When analyzing a network,
there is often the possibility that nominations are missing (Kossinets, 2006). Because of the complex
dependence structure inherent in networks, missing data can pose very difficult problems (Holland and
Leinhardt, 1973; Marsden, 1990; Kossinets, 2006). Even when missingness is at random, it can induce
bias in structural measures of the network, such as homophily and centrality (Smith and Moody, 2013). Of
particular interest is how to handle missingness when analyzing the network for peer effects on behavior.

A considerable amount missingness is a result of study design. Several recent studies on networks
in school settings make use of the fixed choice design (FCD), which typically induces missing edges.
In FCD, the number of possible nominations that each person in the network can make is capped at a
maximum, m, inducing missing nominations (Holland and Leinhardt, 1973; Kossinets, 2006; Yan and
Gregory, 2011). For example, studies have variously restricted the number of friends in a classroom to 4
when studying depression (Witvliet and others, 2010), and the number of best friends to 5 when studying
smoking (Mercken and others, 2010), and another study on infectious disease transmission on social
networks allowed participants to name up to 6 within class contacts and up to 4 outside of class contacts
(Conlan and others, 2010). The National Longitudinal Study of Adolescent Health (Add Health) allowed
participants to nominate and rank up to 5 boys and 5 girls as friends (Resnick and others, 1997; Goodreau,
2007) and is the basis for significant methodological advancements in the analysis of social networks with
missing data. For example, Goodreau and others (2009) approach theAdd Health censoring mechanism by
assuming that the true network of interest is the network consisting of the top five male and top five female
friends of each respondent. Hipp and others (2015) investigated the consequences of missing observations
in longitudinal network data and found that different methods of accounting for missingness can lead to
vastly different results. Wang and others (2016) present an exponential random graph (ERGM) method
for the imputation of missing network data using the Add Health study as an application. Handcock and
Gile present network modeling approaches for networks with missing data with application to the Add
Health study (Handcock and Gile, 2007).

Holland and Leinhardt (1973) first introduced the problem of missing ties due to the FCD (also called
limited choice design and right-censoring of degree). Kossinets (2006) subsequently showed how the
FCD can lead to biases in estimates of structural measures of the network. Gommans and Cillessen (2015)
compared analyses on the same populations of elementary school students, with FCD as well as a design
without censoring, and found significant differences in the conclusions drawn from the two different data
collection schemes.

Hoff and others (2013) have developed a likelihood based approach for fixed rank network data (where
there is a maximum number of nominations that could be made, and those nominations are ranked) as well
as for FCD, and then used these likelihoods in Bayesian estimation of latent variables which are assumed
to govern the nominations and their ranks.

In a study on the transmission of influenza through household contacts, Mossong and others (2008)
collected egocentric information on the number of household contacts an individual in the household has
made in a given day, without collecting which specific household members the ego was in contact with.
Potter and others (2011) used these data to model disease transmission between household members,
showing that the number of contacts, or edges, can be useful information even when m is capped at zero.

In this work, we introduce a novel approach that can improve inference for FCD data: that true total
nominations are collected in addition to the standard FCD data. We develop a method that accounts for
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the missingness resulting from FCD, given the true total nominations, and show how different censoring
cut-offs affect parameter estimation using a dyad-independent ERGM model. In Section 2, we introduce
novel methods for accounting for the fixed choice censoring and introduce a new survey design. In Section
3, we present simulation studies wherein we demonstrate our methods for handling fixed choice data and
compare the effects of different censoring cut-offs on parameter estimation, as well as against different
estimation methods. In Section 4, we demonstrate our method in an analysis of relationships in the presence
of alcohol use in a network of undergraduates living in a residence hall. A discussion is presented in
Section 5.

2. MODEL FORMULATION AND INFERENCE

2.1. General framework

Given a family of probability models indexed by a parameter β we use the notation pβ(z) = P(Z = z | β)

to denote the probability mass function (pmf) of a discrete random variable Z under the model with
parameter β. Usually, the model will also involve fixed covariates, but this is suppressed for now in our
notation. Our goal is to identify what pβ(z) is so that we can find the maximum likelihood estimates of β

given our data z. If z = (zij) is a matrix, then we use zi to denote the ith row of z. If z is a vector, then we
use s(z) = ∑

i zi to denote the sum of z.
Let Y be an n×n sociomatrix, where Yij = 1 if i nominates j and Yii = 0 for all i. Note that Yij = 1 does

not imply that Yji = 1, meaning that these relationships may be unreciprocated. We use R = (R1, . . . , Rn)

to denote the row sums of Y , i.e., Ri = s(Yi). We assume that Y is the sociomatrix that would be observed
without any reporting constraints, and, hence, Ri is the true total of nominations of the ith subject. If
Y could be observed, then, given a computationally tractable probability model pβ(y), we could use
standard likelihood-based methods to estimate β. A simple model, which we assume here, is that all ties
are independent Bernoulli random variables, namely,

pβ(y) = ∏
ij πij(β)yij (1 − πij(β))1−yij , (2.1)

where πij(β) = P(Yij = 1 | β) is designed according to the problem at hand.
In a FCD that allows at most m nominations per subject we do not observe Y , but instead observe a

censored sociomatrix W . We assume the following possible censoring mechanism: if Ri ≤ m, then there is
no censoring and Wi = Yi, otherwise, the subject reports exactly m of the Ri original nominations chosen
uniformly at random. Consequently, the joint pmf of (W , R) is

pβ(w, r) = ∏
i pβ(wi, ri) (2.2)

with

pβ(wi, ri) =

⎧⎪⎨
⎪⎩
P(Yi = wi | β) s(wi) = ri ≤ m(ri

m

)−1
P(Yij = 1 for all j with wij = 1, and Ri = ri | β) s(wi) = m < ri

0 otherwise

=

⎧⎪⎨
⎪⎩

∏
j πij(β)wij (1 − πij(β))1−wij s(wi) = ri ≤ m(ri

m

)−1 ∏
j:wij=1 πij(β)P

( ∑
j:wij=0 Yij = ri − m

∣∣ β)
s(wi) = m < ri

0 otherwise.

(2.3)
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Equation (2.3) involves the term

P
( ∑

j:wij=0 Yij = ri − m
∣∣ β)

, (2.4)

which is simply the probability that a sum of independent Bernoulli’s is equal to ri − m and is easy to
compute using discrete convolution.

From (2.2) to (2.4), we see that pβ(w, r) is easily computable and can be combined with standard
likelihood methods to generate estimates of β from joint observations of W and R. Since R is not usually
observed in a FCD, we call this design an augmented FCD (AFCD). In a regular FCD, from (2.2) we also
see that

pβ(w) = ∏
i pβ(wi), (2.5)

where we sum over all possible values of ri for rows i with missing data:

pβ(wi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏
j πij(β)wij (1 − πij(β))1−wij s(wi) = ri < m

n−1∑
ri=m

(ri
m

)−1 ∏
j:wij=1 πij(β)P

( ∑
j:wij=0 Yij = ri − m

∣∣ β)
s(wi) = m ≤ ri

0 otherwise.

(2.6)

Note from (2.3) when we are finding the pβ(wi, ri), we are in the fully observed data case when ri ≤ m,
which is in contrast to (2.6) when there are missing observations ri = m since we do not observe ri.
This is because when ri is known, then we are able to discern whether we have complete data when
s(wi) = m. However when ri is censored, as in the FCD setting, we cannot be certain if s(wi) = m = ri

or if s(wi) = m < ri.
As noted above, our goal for both the AFCD and FCD is to identify the function pβ(wi, ri) in the AFCD
setting, or the function pβ(wi) in the FCD setting so that we may find the maximum likelihood estimates
of β given our data. Now that pβ(wi, ri) and pβ(wi) have been specified for the AFCD and FCD data
cases, respectively, we employ one of the many available optimization techniques to find the maximum
likelihood estimates of of β given the available data.

2.2. Variance estimation

The variance estimation for β̂ is non-trivial. Simply using the observed information will not incorporate the
uncertainty of the censored values. In order to quantify the variance of the maximum likelihood estimates
of the β parameters, we describe a parametric bootstrap by following these steps with B bootstrap samples.

1. Maximize the appropriate likelihood as described above [(2.3) for AFCD or (2.6) for FCD] to
produce β̂.

2. Using β̂ and the same covariates used in the model in Step 1, generate sociomatrix Y b, b ∈ 1, 2, . . . B.
3. With uniform probability delete ri − m edges for all row i for i in 1, . . . , n of Y b to generate Wb.
4. Maximize the appropriate likelihood using Wb to attain β̂b

5. Repeat Steps 2–4 B times to generate a distribution of β̂b which can be used to get bootstrapped
standard errors and confidence intervals.
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3. SIMULATION STUDIES

Using the general framework described above, we experiment with models of the form

g(πij(β)) = βTxij,

where g is an appropriate link function for binary data, and the parameter β ∈ R
d is a column vector

and where xij ∈ R
d is a column vector of known covariates that may depend on both i and j. If Y was

fully observed, so that we could use pβ(y) from (2.1) for inference, then this would be regression with
edge-level covariates. Instead, for a FCD or an AFCD, we use pβ(w) or pβ(w, r), respectively, as derived
in the previous section to find a maximum likelihood estimates. We proceed in the rest of this article to
use the probit link function, though other link functions could also be implemented.

We do not directly observe edge-level covariates in this simulation, but rather create them from vertex-
level covariates. For each vertex i, let vi ∈ R

q be a vector of known covariates. Define the edge-level
covariates as some subset of

xij = (1, vi1, . . . , viq, vj1, . . . , vjq, |vi1 − vj1|, . . . , |viq − vjq|)

which has dimension d = 3q + 1. For example, if we look at age as the single variable of interest (q = 1),
then we define:

xij = (1,Agei,Agej, |Agei − Agej|)

for all i and j. If we were to use age and income as the two covariates of interest (q = 2), then we define:

xij = (1,Agei, Incomei,Agej, Incomej, |Agei − Agej|, |Incomei − Incomej|)

for all i and j.

3.1. Simulation design

In order to contrast the AFCD, FCD, a naive analysis (where we assume that all unobserved values of W
are non-edges), and Hoff and others (2013)’s censored binary (CB) estimator, we performed a simulation
study.

For a simulated population of size n, we first generated a continuous covariate V for all n members
of the simulated population, which stays fixed for all simulations. In keeping with the previously defined
notation, we next generated directed edges between members of the network such that the probability that
individual i has a directed relationship with individual j, denoted by Yij = 1, is independent given Xij:

probit(P(Yij = 1 | β, xij)) = βTxij,

where

xT
ij = (1, vi, |vi − vj|)

and β is a 3 × 1 vector. Note that our formulation allows for both row covariates (vi), column covariates
(vj) as well as edge covariates (|vi − vj|), and that here we do not use the column covariates. We next
simulate the censoring processes of the AFCD, the FCD, and the CB (which has the identical censoring
process as the FCD) for maximum number of nominations m ∈ {0, 2, 4, 6, 8}. Under the AFCD, in row
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i, given ri and m, when ri > m, ri − m edges are censored, where each of the ri edges have an equal
probability of being censored. Moreover, all non-edges in rows where ri > m are censored. This gives us
the observed AFCD data WAFCD. For the FCD, for a maximum m in each row where ri ≥ m, ri − m edges
are censored, and all non-edges in these rows are censored, to give us the observed FCD data WFCD.

We then obtain maximum likelihood estimators under the AFCD and FCD with varying m values. We
also find estimates for the CB using the posterior means of β using the amen package in R (Hoff and
others, 2015). Finally, we carry out the naive analysis by applying probit regression to the WFCD data
where we treat all censored values as zero, which is the default current practice for analyzing FCD.

3.2. Simulation results

The distribution of the covariate value V is displayed in Figure 1(a). We generated the network using
β0 = −1, β1 = 0.02, β2 = −0.025 which generates networks with a roughly normal distribution of edges
with mean number of edges = 10; however, having a normal distribution of edges is not a requirement
here. Here, beta β0 = −1 implies that for i, j where vi = vj = 0, the probit of i nominating j is equal to
−1. Likewise, β1 = 0.02 implies that for a fixed value in the absolute difference between vi and vj, as
vi increases by one unit, then the probit of i nominating j increases by 0.02. Last, β2 = −0.025 implies
that for a fixed value of vi as the absolute difference between vi and vj increases by one unit, the probit
of i nominating j decreases by 0.025. We simulated 100 different networks with 100 nodes using these
covariate and β values. The distribution of ri for all 100 simulations is plotted in Figure 1(b), where
grey bars indicate m values used to censor the simulated data (m ∈ 0, 2, 4, 6, 8). For the CB, which uses
Bayesian inference, we used MCMC and generated 55 000 posterior draws. The first 5000 draws were
discarded, and of the remaining 50 000 posterior draws, we used every 25th draw, for a total of 2000
posterior draws. We present means of these 2000 posterior draws as the estimates.

We present the mean squared error (MSE), empirical bias, and SEs of the estimated β’s from the 100
simulations in Table 1.

For a given maximum m, the AFCD had lower MSE than the FCD and CB for β0, β1, and β2. The
AFCD had lower MSE than the naive estimator (in which the data are falsely assumed to be uncensored)
for β0 and β2, though naive estimator had lower MSE than the AFCD for β1, due to its lower variance. For
the β0 parameter, having an AFCD with m = 0 had a lower MSE than FCD with m = 2, naive with m = 2
and CB with m = 6. For the β1 parameter, having an AFCD with m = 0 outperformed a FCD with m = 4
and CB with m = 6 in terms of MSE. For β2, the AFCD had lower MSE for all levels of m simulated
as compared to the other estimators. For higher values of m, the relative improvement in MSE for AFCD
over FCD tended to diminish. In other words, when the data collection design incurs a higher levels of
missingness (such as when the maximum number of nominations that can be made in the survey m is low
relative to ri, the true total nominations) the added benefit of knowing the true number of relationships
can be quite large, which is why the AFCD will outperform the FCD and CB. When m is high relative to
the distribution of the true total nominations per individual in the network, there will be less missingness
and a smaller benefit of the AFCD as compared to the FCD and CB. In general, the AFCD requires lower
m to achieve comparable MSE to the other estimators, indicating that it may be preferable to collect the
total number of relationships r to marginally increasing m.

When comparing the MSE of the FCD to the CB, neither estimator proved uniformly better. While the
FCD had substantially lower MSE than the CB when estimating β0 regardless of m, when estimating β1

and β2 the CB has lower MSE when m is smaller, and the FCD has lower MSE when m is larger.
The naive analyses in which all censored edges are considered to be non-edges (as is a common current

practice), estimated β0 poorly. This is result is not surprising as the naive estimator will necessarily
underestimate the probability of any edge due to the way that it treats all censored values as non-edges.
Notably, the naive estimator tended to have high bias and a low standard deviation.
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(a)

(b)

Fig. 1. Simulation specifications: distribution of covariates used to generate simulated networks, (a), and (b) distri-
bution of the true total nominations made from 100 simulations. The grey bars denote values of m used to impose
censoring in 100 different simulations (m ∈ 0, 2, 4, 6, 8).

4. ANALYSIS OF URWEB STUDY

We next apply the method to the UrWeb data set, in which data were collected from residents of a
primarily freshman dormitory (Barnett and others, 2014). Each participant was 18 years old or older
when the survey was administered and was asked to report the number of days in a month that they
consumed alcohol. Central to our interests here, each participant was asked to nominate which of the other
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Table 1. Mean squared error, empirical bias, and standard deviation of estimated β0, β1, and β2 from
100 simulations, varying the maximum number of nominations observed, m

m β0 MSE ×102 β0 |Bias| × 10 β0 SD ×10

AFCD FCD Naive CB AFCD FCD Naive CB AFCD FCD Naive CB
0 34.68 — — — 4.43 — — — 3.90 — — —
2 0.34 153.08 73.84 377.03 0.01 7.85 8.59 18.84 0.59 9.61 0.26 4.72
4 0.27 32.00 28.31 501.85 0.02 2.46 5.32 18.12 0.52 5.12 0.20 13.24
6 0.26 1.10 10.42 77.28 0.03 0.09 3.22 7.20 0.51 1.05 0.23 5.07
8 0.25 0.40 3.26 4.95 0.03 0.06 1.79 1.77 0.50 0.64 0.28 1.36

m β1 MSE ×105 β1 |Bias| × 104 β1 SD ×102

AFCD FCD Naive CB AFCD FCD Naive CB AFCD FCD Naive CB
0 5.13 — — — 48.38 — — — 0.53 — — —
2 0.17 27.22 0.04 16.88 1.30 18.21 5.32 16.51 0.13 1.65 0.03 1.30
4 0.16 10.85 0.02 108.48 1.32 13.08 3.70 27.18 0.13 1.04 0.03 3.30
6 0.16 0.60 0.03 15.53 1.20 1.11 3.27 10.70 0.13 0.25 0.04 1.25
8 0.16 0.26 0.05 0.98 1.06 2.53 2.52 0.09 0.13 0.16 0.06 0.31

m β2 MSE ×105 β2 |Bias| × 104 β2 SD ×103

AFCD FCD Naive CB AFCD FCD Naive CB AFCD FCD Naive CB
0 936.23 — — — 651.87 — — — 71.89 — — —
2 1.30 45.91 5.95 3.54 3.45 134.78 71.59 50.70 3.61 16.74 2.89 3.13
4 0.58 6.14 2.97 1.48 2.32 39.16 50.54 31.84 2.40 6.82 2.06 2.18
6 0.37 0.43 1.54 0.63 1.10 2.09 35.04 17.30 1.93 2.07 1.77 1.84
8 0.31 0.33 0.78 0.34 0.29 0.88 22.23 6.23 1.76 1.84 1.70 1.74

participants were important to them. This network is pictured in Figure 2(a). Among the 129 participants
included in the sample, 507 nominations were made; 4 participants did not nominate anyone nor were they
nominated.

The UrWeb data were collected under a FCD, with m = 10. In this data set, only one person endorsed
the maximum number of nominations, which suggests that there is little design-induced missingness of
nominations. We will proceed to show the utility of the methods introduced here by artificially inducing
a m < 10 in the UrWeb data set, estimating parameters, and comparing the estimated parameters when
m ∈ {0, 2, 4, 6, 8} to the parameters estimated with probit regression using the full data set. We will
artificially induce m ≤ 8 by deleting edges of individuals with more than m in two different ways, first
by randomly deleting edges with uniform probability (as above in the simulation study), and secondly by
deleting edges with regard to the order that each individual made their nominations. Figure 2(b) displays
the distribution of the number of nominations that were made by each participant in the UrWeb study. We
will proceed assuming that the UrWeb data are fully observed, and will demonstrate how this method will
work in practice, compare the information loss for different m values, and contrast AFCD, FCD, CB, and
naive analyses.

We use the number of days in a month that the subjects consume alcohol as the v covariate in this
model:

probit(P(Yij = 1|β, xij)) = βTxij,

where Yij = 1 indicates that participant i nominated j, and xT
ij = 1, vi, |vi − vj|.
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(a) (b)

Fig. 2. UrWeb network (a), and distribution (b) distribution of nominations made by UrWeb study participants.

Having artificially induced m ∈ {0, 2, 4, 6, 8} 100 times, we estimated β0, β1, β2 using the AFCD, FCD,
CB, and naive methods. We present boxplots of β̂0, β̂1, β̂2 in Figure 3. In each of these figures, we denote
the β estimates from the fully observed UrWeb data (where m = 10) with a solid horizontal line and the β

estimate from the full data ± the estimated standard error from the full data with dotted horizontal lines.
When m = 0, we are only able to obtain maximum likelihood estimates of β for the AFCD. Because

there is only one way to impose censoring when no nomination data is observed, Figure 3 presents a point
estimate rather than a distribution of estimates when m = 0.

The analyses in this section differ from those in Section 3 in a few important ways. First, rather than
simulating several networks, we are analyzing a single real network YUrWeb and repeatedly removing edges
at random to form many different realizations of WUrWeb. In these analyses, we do not know the true
β values, and so we cannot evaluate the bias of the estimates. However, we can use these analyses to
investigate information loss due to the design-induced censoring by comparing AFCD, FCD, naive, and
CB estimates when m < 10 to estimates when we observe m = 10. For example in Figure 3, excluding
when m = 0 the estimates of β0 and β1 from the AFCD are all within one standard error of the estimate
when the full UrWeb data are observed (m = 10). This is in sharp contrast to the FCD, naive, and CB
estimates of β0 and β1 when m = 2, 4. In general, the AFCD seems to lose less information than the FCD,
which in turn loses less information than the naive analysis and the CB.

In this analysis of the UrWeb network, the AFCD produces estimates of β that are roughly centered
on the full data estimate for β. The FCD method produces estimates that diverge from the estimate when
the data are fully observed, especially when m is small. This result is in agreement to the simulation study
which also showed that the FCD on average produces somewhat biased estimates when m is small.

Next, we deleted nominations in the reverse order in which they were made by the participants in the
UrWeb study so that m ∈ (0, 2, 4, 6, 8). We estimated β using AFCD, FCD, CB, and naive methods. For
the AFCD and FCD, we calculated standard error estimates from 500 bootstrap samples. For the naive
analyses, we simply used the standard error from a regular probit regression model. For the CB, we used
the standard deviation of the posterior draws of the β terms to estimate the uncertainty of the estimates.
These are presented in Figure 4. The UrWeb study was not explicitly designed to accommodate the AFCD,
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(a) (b)

(c)

Fig. 3. Boxplots of β̂0, β̂1, and β̂2, varying maximum number of nominations m, and AFCD, FCD, naive analysis,
and CB in the UrWeb data set. The black horizontal line is the estimated value of the β parameter when using the
full UrWeb data. The dotted lines are β ± ŜE(β) computed from the full UrWeb data for: (a) β0, (b) β1, and (c) β2,
respectively.

FCD, or CB design in that participants were not prompted to name a random sample of the people who
were important to them. It is possible that study participants chose their nominations non-uniformly, for
example nominating peers in the order of their importance. By deleting nominations in reverse order,
we seek to investigate whether this could impact inference. We see very similar results when comparing
Figure 3 in which nominations were deleted independently of order to Figure 4 in which nominations
were deleted in reverse order. These results suggest that the order in which nominations were made in this
data set did not greatly impact the inferences made in these analyses.

5. DISCUSSION

Collecting complete social network information in a closed population may be difficult as the network
survey will impose an unreasonable amount of respondent burden. The FCD seeks to ameliorate respondent
burden by asking respondents to nominate up to m individuals in the population with whom they have a
particular relationship.
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(a) (b)

(c)

Fig. 4. Plots of β̂± 1 bootstrap standard error for the AFCD and FCD, the probit regression standard error for the
naive analysis, and the standard deviation of the posterior distribution estimates for the CB, deleting nominations in
the reverse order in which they were made. The dotted lines are β ± ŜE(β) computed from the full UrWeb data for:
(a) β0, (b) β1, and (c) β2, respectively.

In our application, we demonstrate that estimating associations between behaviors and social relation-
ships from social network data arising from a fixed choice survey design as though the social network was
fully observed (as is the current standard practice) can result in severely biased estimates. We introduce
observed data likelihoods for FCD data. We demonstrated that maximizing the observed data likelihood
for the FCD may improve the MSE in comparison to estimates where the data are (falsely) assumed to be
fully observed.

We also introduce the AFCD, a new network survey sampling design and method of analysis which
collects information on the total number of relationships for each individual in the network, in addition
to the data collected with the standard FCD. This novel study design can add considerable information to
analyses without unduly burdening the survey respondent, resulting in improvements over the FCD and
naive analyses. We demonstrate that the AFCD is superior to both the FCD and naive analyses, as well as
Hoff and others (2013)’s CB in terms of MSE. The improvement of the AFCD’s MSE relative to the FCD,
CB, and naive analyses is particularly pronounced when the m is small relative the number of true total
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nominations. Unsurprisingly, our simulations show that for every estimator when m is larger, variation
and bias is smaller. While collecting all nominations from each survey respondent would be optimal in
terms of minimizing variance and bias, the AFCD can provide a way to improve estimation while keeping
respondent burden low.

Since the AFCD utilizes information on the true total nominations, the estimates of the intercepts are
much better with the AFCD than the FCD or the naive analyses. This suggests that the AFCD should be
implemented when edge prediction is a goal of the analyses.

Limitations are acknowledged. In this work, we assume that nominations are randomly censored.Viola-
tion of this assumption may lead to incorrect inference. This assumption warrants additional investigation,
and further research into survey methodology for AFCD and FCD data are necessary. Though, in this work
we find that the order in which respondents nominated their peers did not heavily influence inference.

The analyses and simulations we present use a dyad independent ERGM model. This model does not
incorporate important network characteristics including reciprocity, transitivity, and clustering. Modeling
network structural characteristics and allowing for complex dependencies is particularly important when
the goal of the model is to impute missing edges, or provide a realistic network model. Alternative models
that incorporate network characteristics and dependencies include the social relations model (Warner and
others, 1979), the ERGM family of models (Frank and Strauss, 1986; Robins and others, 2004; Goodreau,
2007), and the latent space and factor models (Hoff and others, 2002; Hoff, 2009).

Hoff and others (2013) presented likelihoods for fixed rank and FCD data. Hoff et al. assume that there
is an underlying parametric model for the network that generates the ranked or binary social relations data.
Using a social relations model, Hoff et al. perform estimation in the Bayesian framework. A benefit of
that approach is the ability to accommodate both ranked and binary nominations. However, that method
relies upon an underlying parametric model, requiring more stringent assumptions. As we are concerned
with binary and not ranked data, we have compared the performance of Hoff’s CB estimator to the AFCD,
FCD, and naive estimator and found that in simulations the AFCD had uniformly lower MSE than the
CB, while the FCD often had lower MSE than the CB. It should be noted that Hoff et al. found that
their CB estimator performed comparably to their estimator that accounted for social rankings (Hoff and
others, 2013), hence we would anticipate that the AFCD would also outperform the fixed rank estimator.
Therefore we suggest that when collecting sociometric data, whether or not relationship rankings are
collected, that the total number of relationships should be collected, so that censoring can be more readily
accounted for.
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