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and late postmenopausal women
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Serviente C, Troy LM, de Jonge M, Shill DD, Jenkins NT,
Witkowski S. Endothelial and inflammatory responses to acute exer-
cise in perimenopausal and late postmenopausal women. Am J Physiol
Regul Integr Comp Physiol 311: R841–R850, 2016. First published
August 17, 2016; doi:10.1152/ajpregu.00189.2016.—Endothelial dys-
function and inflammation are characteristics of subclinical athero-
sclerosis and may increase through progressive menopausal stages.
Evaluating endothelial responses to acute exercise can reveal under-
lying dysfunction not apparent in resting conditions. The purpose of
this study was to investigate markers of endothelial function and
inflammation before and after acute exercise in healthy low-active
perimenopausal (PERI) and late postmenopausal (POST) women.
Flow-mediated dilation (FMD), CD31�/CD42b� and CD62E� endo-
thelial microparticles (EMPs), and the circulating inflammatory fac-
tors monocyte chemoattractant protein 1 (MCP-1), interleukin 8
(IL-8), and tumor necrosis factor-� (TNF-�) were measured before
and 30 min after acute exercise. Before exercise, FMD was not
different between groups (PERI: 6.4 � 0.9% vs. POST: 6.5 � 0.8%,
P � 0.97); however, after acute exercise PERI tended to improve
FMD (8.5 � 0.9%, P � 0.09), whereas POST did not (6.2 � 0.8%,
P � 0.77). Independent of exercise, we observed transient endothelial
dysfunction in POST with repeated FMD measures. There was a
group � exercise interaction for CD31�/CD42b� EMPs (P � 0.04),
where CD31�/CD42b� EMPs were similar before exercise (PERI:
57.0 � 6.7 EMPs/�l vs. POST: 58.5 � 5.3 EMPs/�l, P � 0.86) but
were higher in POST following exercise (PERI: 48.2 � 6.7 EMPs/�l
vs. POST: 69.4 � 5.3 EMPs/�l, P � 0.023). CD62E� EMPs were
lower in PERI compared with POST before exercise (P 	 0.001) and
increased in PERI (P � 0.04) but did not change in POST (P � 0.68)
in response to acute exercise. After acute exercise, MCP-1 (P �
0.055), TNF-� (P � 0.02), and IL-8 (P 	 0.001) were lower in PERI
but only IL-8 decreased in POST (P 	 0.001). Overall, these data
suggest that perimenopausal and late postmenopausal women display
different endothelial and inflammatory responses to acute exercise.

menopause; endothelial function; inflammation; acute exercise

CARDIOVASCULAR DISEASE (CVD) is the leading cause of death
for women in developed countries (40) and 1 in 3 women die
from CVD annually (19). Menopause is generally associated
with an increase in CVD risk factors, with an acceleration of
risk that begins during the perimenopausal years and continues
to worsen into postmenopause (38, 39). Ovarian hormones are
generally believed to exert protective cardiovascular effects
(33, 44). Perimenopausal and postmenopausal women differ in
ovarian hormone exposure; perimenopausal women retain in-
termittent exposure that is absent in postmenopausal women.

Peri- and postmenopausal women also differ in the length of
time ovarian hormone exposure has been reduced. Interest-
ingly, hormone replacement therapy efficacy varies in women
at different menopausal stages (31, 37), which may be related
to these differences. Because of the accelerated risk that occurs
during perimenopause, and ovarian hormone differences be-
tween peri- and postmenopausal women, it is important to
evaluate mechanisms related to increased CVD risk in women
at different menopausal stages. Improved knowledge of CVD
risk accumulation during the menopausal transition may ad-
vance efforts to monitor and mediate risk in aging women.

The mechanisms behind adverse changes in CVD risk that
accompany menopause are still unclear but may be related to
changes in ovarian hormones or traditional CVD risk factors
such as blood pressure or lipid levels (38–40). These changes,
along with changes in inflammatory cytokines such as mono-
cyte chemoattractant protein 1 (MCP-1), interleukin 8 (IL-8),
and tumor necrosis factor-� (TNF-�) may adversely impact
endothelial function, which itself leads to an increased risk of
cardiovascular disease (7). Endothelial cells are a physical
barrier between blood and blood vessel walls and have a
variety of dynamic properties. Endothelial cells secrete factors
that affect vasomodulation, platelet adhesion and aggregation,
smooth muscle cell migration and proliferation, and inflamma-
tion (69). In response to an increase in shear stress, endothelial
cells cause vasodilation via the secretion of nitric oxide (NO)
(50) and can release endothelial microparticles (EMP) indica-
tive of endothelial activation (CD62E�) and/or apoptosis
(CD31�/CD42b�) (12, 71). Inflammation is associated with
oxidation of LDL-cholesterol and expression of cytokines (20,
57). Endothelial function appears to decline through the meno-
pausal transition (46). This decline may be related to changes
in inflammatory cytokines such as MCP-1, IL-8, and TNF-�,
as these cytokines are involved in the initiation of the inflam-
matory process and trigger the recruitment of white blood cells
to damaged endothelial cells, potentially leading to the initia-
tion of the atherosclerotic process. As such, they have been
implicated as potential early markers of cardiovascular disease
(3, 41, 61).

Exercise is associated with improved endothelial function.
The endothelial response to acute exercise is attributed to
increased NO bioavailability and decreased vasoconstrictor
factors (i.e., endothelin-1) (20). Acute exercise may also
change markers of endothelial apoptosis and endothelial acti-
vation (36) and can transiently increase cytokine expression
(35, 57, 58). Furthermore, the endothelial response to acute
exercise may reveal differences in endothelial function in
groups with differing cardiovascular disease risk, despite sim-
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ilar preexercise function (16, 18). Therefore, we aimed to
assess differences in endothelial function and inflammatory
biomarkers before and after an acute bout of exercise in
perimenopausal and late postmenopausal women. We hypoth-
esized that markers of endothelial dysfunction and inflamma-
tion would be higher in late postmenopausal women compared
with perimenopausal women before exercise. After acute ex-
ercise, we expected higher levels of inflammation and less of
an endothelial response in the late postmenopausal compared
with the perimenopausal group.

MATERIALS AND METHODS

The study consisted of three visits. The first and second visits were
used for participant screening and to familiarize participants with
study protocols. The third visit assessed endothelial and inflammatory
markers before and after 30 min of moderate-intensity exercise.

Participants. Data collection was completed on 15 participants.
Participants were classified as perimenopausal (n � 7) or late post-
menopausal (n � 8) based on Stages of Reproductive Aging Work-
shop �10 guidelines (21): early perimenopausal (n � 1): variable
menstrual cycle length (
7 days different from normal); late peri-
menopausal (n � 6): �60 days but 	1 yr of amenorrhea; late
postmenopausal (n � 8): 
5 yr of amenorrhea. Early perimenopausal
and late perimenopausal women were combined for this analysis. No
early postmenopausal (�1 yr and 	5 yr amenorrhea) women were
included.

Participants were screened for cholesterol, triglycerides, fasting
plasma glucose, body fat percentage via dual X-ray absorptiometry,
and blood pressure. Participants were normotensive, nondiabetic, had
normal blood lipid chemistries (LDL-C: �159 mg/dl, HDL-C
40
mg/dl, triglycerides 	150 mg/dl), were �65 yr old, and participated
in 	150 min/wk of moderate intensity activity or 	75 min/wk of
vigorous intensity activity (accumulated in 10-min bouts). Physical
activity was assessed using the International Physical Activity Ques-
tionnaire, which has been validated in this age range (11). Participants
were excluded if they did not meet inclusion criteria or were taking
hormone replacement therapy; were undergoing treatment for meno-
pausal symptoms; had taken oral contraceptives in the past 6 mo; had
a history of cardiovascular disease, myocardial infarction, cardiovas-
cular intervention (e.g., pacemaker implant), chronic menstrual irreg-
ularities before menopause; breast cancer, vaginal bleeding, abnormal
uterine/ovary anatomy, venous thromboembolism, acute liver or gall-
bladder disease; used medications or vitamin/supplements known to
impact endothelial function, such as cholesterol-lowering and/or anti-
inflammatory medications; or were current smokers or had smoked in
the 6 mo before study enrollment. All experimental protocols were
approved by the Institutional Review Board of the University of
Massachusetts Amherst.

Acute exercise protocol. An incremental treadmill V̇O2 max test was
used to assess peak oxygen consumption (Parvo Medics TrueOne
2400, Sandy, UT) and heart rate using a 12-lead electrocardiogram.
On a separate day, participants walked on a treadmill for 30 min at the
heart rate that corresponded to 60–64% of peak oxygen uptake. The
session began and ended with a 5-min warm up and cool down. A
Polar FT1 heart rate monitor (Polar Electro, Lake Success, NY) was
used to verify that the participant maintained the prescribed intensity
throughout the session. Before and 30 min after the acute bout of
exercise, a blood draw and two flow-mediated dilation (FMD) studies,
conducted 15 min apart, were completed.

Flow-mediated dilation. All participants underwent an FMD famil-
iarization trial before data collection. FMD protocols were completed
in the morning to control for diurnal variation, and menstruating early
perimenopausal women were assessed on menstrual cycle days 2–5.
Participants followed a 3-day low-nitrate diet before data collection
and were instructed to fast for 6 h, to avoid exercise, caffeine,

smoking, and alcohol for 12 h, and to stop taking any vitamins and
supplements 72 h before the visit.

FMD was assessed according to published guidelines (66). Briefly,
after 10 min of supine rest, an L-12-5 ultrasound and Doppler probe
with a 60° insonation angle (Philip’s HD11XE Ultrasound System,
Bothell, WA) was used to image the brachial artery proximal to the
cubital fossa. A rapid inflation cuff (D. E. Hokanson, Bellevue, WA)
was placed around the forearm. The brachial artery was continuously
imaged during 2 min of rest, 5 min of forearm cuff inflation (200
mmHg), and 4 min following cuff deflation. Blood pressure and heart
rate were recorded every minute while artery diameter was digitally
captured using FMD Studio Suite Software (FMD Studio, Quipu,
Pisa, Italy). For serial FMD trials, participants rested a minimum of 15
min between studies, and the second study began when baseline
diameter had returned to prestudy values. Arm position, distance to
the cuff, and position of the ultrasound probe were measured and
marked to ensure consistency across trials. Digital video files were
used to analyze baseline and peak diameter. Percent change in
brachial artery diameter was calculated for all studies.

Blood analysis: inflammation, microparticles, and estradiol. Be-
fore and 30 min after acute exercise, participants underwent a blood
draw to assess CD31�/CD42b� and CD62E� EMPs, MCP-1, IL-8,
and TNF-�. Failure to obtain blood samples in two of the participants
resulted in analysis of five perimenopausal and eight late postmeno-
pausal women. Inflammatory cytokines were assessed using an MSD
V-Plex Plus Custom Cytokine & Chemokine Assay (Meso Scale
Discovery, Rockville, MD; https://www.mesoscale.com/en/products_
and_services/assay_kits/v-plex/v-plex_product_selector). All samples
were run in triplicate and fell within the assay detection range. The
average coefficients of variation for MCP-1, TNF-�, and IL-8 were
5.6%, 3.8%, and 2.5%, respectively.

EMP concentrations were determined in batch assays as previously
described (68). Flow cytometry data were analyzed via FlowJo
V10.1r5 (FlowJo, Ashland, OR). EMPs were identified and confirmed
using forward and side scatter parameters of 90 nm calibration beads
(Polysciences, Warrington, PA), and concentrations were calculated
using CountBright Absolute Counting Beads (ThermoFisher Scien-
tific, Waltham, MA). EMPs were defined as CD31�/CD42b� (indic-
ative of endothelial apoptosis) and CD62E� (indicative of endothelial
activation) events within the microparticle gate.

17-�-Estradiol was assessed using a colorimetric ELISA assay
(Invitrogen, Camarillo, CA; https://www.thermofisher.com/order/
catalog/product/KAQ0621). All samples were run in triplicate accord-
ing to manufacturer instructions. A standard curve was calculated
(r2 � 0.99) and sample values were fit to the curve. The average
coefficient of variation for samples was 0.27%.

Statistical analysis. All data are presented as means � SE and were
analyzed using SigmaStat software (Systat Software, San Jose, CA).
Statistical significance in all figures is presented with P values.
Interaction and main effects are noted with lines and individual
comparisons are noted with brackets. Data were evaluated for the
adherence to assumptions for each statistical test proposed. IL-8 data
were normalized using a log-transformation, and estradiol data were
transformed with a square root transformation for analysis. The
nontransformed data are presented for interpretation. Differences
between baseline characteristics were evaluated using independent
t-tests, or if the data did not meet the equal variance assumption, a
Mann-Whitney rank sum test was used. To evaluate differences in
FMD (% change in FMD), EMPs, MCP-1, IL-8, and TNF-� concen-
trations within and between the two menopausal groups before and
after exercise, two-way repeated measures ANOVAs (group � exer-
cise) were used, followed by Holm-Sidak post-hoc testing.

Post-hoc analyses were performed to assess differences in serial
FMD measurements and to identify any relationships between inflam-
matory cytokines, estradiol, FMD values, and baseline characteristics.
Serial FMD measurements were assessed with a three-way ANOVA
(group � exercise � trial) and Holm-Sidak post-hoc testing. Pearson
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product moment correlations were used to examine associations
between variables, with the most relevant to the study outcomes
reported.

Regression analysis was performed as an exploratory aim to deter-
mine the best predictors of the FMD response to acute exercise. The
dependent variable was the average change in FMD from post- to
preexercise. Forwards and backwards stepwise age-adjusted regres-
sion analysis was used to determine variables that were most predic-
tive of the FMD response to acute exercise. Baseline characteristics
[systolic blood pressure (SBP), diastolic blood pressure (DBP), body
fat, V̇O2 peak, HDL-C, LDL-C, TG, and FPG], preexercise endothelial
microparticles, preexercise inflammatory cytokines, preexercise
FMD, and menopausal status (0: perimenopause; 1: postmenopause)
were included in the models. Menopausal status, estradiol, DBP,
LDL-C, V̇O2 peak, preexercise CD31�/CD42b� and CD62E� EMPs,
preexercise MCP-1, and preexercise TNF-� were selected to include
in the final models. A separate age-adjusted regression analysis was
performed to determine the predictive power of menopausal status on
the FMD response to acute exercise.

RESULTS

Participant characteristics. Baseline characteristics were
similar for perimenopausal and late postmenopausal women
(Table 1). Both groups had statistically similar height, weight,
body fat percentage, body mass index (BMI), V̇O2 peak, high-
density lipoprotein cholesterol (HDL-C), fasting plasma glu-
cose (FPG), SBP, DBP, and self-reported weekly time spent in
moderate-to-vigorous physical activity (MVPA). Late post-
menopausal women were significantly older and had higher
LDL-C and lower estradiol compare with perimenopausal
women. Ten-year risk of developing CVD, calculated using the
Framingham Risk Calculator (13), was also significantly
higher in the late postmenopausal group; however, both groups
had relatively low CVD risk. Baseline characteristics were
similar for the subgroups of participants used for EMP and
cytokines analyses; however, LDL-C values did not differ
between groups.

Flow mediated dilation. There was no effect of menopausal
group (P � 0.234) or exercise (P � 0.281) on FMD. Before

exercise, there were no differences in FMD between groups
(perimenopause: 6.4 � 0.9% vs. postmenopause: 6.5 � 0.8%,
P � 0.97). After exercise, the perimenopausal group tended to
have a higher FMD response compared with preexercise levels
(8.5 � 0.9%, P � 0.09), whereas the late postmenopausal
group did not (6.2 � 0.8%, P � 0.77). Furthermore, perimeno-
pausal women showed a trend for higher FMD after exercise
compared with late postmenopausal women (P � 0.063). The
average change in FMD (Fig. 1A) between the two groups was
not statistically different (P � 0.15). There were no differences
in baseline artery diameter (perimenopause: 3.2 � 0.1 mm
preexercise vs. 3.2 � 0.1 mm postexercise; postmenopause:
3.3 � 0.1 mm vs. 3.3 � 0.1 mm postexercise) across groups
(P � 0.53) or with exercise (P � 0.38).

The effect of serial FMD measurements is controversial in
the literature; some studies have shown no effect of serial
measures (23, 54), whereas others have shown that the first
measurement negatively impacts the second (49). Therefore,
we investigated differences between repeated FMD measures
(Fig. 1B). In perimenopausal women, there was no difference
in FMD between serial measurements (P � 0.84). However,
the late postmenopausal group had an effect of serial measure-
ments, with a lower FMD response in the second measurement

Table 1. Participant characteristics

Perimenopausal (n � 7) Postmenopausal (n � 8)

Years since FMP 8.8 � 1.5
Estradiol, pg/ml 117.3 � 27.1 16.5 � 9.0*
Age, yr 47.3 � 1.5 58.9 � 1.4*
Height, cm 163.7 � 3.1 166.5 � 3.1
Weight, kg 72.9 � 7.2 69.0 � 4.3
Body fat, % 40.8 � 2.6 41.9 � 1.5
BMI, kg/m2 27.0 � 2.3 24.8 � 1.3
V̇O2peak, ml·kg�1·min�1 30.1 � 1.6 28.3 � 1.1
HDL-C, mg/dl 70.4 � 9.7 78.4 � 4.8
LDL-C, mg/dl 84.7 � 8.4 116.5 � 9.5*
FPG, mg/dl 92.4 � 3.0 99.5 � 1.7
SBP, mmHg 104.6 � 5.6 117.3 � 5.2
DBP, mmHg 64.6 � 4.5 64.6 � 2.7
TG, mg/dl 52.0 � 6.9 46.4 � 5.7
10-year CVD risk, % 1.9 � 0.3 3.5 � 0.6*
MVPA, MET-min/wk 293.1 � 98 100.3 � 40.9

Participant characteristics for each group are expressed as means � SE.
FMP, final menstrual period; BMI, body mass index; FPG, fasting plasma
glucose; DBP, diastolic blood pressure; SBP, systolic blood pressure; LDL-C,
low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol;
CVD, cardiovascular disease; MVPA, moderate-to-vigorous physical activity;
MET, metabolic equivalent. *P � 0.05 for between group comparison.
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compared with the first (P � 0.035). This effect of serial
measurements is further highlighted by a difference between
perimenopausal and late postmenopausal women in the second
measurement (P � 0.052) and the trend for a group � trial
interaction (P � 0.110). There were similar baseline diameters
between groups (P � 0.23), for all trials (P � 0.45), before and
after exercise (P � 0.68), which reveals that the changes were
not due to differences in starting diameter.

Pearson correlations were used to determine whether any
variables were related to FMD in all participants. There was a
trend for a relationship between the FMD response to acute
exercise and estradiol (r � 0.50, P � 0.08).

Endothelial microparticles. For CD31�/CD42b� EMPs,
there was a group � exercise interaction (P � 0.04). Before
exercise, CD31�/CD42b� EMPs were similar in the perimeno-
pausal and late postmenopausal group (perimenopause: 57.0 �
6.7 EMPs/�l plasma vs. postmenopause: 58.5 � 5.3 EMPs/�l
plasma, P � 0.86). After acute exercise, CD31�/CD42b�

EMPs were higher in the late postmenopausal group compared
with the perimenopausal group (perimenopause: 48.2 � 6.7
EMPs/�l plasma vs. postmenopause: 69.4 � 5.3 EMPs/�l
plasma, P � 0.023). Furthermore, late postmenopausal women
had a trend for higher postexercise levels (P � 0.07), whereas
perimenopausal women did not (P � 0.22) (Fig. 2A). Figure
2B shows the individual data for the difference between groups
in response to acute exercise (P � 0.062).

For CD62E� EMPs, there was a significant group effect
(P � 0.002) and a trend for an effect of exercise (P � 0.06).
Before exercise CD62E� EMPs were significantly lower in the
perimenopausal group (perimenopause: 371.8 � 61.9 EMPs/�l
plasma vs. postmenopause: 673.8 � 48.2 EMPs/�l plasma,
P 	 0.001). In response to acute exercise, CD62E� EMPs
increased in the perimenopausal group but did not change in
the late postmenopausal group (perimenopause: 562.8 � 60.9
EMPs/�l plasma, P � 0.04; postmenopause: 702.4 � 48.2
EMPs/�l plasma, P � 0.68) (Fig. 3A), and there was a trend for
a difference between groups after exercise (P � 0.09). Figure
3B shows the individual data for the difference between groups
in response to acute exercise (P � 0.19).

Inflammation. For MCP-1 there was a significant group �
exercise interaction (P � 0.03). Before exercise, there was no
difference in serum MCP-1 between perimenopausal and late
postmenopausal women (perimenopause: 341.5 � 38.4 pg/ml
vs. postmenopause: 377.2 � 30.4 pg/ml, P � 0.48). Perimeno-
pausal women tended to decrease MCP-1, whereas MCP-1 in
late postmenopausal women did not change in response to
acute exercise (perimenopause: 300.2 � 38.4 pg/ml, P �
0.055; postmenopause: 397.4 � 30.4 pg/ml, P � 0.21). Fur-
thermore, there was a trend for a difference between groups
following exercise (P � 0.07) (Fig. 4A). Figure 4B shows the
individual data for the difference between menopausal groups
in response to acute exercise (P � 0.043).

There was an overall effect of exercise on TNF-� (P �
0.008). There was no difference in serum TNF-� between
perimenopausal and late postmenopausal women before exer-
cise (perimenopause: 2.3 � 0.2 pg/ml vs. postmenopause:
2.6 � 0.2 pg/ml, P � 0.30). After exercise, perimenopausal
women had a decrease in TNF-�, whereas TNF-� did not
change in the late postmenopausal group (perimenopause:
1.9 � 0.2 pg/ml, P � 0.02; postmenopause: 2.4 � 0.2 pg/ml,
P � 0.09) (Fig. 5A). Figure 5B shows the individual data for

the difference between groups in response to acute exercise
(P � 0.425).

For IL-8, there was a group � exercise interaction (P �
0.02) and an overall effect of exercise (P 	 0.001). Both
perimenopausal and late postmenopausal women experienced a
decrease in IL-8 compared with preexercise levels (perimeno-
pause: 14.8 � 3.8 pg/ml, P 	 0.001; postmenopause: 15.3 �
4.1 pg/ml, P 	 0.001). Before exercise, perimenopausal
women had a trend for higher serum IL-8 levels compared with
late postmenopausal women (perimenopause: 146.1 � 59.7
pg/ml vs. postmenopause: 57.1 � 13.3 pg/ml, P � 0.07) (Fig.
6A). Figure 6B shows the individual data for the difference
between groups in the response to acute exercise (P � 0.093).
Preexercise IL-8 was significantly related to age (r � �0.65,
P � 0.02).

Regression analysis. Menopausal status alone only ex-
plained 15.3% of the variance in the FMD response to acute
exercise; however, 70% of the variance in the response was
explained when combined with low-density lipoprotein cho-
lesterol, V̇O2 peak, and diastolic blood pressure (Table 2). When
DBP was removed from the model, the predictive power
decreased by �10% (R2 � 0.604, adjusted R2 � 0.495,
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Fig. 2. CD31�/CD42b� endothelial microparticles (EMPs) were assessed
before and 30 min after acute exercise. Line represents a group � exercise
interaction (A). Individual CD31�/CD42b� EMPs responses to acute exercise
are represented with open circles. The black bar represents the mean of the
group (B).
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P-value � 0.014), suggesting that despite its lack of indepen-
dent statistical significance, DBP has an important influence on
the FMD response to acute exercise.

DISCUSSION

Our primary finding was that while there were few baseline
differences between groups, healthy low-active perimeno-
pausal and late postmenopausal women had different endothe-
lial and inflammatory responses to acute exercise. Specifically,
perimenopausal women responded to acute exercise with an
increase in CD62E� EMPs and a trend for an increase in FMD,
along with decreases in the inflammatory cytokines MCP-1,
TNF-�, and IL-8. Late postmenopausal women had no change
in FMD, CD62E� EMPs, MCP-1, or TNF-� and a trend for an
increase in CD31�/CD42b� EMPs with acute exercise. Inter-
estingly, late postmenopausal women demonstrated transient
endothelial dysfunction with repeated FMD measurements.
Overall, these results demonstrate that healthy low-active peri-
menopausal women have more adaptive endothelial and in-
flammatory responses to acute exercise compared with late
postmenopausal women who demonstrate reduced responsive-
ness.

Endothelial responses. FMD is a preclinical marker for
cardiovascular disease and is prognostic of cardiovascular
events in postmenopausal women (56). When measured using
established guidelines, FMD is largely NO mediated (66) and
is related to coronary artery function (2). Most studies in
middle-aged and older women have measured FMD after
exercise training, with some reporting increased FMD (28) and
others reporting no change in FMD (47, 64). Assessment of
FMD before and after a single bout of exercise can provide
insight into the ability of the endothelium to respond to this
acute cardiovascular challenge (14, 52) and may elucidate
differences in endothelial function and NO bioavailability that
are not observed at rest. Disparate acute exercise FMD re-
sponses have been reported in groups with differing CVD risk.
In overweight active and sedentary men, FMD did not differ
before exercise; however, after acute exercise the sedentary
group had a decreased FMD response, whereas the active
group had an increased FMD response (22). This differential
response to acute exercise has also been shown in smokers
compared with nonsmokers (18) and in obese compared with
lean premenopausal women (17). In the present study, although
most CVD risk factors were similar between groups, late
perimenopausal women had higher 10-yr CVD risk due to
higher age and LDL-cholesterol. In women at distinct meno-
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Fig. 3. CD62E� EMPs were assessed before and 30 min after acute exercise
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pausal stages, Moreau et al. (46) demonstrated that FMD
generally decreased across the menopausal transition. How-
ever, when late perimenopausal and late postmenopausal
women were matched for most CVD risk factors, no difference
in FMD was found. Therefore, differences in CVD risk factors
in our population may have contributed to the trend for a
difference in the FMD response to acute exercise and is
supported by a regression analysis where we determined that
the combination of menopausal status, V̇O2 peak, LDL-C, and
DBP predicted 70% of the FMD response to acute exercise.

The FMD response to acute exercise in women at different
menopausal stages has not been well characterized. Studies
comparing responses between pre- and postmenopausal
women reported higher baseline FMD in premenopausal
women compared with postmenopausal women and an en-
hanced FMD response to acute exercise in postmenopausal, but
not premenopausal women (24, 25). Differences between these
studies and data reported herein could be due to differences in
FMD measurement technique. In the current study, FMD was
measured with cuff placement distal to the imaged region,
which is related to a largely NO-mediated vasodilatory re-
sponse (66). FMD was measured in the other studies with a
cuff placement proximal to the imaging site on the brachial
artery. Proximal cuff placement is associated with the release
of vasodilatory factors other than NO and/or the arterial myo-
genic response (66).

We found that in late postmenopausal, but not perimeno-
pausal women, serial FMD measurements were associated with
transient endothelial dysfunction that was not caused by dif-
ferences in artery diameter. A recent review of current litera-
ture suggests that there may be a biphasic FMD response after
acute exercise characterized by an initial blunted FMD, fol-
lowed by an enhanced or normalized FMD (14). Furthermore,
transient endothelial dysfunction has been reported in response
to repeated FMD measurements (15), although it is generally
accepted that serial FMD measures do not impact one another
(23, 53) as the Brachial Artery Reactivity Task Force recom-
mends completing FMD measurements 15 min apart to assess
reproducibility (10). Transient endothelial dysfunction follow-
ing serial FMD measurements separated by 15 min was pre-
viously shown in young healthy men (49). This dysfunction
was ameliorated following supplementation with L-arginine, a
cofactor necessary for the enzymatic production of NO by
endothelial NO synthase, and was associated with elevated
asymmetric dimethylarginine, a NO inhibitor (49). It is possi-
ble that the difference in postexercise FMD and the response to
repeated FMD measurements for peri- and late postmenopausal
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women may suggest less NO bioavailability or recovery of NO
production capacity in late postmenopausal women.

The higher levels of estradiol may contribute to greater NO
bioavailability and brachial artery reactivity in the perimeno-
pausal group. Estrogen acts directly on the vasculature and
triggers vasodilation through enhanced NO production, among
other mechanisms (27, 32, 43). Chronic estrogen administra-
tion enhances FMD in postmenopausal women (25, 47) and
NO-dependent vasodilation in perimenopausal women (63).
Furthermore, improvements in FMD with exercise training
appear to be dependent on the presence of estrogen (47). The
relationship between estrogen and FMD is supported by the
trend for a positive relationship between estradiol levels and
the FMD response to acute exercise in our data.

EMPs are markers of endothelial activation (CD62E�) and
apoptosis (CD31�/CD42b�) that are released when the endo-
thelium undergoes an acute or chronic stress and provide an
indication of the overall state of the vasculature (12, 71).
Higher circulating levels of EMPs are associated with a variety
of disease states (6, 26, 59) and have been suggested as a novel
biomarker for CVD (1). We observed no difference in CD31�/
CD42b� EMPs between perimenopausal and late postmeno-
pausal women before exercise. This is in agreement with
previous literature in pre- and postmenopausal women (34).
After acute exercise, late postmenopausal women had signifi-
cantly higher CD31�/CD42b� EMPs, indicating greater endo-
thelial apoptosis compared with perimenopausal women. This
may suggest that the increased shear stress of unaccustomed
acute exercise has an adverse affect on the endothelium of
low-active late postmenopausal women. To our knowledge,
this is the first study to examine the CD31�/CD42b� EMPs
response to acute exercise in peri- and late postmenopausal
women.

CD62E� EMPs have not been previously examined in peri-
versus late postmenopausal women; however, higher values
have been reported in low versus higher estrogen status post-
menopausal women (30). Before exercise, CD62E� EMPs
were significantly higher in the late postmenopausal compared
with the perimenopausal group, suggesting increased endothe-
lial activation and an endothelium under greater stress in the
later menopausal stage. The increase in CD62E� EMPs and
endothelial activation in the perimenopausal group is likely due
to the exercise stimulus. Exercise has been previously shown to
stimulate the release of CD62E� EMPs in inactive premeno-
pausal women (16). The lack of a change in CD62E� EMPs
with exercise in late postmenopausal women may indicate a
less responsive endothelium to the acute exercise stimulus due
to higher activation at rest. Overall, the high levels of activa-

tion before and after exercise and increased apoptosis in
response to acute exercise may suggest a stressed endothelium
in the late postmenopausal group that may contribute to the
lack of FMD response to acute exercise.

Inflammatory responses. MCP-1, TNF-�, and IL-8 are in-
flammatory cytokines involved in the initiation of atheroscle-
rosis and have been associated with endothelial dysfunction (4,
5, 29, 48, 51). We hypothesized that because of greater car-
diovascular disease risk and lower estradiol, late postmeno-
pausal women would have higher circulating cytokines before
exercise and would respond to acute exercise with an increase
in these factors, when compared with perimenopausal women.
We found that while there were no significant preexercise
between-group differences, the response to exercise differed by
cytokine and menopausal status. To our knowledge, this is the
first study to investigate the response to acute exercise in
women at different menopausal stages.

Estrogen is both anti-oxidative and anti-inflammatory in
nature (32, 42, 62, 63). MCP-1 and TNF-� are inhibited by
estrogen through direct and indirect mechanisms (4, 45, 55)
and by NO (67, 72). MCP-1 is higher in older compared with
younger women (60), and transdermal estrogen administration
in postmenopausal women who underwent hysterectomy re-
duced circulating MCP-1 after 12 mo of therapy (70). In a
cross-sectional comparison of women at different reproductive
stages, MCP-1 was higher in late perimenopausal and post-
menopausal women compared with premenopausal women,
but TNF-� was similar among groups (65). Although we
anticipated a difference in preexercise MCP-1 and TNF-�
between groups, and our groups differed by age and circulating
estradiol, they were matched for most other CVD risk factors,
including blood pressure, lipid levels, and body fat, which may
explain a lack of a difference in preexercise levels of these two
cytokines. In fact, Moreau et al. (45) reported no difference in
TNF-� between pre- and postmenopausal women who were
matched for most CVD risk factors. Conversely, IL-8 has been
shown to be higher in postmenopausal compared with early
peri- and premenopausal women (65). However, a decrease in
IL-8 with age has also been reported (9, 60). Our data supports
the hypothesis that aging leads to a decrease in IL-8, as age was
negatively associated with preexercise IL-8 in all women.

Generally, MCP-1, TNF-�, and IL-8 have been reported to
increase 30–60 min after acute exercise, although this research
has largely been conducted in young male populations (8, 35,
57, 58). In our study, TNF-�, MCP-1, and IL-8 decreased with
acute exercise in perimenopausal women, but only IL-8 was
significantly reduced with acute exercise in late postmeno-
pausal women, revealing that acute exercise reduced inflam-
mation to a lesser degree in late postmenopausal women. It is
possible that the decrease in these cytokines in perimenopausal
women is beneficial, as preexercise IL-8 and TNF-� were
higher than what has been reported in other acute exercise
studies (8, 35). Decreased IL-8 following acute exercise has
been reported in lean and overweight/obese men and women
and was related to increased expression of the anti-inflamma-
tory cytokine interleukin-10 (15). The response to acute exer-
cise may represent an anti-inflammatory response for peri-
menopausal women that did not occur to the same extent in late
postmenopausal women.

Limitations. This pilot study provided novel insight into dif-
ferences in endothelial and inflammatory responses to acute ex-

Table 2. Age-adjusted models of predictors in flow mediated
dilation

Model (P Value) Variables P Value R2 Adjusted R2

Model 1 (0.15)* Menopausal status 0.150 0.153 0.088
Model 2 (0.029)* Menopausal status 0.004 0.705 0.558

LDL-C 0.009
V̇O2peak 0.023
DBP 0.153

Menopausal status (0: perimenopause; 1: postmenopause), LDL-C, low-
density lipoprotein cholesterol; DBP, diastolic blood pressure. *Model ad-
justed for age.
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ercise in perimenopausal and late postmenopausal but is not
without limitations. First, the cross-sectional nature of the study
does not allow us to infer causation or an independent evaluation
of the effect of age from menopausal status. A sample size
estimation was calculated on the primary outcome, FMD, that
required 12 participants per group to detect baseline differences
and 9 per group to detect differences in response to acute exercise.
Calculations were based on baseline FMD responses in women
across the menopausal transition (46) and changes in FMD after
acute exercise in postmenopausal women (24). Calculations were
completed with a one-tailed test, since we hypothesized that the
FMD response would decrease with later menopausal stages.
Therefore, it is possible that differences between groups may not
have been detected due to the limited statistical power. Further-
more, it is likely that other inflammatory factors or reactive
oxygen species may be involved in the observed endothelial and
inflammatory responses. Future assessment of these markers will
allow for a more complete understanding of changes in both
endothelial function and inflammation and the interaction of these
two factors as women progress through menopause.

Perspectives and Signficance

Our findings indicate that perimenopausal women have
enhanced endothelial function and activation and decreased
inflammation in response to acute exercise. Conversely, the
endothelium of late postmenopausal women is less responsive
to acute exercise and displays transient endothelial dysfunction
with repeated FMD measurements. Overall, these data suggest
that factors related to endothelial responsiveness are reduced in
later menopausal stages. We speculate that intermittent ovarian
hormone exposure in perimenopause is sufficient to reduce
subclinical CVD risk. Further development and evaluation of
strategies to maintain and improve endothelial responsiveness
in women at different menopausal stages are necessary.

ACKNOWLEDGMENTS

The authors thank study participants and study personnel who assisted with
data collection.

GRANTS

Funding was provided by research trust fund (to S. Witkowski), University
of Georgia start-up funds (to N. T. Jenkins), and University of Massachusetts
Amherst Commonwealth Honor’s College Grants (to M. de Jonge).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

C.S., and S.W. conception and design of research; C.S., M.d.J., and S.W.
performed experiments; C.S., M.d.J., D.D.S., and N.T.J. analyzed data; C.S.,
L.M.T., M.d.J., N.T.J., D.D.S., and S.W. interpreted results of experiments;
C.S. prepared figures; C.S. and S.W. drafted manuscript; C.S., L.M.T., M.d.J.,
D.D.S., N.T.J., and S.W. edited and revised manuscript; C.S., L.M.T., M.d.J.,
D.D.S., N.T.J., and S.W. approved final version of manuscript.

REFERENCES

1. Amabile N, Guérin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J,
London GM, Tedgui A, Boulanger CM. Circulating endothelial micro-
particles are associated with vascular dysfunction in patients with end-
stage renal failure. J Am Soc Nephrol 16: 3381–3388, 2005.

2. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Dela-
grange D, Lieberman EH, Ganz P, Creager MA, Yeung AC, Selwyn

AP. Close relation of endothelial function in the human coronary and
peripheral circulations. J Am Coll Cardiol 26: 1235–1241, 1995.

3. Apostolakis S, Vogiatzi K, Amanatidou V, Spandidos DA. Interleukin
8 and cardiovascular disease. Cardiovasc Res 84: 353–360, 2009.

4. Arenas IA, Armstrong SJ, Xu Y, Davidge ST. Chronic tumor necrosis
factor-alpha inhibition enhances NO modulation of vascular function in
estrogen-deficient rats. Hypertension 46: 76–81, 2005.

5. Aukrust P, Halvorsen B, Yndestad A, Ueland T, Øie E, Otterdal K,
Gullestad L, Damås JK. Chemokines and cardiovascular risk. Arterio-
scler Thromb Vasc Biol 28: 1909–1919, 2008.

6. Bernal-Mizrachi L, Jy W, Fierro C, Macdonough R, Velazques HA,
Purow J, Jimenez JJ, Horstman LL, Ferreira A, de Marchena E, Ahn
YS. Endothelial microparticles correlate with high-risk angiographic le-
sions in acute coronary syndromes. Int J Cardiol 97: 439–446, 2004.

7. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker
of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23: 168–175, 2003.

8. Christiansen T, Bruun JM, Paulsen SK, Ølholm J, Overgaard K,
Pedersen SB, Richelsen B. Acute exercise increases circulating inflam-
matory markers in overweight and obese compared with lean subjects. Eur
J Appl Physiol 113: 1635–1642, 2013.

9. Clark JA, Peterson TC. Cytokine production and aging: overproduction
of IL-8 in elderly males in response to lipopolysaccharide. Mech Ageing
Dev 77: 127–139, 1994.

10. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbon-
neau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M,
Herrington D, Vallance P, Vita J, Vogel R, International Brachial
Artery Reactivity Task Force. Guidelines for the ultrasound assessment
of endothelial-dependent flow-mediated vasodilation of the brachial ar-
tery: a report of the International Brachial Artery Reactivity Task Force. J
Am Coll Cardiol 39: 257–265, 2002.

11. Craig CL, Marshall AL, Sjorstrom M, Bauman AE, Booth Michael L,
Ainsworth Barbara E, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P.
International physical activity questionnaire: 12-country reliability and
validity. Med Sci Sports Exerc 195: 3508–1381, 2003.

12. Curtis AM, Edelberg J, Jonas R, Rogers WT, Moore JS, Syed W,
Mohler ER III. Endothelial microparticles: sophisticated vesicles modu-
lating vascular function. Vasc Med 18: 204–214, 2013.

13. D’Agostino Sr RBS, Vasan RS, Pencina MJ, Wolf PA, Cobain M,
Massaro JM, Kannel WB. General cardiovascular risk profile for use in
primary care: the Framingham Heart Study. Circulation 117: 743–753,
2008.

14. Dawson EA, Green DJ, Cable NT, Thijssen DH. Effects of acute
exercise on flow-mediated dilatation in healthy humans. J Appl
Physiol(1985) 115: 1589–1598, 2013.

15. Dorneles GP, Haddad DO, Fagundes VO, Vargas BK, Kloecker A,
Romão PR, Peres A. High intensity interval exercise decreases IL-8 and
enhances the immunomodulatory cytokine interleukin-10 in lean and
overweight-obese individuals. Cytokine 77: 1–9, 2016.

16. Durrer C, Robinson E, Wan Z, Martinez N, Hummel ML, Jenkins
NT, Kilpatrick M, Little JP. Differential impact of acute high-intensity
exercise on circulating endothelial microparticles and insulin resistance
between overweight/obese males and females. PLoS One 10: e0115860,
2015.

17. Franklin NC, Ali M, Goslawski M, Wang E, Phillips SA. Reduced
vasodilator function following acute resistance exercise in obese women.
Front Physiol 5: 253, 2014.

18. Gaenzer H, Neumayr G, Marschang P, Sturm W, Kirchmair R,
Patsch JR. Flow-mediated vasodilation of the femoral and brachial artery
induced by exercise in healthy nonsmoking and smoking men. J Am Coll
Cardiol 38: 1313–1319, 2001.

19. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ,
Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern
SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM,
Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH,
Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK,
Mohler ERIII, Moy CS, Mussolino ME, Neumar RW, Nichol G,
Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A,
Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American
Heart Association Statistics Committee, Stroke Statistics Subcommit-
tee. Heart disease and stroke statistics–2014 update: a report from the
American Heart Association. Circulation 129: e28–e292, 2014.

20. Haram PM, Adams V, Kemi OJ, Brubakk AO, Hambrecht R, Elling-
sen Ø, Wisløff U. Time-course of endothelial adaptation following acute
and regular exercise. Eur J Cardiovasc Prev Rehabil 13: 585–591, 2006.

R848 MENOPAUSE, INFLAMMATION, AND ENDOTHELIAL FUNCTION

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00189.2016 • www.ajpregu.org
Downloaded from journals.physiology.org/journal/ajpregu at Smith Col Libs (144.121.036.210) on May 5, 2022.



21. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman
S, Sluss PM, de Villiers TJ, STRAW�10 Collaborative Group. Exec-
utive summary of the Stages of Reproductive Aging Workshop �10:
addressing the unfinished agenda of staging reproductive aging. Climac-
teric 15: 105–114, 2012.

22. Harris RA, Padilla J, Hanlon KP, Rink LD, Wallace JP. The flow-
mediated dilation response to acute exercise in overweight active and
inactive men. Obesity (Silver Spring) 16: 578–584, 2008.

23. Harris RA, Padilla J, Rink LD, Wallace JP. Variability of flow-
mediated dilation measurements with repetitive reactive hyperemia. Vasc
Med 11: 1–6, 2006.

24. Harvey PJ, Morris BL, Kubo T, Picton PE, Su WS, Notarius CF,
Floras JS. Hemodynamic after-effects of acute dynamic exercise in
sedentary normotensive postmenopausal women. J Hypertens 23: 285–
292, 2005.

25. Harvey PJ, Picton PE, Su WS, Morris BL, Notarius CF, Floras JS.
Exercise as an alternative to oral estrogen for amelioration of endothelial
dysfunction in postmenopausal women. Am Heart J 149: 291–297, 2005.

26. Helal O, Defoort C, Robert S, Marin C, Lesavre N, Lopez-Miranda J,
Risérus U, Basu S, Lovegrove J, McMonagle J. Increased levels of
microparticles originating from endothelial cells, platelets and erythro-
cytes in subjects with metabolic syndrome: relationship with oxidative
stress. Nutr Metab Cardiovasc Dis 21: 665–671, 2011.

27. Hermenegildo C, Oviedo PJ, Cano A. Cyclooxygenases regulation by
estradiol on endothelium. Curr Pharm Des 12: 205–215, 2006.

28. Hodges GJ, Sharp L, Stephenson C, Patwala AY, George KP, Gold-
spink DF, Tim Cable N. The effect of 48 weeks of aerobic exercise
training on cutaneous vasodilator function in post-menopausal females.
Eur J Appl Physiol 108: 1259–1267, 2010.

29. Inoue T, Komoda H, Nonaka M, Kameda M, Uchida T, Node K.
Interleukin-8 as an independent predictor of long-term clinical outcome in
patients with coronary artery disease. Int J Cardiol 124: 319–325, 2008.

30. Jayachandran M, Litwiller RD, Owen WG, Miller VM. Circulating
microparticles and endogenous estrogen in newly menopausal women.
Climacteric 12: 177–184, 2009.

31. Kallen AN, Pal L. Cardiovascular disease and ovarian function. Curr
Opin Obstet Gynecol 23: 258–267, 2011.

32. Khalil RA. Sex hormones as potential modulators of vascular function in
hypertension. Hypertension 46: 249–254, 2005.

33. Knowlton AA. Estrogen and cardiovascular disease: aging and estrogen
loss at the heart of the matter? Future Cardiol 8: 9–12, 2012.

34. Kretzschmar J, Babbitt DM, Diaz KM, Feairheller DL, Sturgeon KM,
Perkins AM, Veerabhadrappa P, Williamson ST, Ling C, Lee H. A
standardized exercise intervention differentially affects premenopausal
and postmenopausal African-American women. Menopause 21: 1, 2014.

35. Landers-Ramos RQ, Jenkins NT, Spangenburg EE, Hagberg JM,
Prior SJ. Circulating angiogenic and inflammatory cytokine responses to
acute aerobic exercise in trained and sedentary young men. Eur J Appl
Physiol 114: 1377–1384, 2014.

36. Lansford KA, Shill DD, Dicks AB, Marshburn MP, Southern WM,
Jenkins NT. Effect of acute exercise on circulating angiogenic cell and
microparticle populations. Exp Physiol 101: 155–167, 2016.

37. Manson JE, Chlebowski RT, Stefanick ML, Aragaki AK, Rossouw
JE, Prentice RL, Anderson G, Howard BV, Thomson CA, LaCroix
AZ, Wactawski-Wende J, Jackson RD, Limacher M, Margolis KL,
Wassertheil-Smoller S, Beresford SA, Cauley JA, Eaton CB, Gass M,
Hsia J, Johnson KC, Kooperberg C, Kuller LH, Lewis CE, Liu S,
Martin LW, Ockene JK, O’Sullivan MJ, Powell LH, Simon MS, Van
Horn L, Vitolins MZ, Wallace RB. Menopausal hormone therapy and
health outcomes during the intervention and extended poststopping phases
of the Women’s Health Initiative randomized trials. JAMA 310: 1353–
1368, 2013.

38. Matthews KA, Crawford SL, Chae CU, Everson-Rose SA, Sowers
MF, Sternfeld B, Sutton-Tyrrell K. Are changes in cardiovascular
disease risk factors in midlife women due to chronological aging or to the
menopausal transition? J Am Coll Cardiol 54: 2366–2373, 2009.

39. Matthews KA, Kuller LH, Sutton-Tyrrell K, Chang YF, Tietjen GE,
Brey RL. Changes in cardiovascular risk factors during the perimeno-
pause and postmenopause and carotid artery atherosclerosis in healthy
women. Stroke 32: 1104–1111, 2001.

40. Maturana MA, Irigoyen MC, Spritzer PM. Menopause, estrogens, and
endothelial dysfunction: current concepts. Clinics (Sao Paulo) 62: 77–86,
2007.

41. Melgarejo E, Medina MÁ, Sánchez-Jiménez F, Urdiales JL. Monocyte
chemoattractant protein-1: a key mediator in inflammatory processes. Int
J Biochem Cell Biol 41: 998–1001, 2009.

42. Mendelsohn ME, Karas RH. The protective effects of estrogen on the
cardiovascular system. N Engl J Med 340: 1801–1811, 1999.

43. Mercuro G, Longu G, Zoncu S, Cherchi A. Impaired forearm blood
flow and vasodilator reserve in healthy postmenopausal women. Am Heart
J 137: 692–697, 1999.

44. Miller VM, Duckles SP. Vascular actions of estrogens: functional impli-
cations. Pharmacol Rev 60: 210–241, 2008.

45. Moreau KL, Deane KD, Meditz AL, Kohrt WM. Tumor necrosis
factor-� inhibition improves endothelial function and decreases arterial
stiffness in estrogen-deficient postmenopausal women. Atherosclerosis
230: 390–396, 2013.

46. Moreau KL, Hildreth KL, Meditz AL, Deane KD, Kohrt WM. Endo-
thelial function is impaired across the stages of the menopause transition
in healthy women. J Clin Endocrinol Metab 97: 4692–4700, 2012.

47. Moreau KL, Stauffer BL, Kohrt WM, Seals DR. Essential role of
estrogen for improvements in vascular endothelial function with endur-
ance exercise in postmenopausal women. J Clin Endocrinol Metab 98:
4507–4515, 2013.

48. Nelken NA, Coughlin SR, Gordon D, Wilcox JN. Monocyte chemoat-
tractant protein-1 in human atheromatous plaques. J Clin Invest 88:
1121–1127, 1991.

49. Nerla R, Di Monaco A, Sestito A, Lamendola P, Di Stasio E, Romitelli
F, Lanza GA, Crea F. Transient endothelial dysfunction following
flow-mediated dilation assessment. Heart Vessels 26: 524–529, 2011.

50. Niebauer J, Cooke JP. Cardiovascular effects of exercise: role of endo-
thelial shear stress. J Am Coll Cardiol 28: 1652–1660, 1996.

51. O’Hayre M, Salanga CL, Handel TM, Allen SJ. Chemokines and
cancer: migration, intracellular signalling and intercellular communication
in the microenvironment. Biochem J 409: 635–649, 2008.

52. Padilla J, Harris Wallace JP RA. Can the measurement of brachial
artery flow-mediated dilation be applied to the acute exercise model.
Cardiovasc Ultrasound 5: 45, 2007.

53. Pyke KE, Tschakovsky ME. The relationship between shear stress and
flow-mediated dilatation: implications for the assessment of endothelial
function. J Physiol 568: 357–369, 2005.

54. Pyke KE, Jazuli F. Impact of repeated increases in shear stress via
reactive hyperemia and handgrip exercise: no evidence of systematic
changes in brachial artery FMD. Am J Physiol Heart Circ Physiol 300:
H1078–H1089, 2011.

55. Rodríguez E, López R, Paez A, Massó F, Montaño LF. 17�-estradiol
inhibits the adhesion of leukocytes in TNF-� stimulated human endothe-
lial cells by blocking IL-8 and MCP-1 secretion, but not its transcription.
Life Sci 71: 2181–2193, 2002.

56. Rossi R, Nuzzo A, Origliani G, Modena MG. Prognostic role of
flow-mediated dilation and cardiac risk factors in post-menopausal
women. J Am Coll Cardiol 51: 997–1002, 2008.

57. Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD. Cytokine
response to acute running in recreationally-active and endurance-trained
men. Eur J Appl Physiol 113: 1871–1882, 2013.

58. Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD. Effect of
exercise intensity on the cytokine response to an acute bout of running.
Med Sci Sports Exerc 43: 2297–2306, 2011.

59. Shantsila E, Kamphuisen P, Lip G. Circulating microparticles in car-
diovascular disease: implications for atherogenesis and atherothrombosis
8: 2358–2368, 2010.

60. Sivro A, Lajoie J, Kimani J, Jaoko W, Plummer FA, Fowke K, Ball
TB. Age and menopause affect the expression of specific cytokines/
chemokines in plasma and cervical lavage samples from female sex
workers in Nairobi, Kenya. Immun Ageing 10: 42, 2013.

61. Störk S, van der Schouw Yvonne T, Grobbee DE, Bots ML. Estrogen,
inflammation and cardiovascular risk in women: a critical appraisal.
Trends Endocrinol Metab 15: 66–72, 2004.

62. Sudhir K, Chou TM, Mullen WL, Hausmann D, Collins P, Yock PG,
Chatterjee K. Mechanisms of estrogen-induced vasodilation: in vivo
studies in canine coronary conductance and resistance arteries. J Am Coll
Cardiol 26: 807–814, 1995.

63. Sudhir K, Jennings GL, Funder JW, Komesaroff PA. Estrogen en-
hances basal nitric oxide release in the forearm vasculature in perimeno-
pausal women. Hypertension 28: 330–334, 1996.

64. Swift DL, Weltman JY, Patrie JT, Saliba SA, Gaesser GA, Barrett EJ,
Weltman A. Predictors of improvement in endothelial function after

R849MENOPAUSE, INFLAMMATION, AND ENDOTHELIAL FUNCTION

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00189.2016 • www.ajpregu.org
Downloaded from journals.physiology.org/journal/ajpregu at Smith Col Libs (144.121.036.210) on May 5, 2022.



exercise training in a diverse sample of postmenopausal women. J Wom-
ens Health (Larchmt) 23: 260–266, 2013.

65. Tani A, Yasui T, Matsui S, Kato T, Kunimi K, Tsuchiya N, Yuzuri-
hara M, Kase Y, Irahara M. Different circulating levels of monocyte
chemoattractant protein-1 and interleukin-8 during the menopausal tran-
sition. Cytokine 62: 86–90, 2013.

66. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA,
Parker B, Widlansky ME, Tschakovsky ME, Green DJ. Assessment of
flow-mediated dilation in humans: a methodological and physiological
guideline. Am J Physiol Heart Circ Physiol 300: H2–H12, 2011.

67. Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP. Nitric oxide regulates
monocyte chemotactic protein-1. Circulation 96: 934–940, 1997.

68. van Ierssel SH, Van Craenenbroeck EM, Conraads VM, Van
Tendeloo VF, Vrints CJ, Jorens PG, Hoymans VY. Flow cytometric

detection of endothelial microparticles (EMP): effects of centrifugation
and storage alter with the phenotype studied. Thromb Res 125: 332–
339, 2010.

69. Verma S, Anderson TJ. Fundamentals of endothelial function for the
clinical cardiologist. Circulation 105: 546–549, 2002.

70. Yasui T, Saijo A, Uemura H, Matsuzaki T, Tsuchiya N, Yuzurihara
M, Kase Y, Irahara M. Effects of oral and transdermal estrogen therapies
on circulating cytokines and chemokines in postmenopausal women with
hysterectomy. Eur J Endocrinol 161: 267–273, 2009.

71. Yong PJ, Koh CH, Shim WS. Endothelial microparticles: missing link in
endothelial dysfunction? Eur J Prev Cardiol 20: 496–512, 2013.

72. Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R. Nitric oxide modu-
lates the expression of monocyte chemoattractant protein 1 in cultured
human endothelial cells. Circ Res 76: 980–986, 1995.

R850 MENOPAUSE, INFLAMMATION, AND ENDOTHELIAL FUNCTION

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00189.2016 • www.ajpregu.org
Downloaded from journals.physiology.org/journal/ajpregu at Smith Col Libs (144.121.036.210) on May 5, 2022.


	Endothelial and Inflammatory Responses to Acute Exercise in Perimenopausal and Late Postmenopausal Women
	Recommended Citation
	Authors

	Endothelial and inflammatory responses to acute exercise in perimenopausal and late postmenopausal women

