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A SIMPLE BIJECTION BETWEEN STANDARD 3× n TABLEAUX AND

IRREDUCIBLE WEBS FOR sl3

JULIANNA TYMOCZKO

Abstract. Combinatorial spiders are a model for the invariant space of the tensor product of
representations. The basic objects, webs, are certain directed planar graphs with boundary; alge-
braic operations on representations correspond to graph-theoretic operations on webs. Kuperberg
developed spiders for rank 2 Lie algebras and sl2. Building on a result of Kuperberg’s, Khovanov-
Kuperberg found a recursive algorithm giving a bijection between standard Young tableaux of
shape 3× n and irreducible webs for sl3 whose boundary vertices are all sources.

In this paper, we give a simple and explicit map from standard Young tableaux of shape 3× n

to irreducible webs for sl3 whose boundary vertices are all sources, and show that it is the same
as Khovanov-Kuperberg’s map. Our construction generalizes to some webs with both sources
and sinks on the boundary. Moreover, it allows us to extend the correspondence between webs
and tableaux in two ways. First, we provide a short, geometric proof of Petersen-Pylyavskyy-
Rhoades’s recent result that rotation of webs corresponds to jeu-de-taquin promotion on 3 × n

tableaux. Second, we define another natural operation on tableaux called a shuffle, and show that
it corresponds to the join of two webs. Our main tool is an intermediary object between tableaux
and webs that we call an m-diagram. The construction of m-diagrams, like many of our results,
applies to shapes of tableaux other than 3× n.

1. Introduction

Spiders are categories that describe representations of Lie algebras, particularly the invariant
space of a tensor product of irreducible representations. Kuperberg introduced a combinatorial
description of spiders for all rank 2 Lie algebras, as well as for sl2, in which representations
correspond to combinatorial graphs (called webs), and algebraic operations (like permutation of
the tensor factors) correspond to combinatorial operations on the graphs [Kup96]. A web for the
sl3-spider is a planar directed graph embedded in a disk so that (1) internal vertices are trivalent
and boundary vertices have degree one, and (2) each vertex is either a source (all edges directed out
of the vertex) or a sink (all edges directed in). (We use the streamlined presentation of Petersen-
Pylyavskyy-Rhoades [PPR09].) This construction seems like it could be generalized to other Lie
algebras, yet combinatorial spiders are only known in the cases Kuperberg originally identified.
Researchers have recently and independently made suggestive inroads into this important open
problem, including Kim [Kim03] and Morrison [Mor07], and Jeong-Kim [JK].

Young tableaux are a classical construction ubiquitous in the representation theory and geometry
associated to the symmetric group SN and the Lie algebra slN [Ful97, Part II]. The Young diagram
corresponding to the partition λ1 ≤ λ2 ≤ · · · of N is a left-justified array with λ1 boxes in the
top row, λ2 boxes in the second row, and so on. A standard Young tableau corresponding to the
partition λ1 ≤ λ2 ≤ · · · of N is a filling of the Young diagram by the numbers 1, 2, . . . , N without
repetition so that numbers increase left-to-right along rows and bottom-to-top along columns.

2000 Mathematics Subject Classification. Primary: 05E10, 05C10.
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2 JULIANNA TYMOCZKO

Our paper deepens the connections between Young tableaux and spiders, placing these newer
constructions in the context of classical work. These connections have some precedent. Fung
constructed a natural bijection between standard Young tableaux of shape (n, n) and irreducible
webs for sl2 using the geometry of an object called the (n, n) Springer variety [Fun03]. Khovanov-
Kuperberg constructed a bijection between Young tableaux of shape (n, n, n) and irreducible webs
for sl3 for which each boundary vertex is a source [KK99]. (Choosing whether a boundary vertex
is a source or a sink is equivalent to choosing whether the corresponding tensor factor of the repre-
sentation is the fundamental representation for sl3 or its dual.) However, Khovanov-Kuperberg’s
proof uses a complicated set of growth rules which, when recursively applied, eventually generate
all irreducible webs for sl3.

This paper gives a simple and direct map from standard Young tableaux of shape (n, n, n) to
irreducible webs for sl3 whose boundary vertices are all sources. We give a quick example and
colloquial description here; the reader interested in details can read Sections 2.1, 3.1, and 4.1
immediately, together with Sections 2.2, 3.2, and 4.2 for examples.

Our map uses an intermediate object called an m-diagram. The m-diagram for a standard
tableau with N boxes consists of a boundary line with the numbers 1, 2, . . . , N , together with a
collection of arcs drawn above it. To draw the arcs, read from the bottom to the top row, and then
from left to right along each row, connecting the number i with an arc to the (1) largest number
(2) on the row below i that (3) is not yet connected to a number on i’s row. (Section 2 has more.)

5 6
3 4
1 2

→

1 2 3 4 5 6

����

' $

' $

→

1 2 3 4 5 6

����

� �

' $- �
6� -

� I � I

To construct a web from this m-diagram, do three things. First, each boundary vertex on two arcs
looks locally like a V ; replace this neighborhood with a small Y . Second, each arc now has exactly
one endpoint on the boundary; direct each arc away from the boundary vertex, continuing with
the same direction across any intersections. Third, anywhere two arcs cross is a four-valent vertex
with two edges directed in and two directed out; replace this vertex with two vertices joined by a
directed edge. We will confirm that there is a unique way to do this so that one of the new vertices
is a source and the other is a sink. (Section 3 has more detail and precise definitions.)

A series of lemmas in Section 3.3 prove that the planar graphs obtained in this way from
standard Young tableaux of shape (n ≤ k ≤ k) are in fact irreducible webs for sl3. (This partially
generalizes Khovanov-Kuperberg’s work.) Moreover, we prove in Theorem 4.9 that this map is a
bijection between standard Young tableaux of shape (n, n, n) and irreducible webs for sl3 whose
boundary vertices are all sources. In fact, we will show that our bijection coincides with Khovanov-
Kuperberg’s bijection; we also show that it can be extended to some irreducible webs for sl3 with
both sources and sinks as boundary vertices.

Theorem 4.9 actually proves that Khovanov-Kuperberg’s map from webs to tableaux inverts our
map from tableaux to webs. Our proof uses two notions of depth: circle depth in an m-diagram,
which is the number of arcs above each face of the m-diagram; and Khovanov-Kuperberg’s path
depth in a web, which is the minimum number of edges crossed by paths from a given face to the
unbounded face of the web. (Path depth is distance in the dual graph to a planar graph.)
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In Lemma 4.5, we prove that these two depths coincide in an appropriate sense. Khovanov-
Kuperberg’s map from webs to tableaux puts i on the bottom row of the tableau if the depth
increases at the boundary vertex i, the middle row if depth stays the same at i, and the top row
if depth decreases at i. The reader can see in our example that this recovers the original tableau.

We provide two applications of our construction. Proposition 5.2 radically simplifies Petersen-
Pylyavskyy-Rhoades’s recent result for (n, n, n) tableaux that an operation on tableaux called jeu-
de-taquin promotion corresponds to an operation on webs called rotation [PPR09]. Proposition 5.4
gives the new result that an operation called the join of two webs corresponds to an operation on
Young tableaux called a shuffle. (The proposition applies to more general shapes than three-row
Young tableaux, though the corresponding planar graphs are not webs in that case.)

Though not directly relevant to this work, our construction is motivated by the geometry of the
(n, n, n) Springer variety, and generalizes earlier work of Fung’s [Fun03] and of the author’s with
H. Russell [RT]. We ask two questions for future research:

(1) Does this method give webs for slk from standard Young tableaux of shape k × n?
(2) What does this correspondance (particularly depth) imply about the geometry of the irre-

ducible components of the (n, n, n) Springer variety?

2. From Young tableaux to m-diagrams

Our path from Young tableaux to webs goes through an object which we call an m-diagram.
The m-diagrams are read directly from the Young tableaux; they are almost webs, except that
they have 4-valent vertices that we will turn into trivalent vertices. In this section, we describe
how to construct m-diagrams, give several examples, and then prove fundamental properties of
m-diagrams.

2.1. Defining m-diagrams. Let λ be a Young diagram with N boxes and let T be a standard
tableau of shape λ. Construct the m-diagram corresponding to T as follows:

(1) Draw a line with the numbers 1, 2, . . . , N in increasing order. This is the boundary line at
the base of the m-diagram; all arcs are drawn above this line.

(2) For each i = 1, 2, . . . , N not on the bottom row, find j < i such that j is
• the largest number
• that lies on the row immediately below the row with i and
• that is not already on an arc with another number from the same row as i.

In other words,

j = max{k on the row below i : k < i, k not on an arc to a number on the same row as i}.

Then
• join i to j with a semicircular arc.

For instance, if i is on the bottom row of T then there is no such j, and no arc is created at
the ith iteration of Step (2). For readers who prefer visual descriptions, the number j is the first
number to the left of i on the boundary line such that j is on the row below i and j is not joined
by an arc to any number on the same row as i.

Definition 2.1. Arcs between the kth row from the bottom and (k + 1)st row from the bottom are
called kth arcs. A boundary vertex is a point lying on both an arc and the boundary line.

We use three-row tableaux extensively. The following terminology is useful in this special case.



4 JULIANNA TYMOCZKO

Definition 2.2. Suppose i < j < k are boundary vertices. If the only arc incident to either i or j

is (i, j), then (i, j) is called an isolated arc. If the only arcs incident to any of i, j, or k are (i, j)
and (j, k) then (i, j, k) is called an m.

2.2. Examples. This paper focuses on Young diagrams with three rows, usually rectangular. An
m-diagram for a 3 × n Young tableau contains n figures, each of which resembles an m (and is
called an m). The ms can be nested, unnested, or cross in various ways. In this section we give
the m-diagrams for each of the five possible 3 × 2 tableaux, with second arcs drawn in boldface.
(Corollary 2.5 will prove that any two ms in any m-diagram for a three-row tableau are in one of
these relative positions.)

The simplest kind of web corresponds to the tableau filled with {1, 2, . . .} in numerical order,
bottom to top and left to right. The arcs in these webs neither cross nor nest each other.

3 6
2 5
1 4 1 2 3 4 5 6

�� ���� ��

The next two examples demonstrate nesting: no arcs cross, but one m sits inside another. This
can happen in more than one way: either a first or second arc may enclose an m.

4 6
3 5
1 2 1 2 3 4 5 6

��

' $

����

5 6
2 4
1 3 1 2 3 4 5 6

���� ��

' $

Finally, two arcs may cross, as in the last two examples. This can also happen in two different
ways: either the second arc crosses from above the first arc, or from below.

5 6
3 4
1 2

1 2 3 4 5 6

' $

����

' $

4 6
2 5
1 3

1 2 3 4 5 6

��

' $

��

' $

With larger tableaux, we will often see combinations of crossing and nesting within one m-
diagram. However, any two ms will be in the same relative position as one of these five examples.

2.3. Properties of ms. We now prove several key properties about how ms can cross in an m-
diagram. First we confirm that m-diagrams are well-defined.

Lemma 2.3. The map from the standard tableau T of shape λ to an m-diagram is well-defined.

Proof. Suppose that i is the kth box in its row. Columns increase in a standard Young tableau, so
i is greater than the kth box in the row below i. Rows increase, so i is greater than all of the first
k boxes in the row below i. By construction, each number in the row containing i is joined to at
most one number in the row below, so there is at least one number j < i in the row below i and
to the left of i which is not part of an arc. �
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Proposition 2.4. The m-diagram of a standard Young tableau of shape λ satisfies the following:

(1) Two arcs intersect in at most one point. In particular, locally the m-diagram is an X near
each crossing; the arcs share no point other than the intersection point.

(2) The set of kth arcs is pairwise noncrossing.

Proof. Each arc is a semicircle whose center and endpoints are on the boundary line, and whose
diameter is the distance between the endpoints.

Two distinct circles intersect in at most two points. If we treat the boundary line as the x-axis,
then the two points of intersection have coordinates (x0, y0) and (x0,−y0). At most one of these
points lies above the boundary line, namely on the arc. So any two arcs intersect in at most one
point, and locally near the intersection, the m-diagram is an X.

Suppose that (i, j) and (i′, j′) are the endpoints of two intersecting arcs, with i < j and i′ < j′.
Without loss of generality assume that i < i′ ≤ j < j′. If i′ = j then (i, j) is a kth arc and (i′, j′)
is a (k + 1)th arc for some k. If not, then j and j′ are not both on the (k + 1)th row, since by
construction of m-diagrams j must be joined to the largest possible i′ from the kth row. This
proves the second part of the claim. �

These conditions seem similar to those that arise in recent work of Petersen-Pylyavskyy-Speyer
[PPS]. The next corollary specializes to Young diagrams with three rows.

Corollary 2.5. The m-diagram of a standard three-row Young tableau satisfies the following:

(1) At most two arcs intersect at a given point.
(2) Two arcs that cross consist of a first arc (of an m or an isolated arc) and the second arc

of a different m.
(3) Any two ms cross at most once.
(4) Any two ms will be in one of the five relative positions described by the m-diagrams of 3×2

tableaux.

Proof. The only kinds of arcs inm-diagrams from three-row Young tableaux are first arcs (including
isolated arcs) and second arcs. By Proposition 2.4, if two arcs cross, then they must be a first arc
(of an m or an isolated arc) and the second arc of another m. In particular, no more than two arcs
intersect in the same point, since each arc is either a first arc or a second arc. This proves the first
two parts of the theorem.

Suppose two arcs cross as sketched below. By above, one arc is the first arc of an m, and the
other arc is the second arc of another m.

����

i i′ j j′

Suppose (i, j) is the second arc of the m with vertices (k, i, j) and (i′, j′) is the first arc of the
m with vertices (i′, j′, k′). Then k < i < i′ and j < j′ < k′, so these ms cross only once.

Suppose (i, j) is the first arc of the m with boundary points (i, j, k) and (i′, j′) is the second arc
of the m with boundary points (k′, i′, j′). Since second arcs cannot intersect, the endpoints satisfy
k < j′. Similarly, since first arcs do not cross, the initial points satisfy i < k′. Hence these ms
cross only once.

In no case can two ms cross twice, proving the next part of the claim. Moreover, the m-diagrams
that we obtained are precisely the two crossing m-diagrams from 3× 2 tableaux.
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Suppose two ms (i, j, k) and (i′, j′, k′) do not cross. Assume without loss of generality that i < i′.
Then these m-diagrams must be in one of three relative positions:

• k < i′,
• j < i′ < k′ < k, or
• i < i′ < k′ < j.

These are the three noncrossing m-diagrams from 3× 2 tableaux. This completes the proof. �

3. From m-diagrams to webs

In this section, we restrict to the case of Young diagrams with three rows. In this section, we
describe how to transform an m-diagram for a three-row Young tableau into a web for sl3. We
then prove that the webs we obtain are irreducible.

Recall from the introduction that a web for sl3 is a planar directed graph with boundary so that
(1) internal vertices are trivalent and boundary vertices have degree one, and (2) each vertex is
either a source or a sink. Webs were originally defined to be embedded in a disk. However, for
convenience, we cut the disk to create a boundary line.

3.1. Constructing webs from m-diagrams. The m-diagrams obtained in the previous section
are almost, but not quite, webs for sl3. There are three problems:

(1) the boundary vertex j on an m given by (i, j, k) has degree two;
(2) the edges are undirected; and
(3) there are degree-four vertices where two arcs cross.

Each problem is easily addressed, so easily that in practice we often assume that an m-diagram
has already had the next steps performed.

(1) Each degree-two boundary vertex should be replaced with the shape Y . Hence each m has
a unique trivalent vertex, which we think of as the intersection of its two arcs. (One might
say that these are m-diagrams rather than nn-diagrams.)

(2) Edges should be directed so that:
(a) The edges in each m are directed away from the boundary and towards the trivalent

vertex on the m. (The direction of each edge remains the same across any intersections
with other ms.)

(b) The edges in an isolated arc should be directed from the boundary vertex on the
bottom row of the Young tableau to the boundary vertex on the middle row of the
tableau.

Given these conventions, there is a unique way to make the degree-four vertex at the intersection
of two arcs trivalent. We call this process resolving the diagram, and describe it in the next lemma.

Lemma 3.1. Let v be a 4-valent interior vertex in an m-diagram. There is a unique way to
replace v with a pair of trivalent vertices so that the m-diagram is unchanged outside of a small
neighborhood of v.

Proof. A four-valent vertex v in an m-diagram occurs when two directed arcs cross, which looks
locally like Figure 1 (a). Each arc is directed, so there are two edges incident to v that are directed
in and two that are directed out. Vertices in the web must be trivalent with incident edges all
directed in or all directed out. There is one way to partition the edges incident to v into in-edges
and out-edges. Create a new vertex v1 incident to the in-edges and a new vertex v2 incident to the
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Figure 1. Trivalizing vertices

out-edges. An edge between v1 and v2 makes both vertices trivalent, and must be directed v2 7→ v1
to satisfy the conditions of the web. Locally this creates the diagram in Figure 1 (b). �

3.2. Examples. Extending Section 2.2, we give the web corresponding to each m-diagram for the
standard tableaux of shape 3 × 2. (Each web is a planar graph; each graph here is a reasonably
symmetric example from its isomorphism class.)
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1 4 1 2 3 4 5 6

�� ���� ��
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� �� �
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� �
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������
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?

3.3. Webs obtained from m-diagrams are reduced. Resolved m-diagrams are webs by con-
struction: they are planar directed graphs; each internal vertex is trivalent and each vertex on the
boundary line has degree one; and each vertex is a source or a sink (since each trivalent vertex
was constructed to have either all incident edges directed in or all incident edges directed out). In
fact, a stronger condition holds.

Definition 3.2. A web in the sl3-spider is reduced if it is non-elliptic, namely each (interior) face
has at least six edges on its boundary.

The following series of small lemmas proves that the webs obtained fromm-diagrams are reduced.

Lemma 3.3. Let T be a Young tableau of arbitrary shape. The web obtained by resolving the
m-diagram for T has no face with two edges on its boundary.
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Proof. A face with two edges is bounded by two arcs which cross each other twice. This does not
happen in m-diagrams, by Proposition 2.4. �

Lemma 3.4. Let T be a Young tableau of arbitrary shape. The web obtained by resolving the
m-diagram for T has no face with an odd number of edges on its boundary.

Proof. Each edge is directed, and each vertex is either a sink (all edges are oriented in) or a source
(all edges are oriented out). Hence the edges in any (undirected) cycle alternate orientations, and
so every cycle in the graph must have an even number of edges. �

Lemma 3.5. The web obtained by resolving the m-diagram for a three-row Young tableau T has
no interior face with exactly four edges on its boundary.

Proof. All m-diagrams in this proof correspond to three-row Young tableaux. The proof is by
contradiction: we locally reconstruct arcs that could produce a face with four edges, and then
prove that m-diagrams contain no such arrangement of arcs. The previous lemma showed that the
edges in each cycle in an m-diagram alternate orientation, as in Figure 2.

r

r

r

r

v1

v2 v3

v4
6

-

?

�

��	

���@@

@@

Figure 2. Face with four edges

We first show that none of the edges of the square were added while resolving the m-diagram.
Assume otherwise. After resolving a vertex as in Lemma 3.1, the edges associated to a single arc
are on different faces. Hence an arc that enters the square at v2 cannot leave from either v1 or
v3 (and similarly for arcs entering at v4). Without loss of generality we conclude that an arc that
enters at v2 must proceed along the edge v3v4, as in Figure 3. Arcs in an m-diagram cross at most

r

r

r

r

v1

v2 v3

v4
66

?

��

����
��@@@@R

@@

Figure 3. Face with edge added during the trivializing process

once by Proposition 2.4. We conclude that the arc v3v4 cannot cross the arc v1v2, and so leaves
the face at v4 rather than v1. Hence there is a third arc that must be incident to both v1 and v4.
Each pair of these three arcs cross (at v1, v2, or v4 respectively). Each arc in the m-diagram of a
three-row tableau is a first or second arc. First arcs can only cross second arcs by Proposition 2.4,
so this configuration of arcs does not come from an m-diagram.

All edges incident to the original trivalent vertex on an m are oriented inwards, so at most two of
the vertices in the four-cycle are the original trivalent vertex on an m. If both v2 and v4 are vertices
from the m-diagram, then two ms cross twice (namely at v1 and v3), contradicting Corollary 2.5.

Suppose at most one of the vertices is a vertex from the original m-diagram, without loss of
generality v4. Two edges from the same arc cannot bound the same face after resolving as in
Lemma 3.1, so the four arcs bounding the square must have the relative positions shown in Figure
4. We mark these arcs with one, two, three, and four arrows, and call them 1,2,3,4, respectively.
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Figure 4. Arcs from original m-diagram

(If v4 is a vertex from the original m-diagram, then arcs 1 and 3 do not continue out of the square
in the bottom right of Figure 4.)

First arcs and second arcs do not cross, so we conclude from the interior square that either 3,
4 are both first arcs and 1, 2 are both second arcs, or vice versa. Two arcs can cross at most
once, and ith arcs are noncrossing, so the boundary vertices of arcs 1,2,3,4 are in the same relative
position as in the perimeter of Figure 4. (If v4 is a vertex from the original m-diagram, then in
addition neither arc 1 nor arc 3 is the edge in the middle of the m, since the second edge of an m

in a resolved m-diagram crosses nothing.)

By construction the second arcs in an m-diagram are directed from right to left and first arcs
are directed from left to right, regardless of whether the first arc is isolated or not. Consider just
the arcs 1,2,3,4. Regardless of which endpoint is leftmost on the boundary line, two of the leftmost
three of these arcs cross and are directed the same way. This contradicts the fact that arcs of the
same type (either first or second) are noncrossing. (If v4 is a vertex from the original m-diagram,
we may also use the fact that arc 1 cannot be the edge in the middle of the m containing v4 to
obtain a contradiction.)

We conclude that the resolution of an m-diagram for a three-row Young tableau has no interior
face whose boundary has four edges. �

4. The map from irreducible webs to three-row Young tableaux

Together, the previous two sections give a map from three-row Young tableaux to irreducible
webs for sl3. In this section, we prove that the map is injective. To do this, we modify a map
of Khovanov-Kuperberg that we call the depth map. They defined the depth of a face to be the
distance from the unbounded face in the planar graph dual to the web; in other words, it is the
minimal number of edges crossed by paths between a given face and the unbounded face. We show
that their depth is the same as the depth measured by the number of semicircles in an m-diagram
that contain a face. We then use this to give an elementary proof that depth inverts the map that
sends a standard three-row Young tableau to its resolved m-diagram.

4.1. Circle and path depth. Fix a horizontal line ℓ. Generalizing m-diagrams simplifies proofs
in this section.

Definition 4.1. A sequence of upper semicircles C is a set of upper semicircles, each centered on
a different point along the line ℓ.

The intersections of the semicircles in C naturally define a planar graph.

Definition 4.2. The sequence of upper semicircles C determines a planar graph GC as follows:

• each point of intersection between two semicircles or between a semicircle and the line ℓ is
a vertex, and
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• each arc between vertices is an edge.

Colloquially, the circle depth of a point on a face of this graph is the number of semicircles
containing the point.

Definition 4.3. Let x be a point on a face of the planar graph GC determined by the sequence of
upper semicircles C. The circle depth of p, denoted dc(x, C), is the number of semicircles above x.

Any planar graph that lies above a horizontal line has another natural definition of depth, which
we call path depth. In the context of spiders, it was defined by Khovanov-Kuperberg [KK99].

Definition 4.4. Given a planar graph G that lies above a horizontal boundary line, let f0 be the
unbounded face above the line. Let x be any point on the interior of a face of G. The path depth
of x, denoted dp(x,G), is the minimal number of edges crossed by any path from x to f0 that does
not cross the boundary. (The path from x to f0 must cross at the interior of edges and not at
vertices.)

Equivalently the path is an ordinary path in the dual graph to the planar graph G. In particular,
the path depth of x is independent of small deformations in the planar representation of G, for
instance stretching, contracting, or rotating edges.

The planar graphs that we consider are resolutions of the planar graphs GC corresponding to a
set of upper semicircles C. We abuse notation and write dp(x, C) in this case.

Both circle depth and path depth are constant on each face of a planar graph, since any two
points in the same face can be connected by a path that does not cross any edges of the graph.
We will compare depth for different sets C, so it is more convenient to consider depth as a function
on points rather than faces.

4.2. Examples. The following examples show circle depth for each m-diagram and path depth
for each web for the standard tableaux of shape 3× 2. In all cases, the unbounded face has depth
zero. The reader may notice that circle depth for an m-diagram is quite similar to path depth for
the corresponding web; we prove they are the same in the next section.
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Comparing the faces immediately to the left and right of a boundary vertex, the reader may also
notice that depth increases if the boundary vertex is the first vertex of an m, stays the same if the
vertex is the second vertex of an m, and decreases if the vertex is the third vertex of an m. We
prove this in the next section as well. The reverse of this process constructs a three-row tableau
from a web whose boundary vertices are all sources: if depth increases at a boundary vertex i, put
i on the bottom row of a tableau; if depth stays the same at i, put i on the middle row; and if
depth decreases, put i on the top row of the tableau. We show at the end of this section that this
is the inverse of the map from Young tableaux to webs that we just defined.

4.3. Analyzing path depth and circle depth in m-diagrams. The number and relative po-
sition of faces are the same in a planar graph and its resolution. Hence we may compare circle
depth of a graph obtained from upper semicircles and path depth of its resolution. When we do,
we find that circle depth and path depth agree. We will also see that depth is closely related to ms
in the m-diagram. The proofs in this section only use the undirected graph underlying each web.

Lemma 4.5. Let C be a sequence of upper semicircles such that at most two semicircles intersect
at each given point. Let GC be the planar graph determined by C and let Gr

C
be the resolution of

GC . If x is a point on a face of both GC and Gr
C
then dc(x, C) = dp(x,Gr

C
).

Proof. Path depth is well-defined on planar graphs, and in particular is independent of the angle or
(nonzero) length of its edges. We assume without loss of generality that the resolution producing
Gr

C
adds a very small vertical edge at each arc crossing.

We induct on the number of semicircles in C. The induction hypothesis is a slightly stronger
claim: any path that is a vertical line from x to f0, except for a very small semicircle around
any resolved arc crossing, crosses the minimum number of edges possible between x and f0. (The
semicircle is sufficiently small if it stays inside of the local neighborhood depicted in Figure 1.) We
call these paths vertical paths from x to f0.

When |C| is zero or one, the claim is trivially true. Assume that the claim holds when |C| = n−1.
Choose an upper semicircle C 6∈ C satisfying the hypothesis of the lemma, and let C′ = C ∪ {C}.

For each point x on a face in GC′ , we know that dc(x, C′) = dc(x, C) if x is not below C and
dc(x, C′) = dc(x, C) + 1 if x is below C.

Consider any vertical path from the point x to f0 in Gr
C
. If x is below C then each vertical

path crosses C exactly once, so dp(x, C′) ≤ dc(x, C) + 1. At the same time, any path from x to
f0 crosses C at least once, since C together with the boundary line form a closed curve. Hence
dp(x, C′) ≥ dc(x, C) + 1. We conclude that if x is below C then dp(x, C′) = dc(x, C) + 1 and each
vertical path from x to f0 is a minimal-length path.

Similarly, if x is not below C, then any vertical path from x to f0 crosses only edges obtained
from C. So dp(x, C′) ≤ dp(x, C). No path from x to f0 in the graph associated to C′ can cross fewer
edges, else the same path can be considered in the graph associated to C, where it contradicts the
assumption on dp(x, C). So dp(x, C′) = dp(x, C).

This proves the claim. �
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Let (i, j, k) be the boundary vertices of an arbitrary m in an m-diagram. Colloquially, depth
decreases at i, stays the same at j, and increases at k. The following result makes this precise.

Corollary 4.6. Fix a resolved three-row m-diagram. For each boundary vertex i of a web, let i− ǫ

denote a point on the face to the left of i and i+ ǫ denote a point on the face to the right of i.

• If i is the first boundary vertex of an m or an isolated arc, then d(i + ǫ)− d(i− ǫ) = 1.
• If j is the second boundary vertex of an m, then d(j + ǫ)− d(j − ǫ) = 0.
• If k is the last boundary vertex of an m or an isolated arc, then d(k + ǫ)− d(k − ǫ) = −1.

Proof. Given a resolved m-diagram M , let FM be the set

FM = {(i, j, k) is an m in the web} ∪ {(i, k) is an isolated arc} .

We use induction on the cardinality of the set FM . When |FM | = 0 the claim is vacuously true.
Assume that it holds when |FM | = n− 1. Let M be an m-diagram with |FM | = n. Suppose either
(i, j, k) are the boundary vertices of an m in M or (i, k) are the boundary vertices of an isolated
arc. Let M ′ be the m-diagram with |FM ′ | = n − 1 obtained by erasing the m with boundary
vertices (i, j, k), respectively the arc (i, k). The faces to the right and left of each boundary vertex
i, j, k merge in M ′, so points on these faces have the same circle depth in M ′. Comparing to M ,
we see:

• the face to the left of i has depth one less than the face to the right of i, since the face to
the right of i is under an arc (either (i, j) or (i, k)) while the face to the left is unchanged
from M ′;

• the face to the left of j has the same depth as the face to the right of j, since the former
is under the arc (i, j) while the latter is under the arc (j, k); and

• the face to the left of k has depth one greater than the face to the right of k, since the
former is under an arc (either (j, k) or (i, k)) while the latter is unchanged from M ′.

If i′ is any vertex with i′ < i or i′ > k then the faces left and right of i′ are under the same arcs
in M ′ as in M . If i′ is any vertex with i < i′ < k and i′ 6= j then the faces left and right of i′ are
under exactly one more arc in M than in M ′. In all cases, the claim holds. �

4.4. Khovanov-Kuperberg’s depth map. We now define a map from irreducible webs for sl3
whose boundary vertices are all sources to standard Young tableaux of size 3 × n. The results
described below were originally proven by Khovanov-Kuperberg [KK99]. We use the exposition of
Petersen-Pylyavskyy-Rhoades [PPR09]. As before i + ǫ is any point on the face immediately to
the right of the boundary vertex i, and i− ǫ is any point on the face to the left of i.

Definition 4.7. Given an irreducible web for sl3 whose boundary vertices are sources, the depth
map creates a corresponding Young tableau by inserting each boundary vertex i as follows:

Put i on the
top
middle
bottom

row of the Young tableau if d(i + ǫ)− d(i− ǫ) =
−1
0
1

It is not a priori clear that this map is well-defined, nor that the resulting Young tableaux have
shape 3× n, but in fact both statements are true.

Proposition 4.8. (Khovanov-Kuperberg Lemmas 1-3 and Proposition 1, as described
in Petersen-Pylyavskyy-Rhoades Theorem 2.4) The depth map is a well-defined map from
irreducible webs for sl3 with all boundary vertices sources to standard Young tableaux of size 3×n.
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We see immediately that the depth map is the inverse of the map that sends a Young tableau
of shape (n, n, n) to its resolved m-diagram.

Theorem 4.9. The depth map is the inverse of the map from standard Young tableaux of size
3 × n to irreducible webs for sl3 with boundary vertices all sources obtained by taking resolved
m-diagrams. Both maps are bijections.

Proof. By Corollary 4.6, the depth map sends the first vertex of each m to the bottom row of
the Young tableau, the second vertex to the middle row, and the third vertex to the top row.
By construction of m-diagrams, this is the original Young tableau. Kuperberg proved in [Kup96,
Theorem 6.1] that the set of irreducible webs for sl3 with 3n boundary vertices (all sources) has
the same cardinality as the set of standard Young tableaux of shape 3×n. So the claim holds. �

We can extend the depth map to include some irreducible webs for sl3 with boundary vertices
that are sinks.

Definition 4.10. Given an irreducible web for sl3, the extended depth map creates a corresponding
three-row Young tableau by inserting each boundary vertex i as follows:

Put i on the

top
middle
middle
bottom

row if d(i+ ǫ)− d(i− ǫ) =

−
−
1 and i is a source
1 and i is a sink
0
1

The domain of the extended depth map includes irreducible webs whose boundary vertices are
both sources and sinks. The extended depth map coincides with the ordinary depth map for an
irreducible web with no sinks on its boundary. We can generalize the previous corollary as well.

Proposition 4.11. Fix n ≤ k. The extended depth map is well-defined on irreducible webs for sl3

that are resolved m-diagrams for standard Young tableaux of shape (n, k, k). For those webs, the
extended depth map is the inverse of the map that takes a three-row Young tableau to its resolved
m-diagram.

The m-diagram for a tableau of shape (n, k, k) has k−n isolated arcs and n ms, so its resolution
has 3n + (k − n) sources and (k − n) sinks on the boundary line. When k = n, the boundary has
no sinks and this proposition reduces to the previous corollary.

Proof. Corollary 4.6 together with our conventions for resolving an m-diagram show that the
extended depth map is well-defined on resolved m-diagrams, and that it inverts the map from
Young tableaux to resolved m-diagrams. �

Unlike standard Young tableaux of shape (n, k, k), arbitrary three-row standard Young tableaux
have isolated boundary vertices. Webs with isolated vertices are not irreducible (though we could
extend the depth map to these webs as well).

5. Applications

A combinatorial spider has several natural graph-theoretic operations that correspond to essen-
tial algebraic operations on the corresponding representations: rotation of a web, join of two webs
(which inserts one web into another), and stitch of a web (which connects two strands of a web).
In what follows, we show natural operations on 3× n Young tableaux that correspond to rotation
and join of webs; the proofs use resolved m-diagrams, and are short and geometrically intuitive.
The operations we describe apply to all tableaux, but only correspond to operations on webs for
3× n tableaux (as we will discuss).
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5.1. Promotion and rotation. Jeu de taquin is a classical operation on Young tableaux in which
an empty box percolates to the boundary of a tableau. In a single step on the configuration

a

b

the number a slides down if a < b and the number b slides left if b < a. (Numbers outside of the
tableau are considered to be ∞.) Jeu-de-taquin promotion is the operation on standard tableaux
obtained by

• erasing 1,
• performing jeu-de-taquin slides until a new Young tableaux is obtained,
• and then adding n to the newly-empty spot.

Petersen-Pylyavskyy-Rhoades recently proved that jeu-de-taquin promotion on 3 × n standard
tableaux corresponds to rotation of webs [PPR09]. This was a key step in studying a cyclic sieving
phenomenon, to analyze the orbits of the permutation action on tableaux obtained by promotion.

Jeu de taquin has a natural interpretation in terms of arcs in an m-diagram.

Lemma 5.1. Fix a standard Young tableau of arbitrary shape. Choose bi from a row whose entries
are b1, b2, . . . and suppose that t1, t2, . . . are the entries in the row above bi. After removing bi and
performing jeu de taquin, the number tk slides down if and only if tk is the largest number on its
row that forms an arc with a number bj0 ≤ bi and k ≥ i.

Proof. This proof involves only the subtableau consisting of the row with bi and the row above bi.
For convenience, we refer to the row with t1, t2, . . . as the top row and the row with b1, b2, . . . as the
bottom row, though there may be other rows in the entire Young tableau. We sketch a schematic
below. Not all boxes are shown in the sketch; the row with tk has length at least k, and the row
originally containing bi has length at least k + 1.

t1 · · · ti ti+1 · · · tk · · ·
b1 · · · bi bi+1 · · · bk bk+1 · · ·

The rules of jeu de taquin imply that at most one box in each row can slide down. Let tk be the
number that slides down from the top row. By definition tk slides down if and only if tj > bj+1

for j = i, i+ 1, . . . , k − 1 while tk < bk+1.

We show that the inequality tk < bk+1 holds if and only if the arcs give a bijection between
{t1, t2, . . . , tk} and {b1, b2, . . . , bk}. If tk > bk+1 then at least one of t1, t2, . . . , tk forms an arc
with bk+1. Conversely let tk < bk+1. The definition of a standard tableau implies that each of
t1, t2, · · · , tk−1 is less than bk+1, and less than every number on the bottom row and to the right
of bk+1. By construction of m-diagrams, each of t1, t2, . . . , tk is joined by an arc to a number in
the set {b1, b2, . . . , bk}. At most one of the numbers b1, b2, . . . , bk is on each arc, so the arcs give a
bijection as claimed.

Consider the arc (bj0 , tk). The numbers on the bottom row under (bj0 , tk) are in bijection with
the numbers on the top row under the arc (bj0 , tk) because arcs are noncrossing. We know that
bk < tk < bk+1 so {bj0 , bj0+1, . . . , bk} are the numbers on the bottom row under (bj0 , tk). Comparing
cardinalities, we see that {tj0 , tj0+1, . . . , tk} are the numbers on the top row under (bj0 , tk).

We conclude that (bj0 , tk) is an arc if and only if the arcs are a bijection from {bj0 , bj0+1, . . . , bk}
to {tj0 , tj0+1, . . . , tk} that matches bj0 with tk. Since tk < bk+1 the arcs match {b1, b2, . . . , bk}
with {t1, t2, . . . , tk}, so in fact (bj0 , tk) is an arc if and only if the arcs form a bijection from
{t1, t2, . . . , tj0−1} to {b1, b2, . . . , bj0−1}. The arcs give a bijection between {b1, b2, . . . , bj0−1} and
{t1, t2, . . . , tj0−1} if and only if tj0−1 < bj0 by the earlier argument with j0 − 1 replacing k. In



A SIMPLE BIJECTION BETWEEN STANDARD 3× n TABLEAUX AND IRREDUCIBLE WEBS FOR sl3 15

particular j0 ≤ i and no number on the same row as tk and larger than tk forms an arc with any
number on the bottom row that is less than bi. �

We give a direct, short proof that promotion corresponds to rotation of webs, using resolved
m-diagrams.

Proposition 5.2. Jeu-de-taquin promotion on 3 × n standard Young tableaux corresponds to ro-
tation of webs for sl3.

Proof. We begin by rotating an m-diagram. Suppose that (c, a, b) is an m with first arc (c, a). Any
arcs (x1, y1), (x2, y2), . . . , (xk, yk) that cross (c, a) are second arcs. If we rotate c from the far left to
the far right position on the number line, then a second arc appears to cross second arcs. However,
the two pieces of m-diagrams in Figure 5 both have the same resolution. So the original m-diagram
gives the same web as the figure with (a, xk, c) as an m, and with arcs (b, y1), (x1, y2), . . . , (xk−1, yk)
instead of (x1, y1), (x2, y2), . . . , (xk, yk). (The arcs involving b, x1, x2, . . . , xk−1, y1, y2, . . . , yk are
second arcs in both m-diagrams, so only cross first arcs.)
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Figure 5. Two pieces of m-diagrams with the same resolution

The arc from xk used to be the beginning of a second arc, and is now the resolved boundary
vertex on two arcs. A resolved m-diagram should have no arcs crossing the arc from its resolved
boundary vertex, though there may currently be some first arcs crossing xk. The two pieces of an
m-diagram shown in Figure 6 have the same resolution. So the original m-diagram gives the same
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Figure 6. Two pieces of m-diagrams with the same resolution

web as the figure with (u1, xk, c) as an m, and with arcs (a, vj), (uj , vj−1), . . . , (u2, v1) instead of
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(u1, v1), (u2, v2), . . . , (uj , vj). The arcs involving a, u1, u2, . . . , uj , v1, v2, . . . , vj are first arcs in both
m-diagrams, so only cross second arcs.

Hence rotating the original m-diagram so that c goes from first to last position on the boundary
gives the resolved m-diagram with (u1, xk, c) as an m, and with arcs (a, vj), (uj , vj−1), . . . , (u2, v1)
and (b, y1), (x1, y2), . . . , (xk−1, yk) that otherwise agrees with the original m-diagram.

We now confirm that the tableau corresponding to this rotated m-diagram is the promotion
of the original Young tableau. It suffices to determine which numbers are on which row of the
Young tableau after promotion. After promoting the original Young tableau, the number c = 1
is removed. The largest number on the middle row with an arc to a number at most 1 on the
bottom row is a, by definition. Lemma 5.1 says that jeu de taquin slides a down to the bottom
row. Figure 5 shows that xk is defined to be the largest number on the top row that is joined by
an arc to a number yk on the middle row with yk ≤ a. In other words xk is the number that slides
from the top to middle row after jeu de taquin, also by Lemma 5.1. The original Young tableau
has three rows so these two vertical slides determine each row of the promoted Young tableau,
which therefore corresponds to the m-diagram in Figure 6. �

Rotation does not correspond to promotion of arbitrary three-row tableaux. For instance, pro-
motion gives

3
2 5
1 4

→
5
2 4
1 3

while rotating the web with arcs (1, 2, 3) and (4, 5) gives the web with arcs (1, 2, 5) and (3, 4). The
reader may notice an provocative connection between the rotated web and the promoted tableau
in this case. Perhaps our construction could be modified to extend to the general three-row case.

5.2. Insertion and joins. The join of two webs is obtained by cutting the boundary line of one
web and slipping the second web into the gap. We define the join of two m-diagrams analogously.
The join operation commutes with resolving m-diagrams, in the sense that the join of two resolved
m-diagrams is the resolution of the join of the m-diagrams. For instance, the join after 1 of the
m-diagram with arc (1, 2) into the m-diagram with m (1, 2, 3) inserts (1, 2) after the first boundary
vertex of (1, 2, 3). This produces the following m-diagram and (undirected) web, regardless of
whether the join is taken before or after resolving m-diagrams:

��

' $

�� ��

' $

We show that join is equivalent to a natural operation on standard Young tableaux, which we call
a shuffle of tableaux.

Definition 5.3. Let T and T ′ be arbitrary Young tableaux with N and N ′ boxes, respectively. Let

i ≤ N . The shuffle of T ′ into T at i is a tableau denoted T ′ i
7→ T and defined by:

• For j = 1, 2, . . . , i, put j in the same row of T ′ i
7→ T as in T .

• For j = 1, 2, . . . , N ′, put i+ j in the same row of T ′ i
7→ T as j is in T ′.

• For j = i+ 1, i+ 2, . . . , N , put N ′ + j in the same row of T ′ i
7→ T as j is in T .

If T and T ′ are standard, then the shuffle is a standard tableau by construction. We give an
example; inserted numbers are in boldface and the boundary of T ′ is highlighted. A shuffle splits
T into two pieces which fit together perfectly, similar to splitting a deck of cards.
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T =
5 6
3 4
1 2

T ′ =
4 6
2 5
1 3

T ′ 3
7→ T =

1 2 4 6

3 5 8 10

7 9 11 12

Figure 7. The shuffle of one tableau into another

We now prove that shuffle of tableaux corresponds to join of m-diagrams. We give two versions
of the claim: the first restricts the shape of the Young tableaux but uses arbitrary shuffles; the
second restricts the kind of shuffles but uses arbitrary shapes. For three-row Young tableaux, the
m-diagrams resolve to webs for sl3.

Proposition 5.4. Let T ′ be a Young tableau with N ′ boxes and T be a Young tableau with N

boxes.

(1) The shuffle T ′ N
7→ T corresponds to the join after N of the resolved m-diagram for T ′ of the

resolved m-diagram for T .
(2) Suppose that T ′ has at least as many rows as T , and that each row of T ′ has the same

length (i.e. T ′ is a rectangle). The resolved m-diagram of the shuffle T ′ i
7→ T is the join

after i of the resolved m-diagram for T ′ into the resolved m-diagram for T .

Proof. If j = 1, . . . , i then j is joined to k by an arc in T ′ i
7→ T if and only if j is joined to k by an

arc in T by construction of m-diagrams.

We next show that if j = 1, . . . , N ′ then i+ j is joined to i+ k by an arc in T ′ i
7→ T if and only

if j is joined to k by an arc in T ′. The number i + k is on the row below i + j in T ′ i
7→ T if and

only if k is on the row below j in T ′. Moreover i + k < i+ j if and only if k < j. Assume that if

j ≤ j′ then i + j is joined to i + k by an arc in T ′ i
7→ T if and only if j is joined to k by an arc

in T ′. (This is true for j = 1 since in that case j is on the bottom row of T ′ and i + j is on the

bottom row of T ′ i
7→ T , so neither has an arc to a lower row.) Let j = j′+1 and say i+ j is on the

r + 1th row. Suppose that the arcs from 1, 2, . . . , i + j − 1 have been placed in T ′ i
7→ T according

to the rules of m-diagrams. Then the set

{k′ : k′ < i+ j, k′ is on the rth row in T ′ i
7→ T, k′ is not yet part of an rth arc in T ′ i

7→ T}

contains the set

i+ {k : k < j, k is on the rth row in T ′, k is not yet part of an rth arc in T ′}

as well as perhaps some numbers that are at most i. Thus the maximum of each set is the same,

so (j, k) is an arc in T ′ if and only if (i+ j, i+ k) is an arc in T ′ i
7→ T . By induction, this holds for

all j = 1, 2, . . . , N ′.

When i = N this proves Part (1) of the claim.

Otherwise, assume that T ′ has at least as many rows as T and that T ′ is rectangular. Then

each number i + 1, i + 2, . . . , i +N ′ is either on the top row of T ′ and hence of T ′ i
7→ T or is one

vertex of an arc to the next higher row (because T ′ is rectangular). This means that for each
j = i+N ′ +1, i+N ′ +2, . . . , N +N ′ with j on the r+1th row, we may inductively show that the
set

{k : k < j, k is on the rth row, k is not yet part of an rth arc in T ′ i
7→ T}
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equals the set

{k : k is on the rth row, k is not yet part of an rth arc in T ′ i
7→ T, k < i or k > i+N ′}.

The maximum of this set always corresponds to an entry from T , so the maximum equals
{

max{k : k < j −N ′, k is on the rth row, k is not in an rth arc in T} if k ≤ i and
N ′ +max{k : k < j −N ′, k is on the rth row, k is not in an rth arc in T} if k > i+N ′.

In other words, the arcs in T ′ i
7→ T either involve only vertices from T ′ in the same relative

positions as the arcs in T ′, or vertices from T in the same relative positions as the arcs in T . So

the m-diagram corresponding to T ′ i
7→ T is the join of the resolved m-diagrams for T ′ and T . �

Part (2) does not hold for arbitrary T ′. For instance, the shuffle

2
1

2
7→

3
2
1

=
5
2 4
1 3

corresponds to the m-diagram with arc (1, 2) and m (3, 4, 5). By contrast, joining the m-diagrams
(1, 2) to (1, 2, 3) at 2 gives the m-diagram with m (1, 2, 5) and arc (3, 4).

Together with rotation, Part (1) can be used to construct an arbitrary join of resolved m-
diagrams. However this gives a weaker claim than Part (2) of Proposition 5.4: rotation of webs

corresponds to jeu-de-taquin promotion only for tableaux of shape (n, n, n), and the shuffle T ′ N
7→ T

is a rectangular tableau only if both T ′ and T are rectangular of the same height.
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