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a b s t r a c t

The use of microfilaricidal drugs for the control of onchocerciasis and lymphatic filariasis (LF) necessi-
tates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be
enhanced by the availability of a macrofilaricidal drug. Flubendazole (FLBZ), a benzimidazole anthel-
mintic, is an appealing candidate. FLBZ has demonstrated potent macrofilaricidal effects in a number of
experimental rodent models and in one human trial. Unfortunately, FLBZ was deemed unsatisfactory for
use in mass drug administration campaigns due to its limited oral bioavailability. A new formulation that
enables sufficient bioavailability following oral administration could render FLBZ an effective treatment
for onchocerciasis and LF. Identification of drug-derived effects is important in ascertaining a dosage
regimenwhich is predicted to be lethal to the parasite in situ. In previous histological studies, exposure to
FLBZ induced damage to tissues required for reproduction and survival at pharmacologically relevant
concentrations. However, more precise and quantitative indices of drug effects are needed. This study
assessed drug effects using a transcriptomic approach to confirm effects observed histologically and to
identify genes which were differentially expressed in treated adult female Brugia malayi. Comparative
analysis across different concentrations (1 mM and 5 mM) and durations (48 and 120 h) provided an
overview of the processes which are affected by FLBZ exposure. Genes with dysregulated expression
were consistent with the reproductive effects observed via histology in our previous studies. This study
revealed transcriptional changes in genes involved in embryo development. Additionally, significant
downregulation was observed in genes encoding cuticle components, which may reflect changes in
developing embryos, the adult worm cuticle or both. These data support the hypothesis that FLBZ acts
predominantly on rapidly dividing cells, and provides a basis for selecting molecular markers of drug-
induced damage which may be of use in predicting efficacious FLBZ regimens.
© 2016 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Infections with filarial parasites that cause lymphatic filariasis
(LF) and onchocerciasis can lead to debilitating symptoms and

cause great economic loss in endemic countries (Zeldenryk et al.,
2011; Tyrell, 2013). Control measures have relied on mass drug
administration (MDA) of either ivermectin or diethylcarbamazine
in combinationwith albendazole (ABZ) with the aim of eliminating
LF and onchocerciasis as public health problems (Molyneux and
Zagaria, 2002; Dunn et al., 2015). These drugs act mainly as
microfilaricides in an MDA setting, which necessitates yearly
dosing for an extended period of time to achieve elimination or
local eradication (Cupp et al., 2011). Additionally, MDA programmes
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for onchocerciasis within Africa are geographically limited due to
severe complications associated with acute killing of Loa loa
microfilaria (mf) in individuals bearing high parasitemia following
treatment with ivermectin (Gardon et al., 1997). The introduction of
a safe macrofilaricidal drug into current control programs will
greatly enhance the elimination of these infections in a timely
manner.

Flubendazole (FLBZ), a benzimidazole (BZ) anthelmintic, is a
candidate macrofilaricide for use in onchocerciasis and LF control
programs. Initially introduced for treatment of livestock for the
control of gastrointestinal (GI) parasitic nematode infections
(Bradley et al., 1983), FLBZ was subsequently approved for the same
indication in humans (Horton, 1990), for which it is highly effica-
cious (Yangco et al., 1981; Kan, 1983). FLBZ has exhibited very high
macrofilaricidal efficacy when administered parenterally in
experimental filariasis models (Denham et al., 1979; Mak, 1981;
Mackenzie and Geary, 2011) and in a human trial in onchocerci-
asis (Dominguez-Vazquez et al., 1983). Although available formu-
lations of the drug afford very limited oral bioavailability, recent
efforts have been made to re-formulate FLBZ to enable oral dosing
(Mackenzie and Geary, 2011; Ceballos et al., 2014; Longo et al.,
2014).

Early in vitro studies of BZ effects focused on GI nematodes.
Ultrastructural observations of Ascaris suum 6 h following exposure
to mebendazole (Borgers and De Nollin, 1975; Borgers et al., 1975)
revealed a loss of microtubule structures in intestinal cells. Further
exposure resulted in decreased glycogen content, accumulation of
secretory granules near the Golgi and swelling and disruption of
microvilli (Borgers and De Nollin, 1975; Borgers et al., 1975;
Atkinson et al., 1980). Studies on the exposure of Toxocara canis
and A. suum to FLBZ reported vacuolization of muscle, gonadal
tissue, intestine and hypodermis (Hanser et al., 2003). FLBZ-
induced damage to reproductive organs of filariae has also been
reported (Howells and Delves, 1985; C�ardenas et al., 2010).

Following FLBZ treatment of infected animals, loss of intestinal
microtubules from the GI tract of the filarial nematodes Brugia
malayi and Litomosoides sigmodontis was observed when the par-
asites were recovered as soon as 6 h post-dosing (Franz et al.,
1990b). As time after dosing increased, there is an increasing
damage to other tissues including the hypodermis and reproduc-
tive system.

Definition of the pharmacokinetic profiles needed for efficacy
with an orally-bioavailable formulation would be facilitated by
knowledge of the time-concentration exposure profiles at which
FLBZ is detrimental to the survival of adult filariae. Previous data
show that exposure to pharmacologically relevant concentrations
of FLBZ elicits damage to the hypodermis, developing embryos, and
intestine of adult female B. malayi, but this damage is not accom-
panied by apparent changes in motility or viability (O'Neill et al.,
2015). These changes were observed via histology, a method
which is challenging for evaluating drug-induced damage. Confir-
mation of histological damage using a transcriptomic approach can
assist in defining target pharmacokinetic profiles for dose selection
in advanced development. Determination of FLBZ-specific changes
at gene expression level would aide in defining a molecular marker
that predicts drug-induced damage.

The present study examines time- and concentration-
dependent transcriptomic changes induced in female B. malayi af-
ter exposure to FLBZ in vitro.

2. Materials and methods

2.1. Parasites

Adult female B. malayi were isolated from the peritoneal cavity

of jirds (Meriones unguiculatus) > 90 days post-infection as
described (Moreno and Geary, 2008). Parasites were supplied by
the NIH-NIAID Filariasis Research Reagent Resource Center (FR3) at
the University of Georgia (UGA), Athens, GA. All animal protocols
were reviewed and approved by the UGA Institutional Animal Care
and Use Committee, and complied with U.S. Department of Agri-
culture's regulations (USDA Assurance No. A3437-01).

2.2. Experimental design

At UGA, adult female worms were pooled from three individual
jirds and randomly distributed among 21 treatment groups
(Table 1), ensuring each treatment included three independent
replicates with 10 worms per replicate (3 � 10 worms per time
point and drug concentration). Worms were washed in RPMI-1640
(BioWhittaker® Classic Cell Culture Media, VWR, Mississauga, ON)
supplemented with 1% v/v gentamycin (gentamycin solution,
10 mg/ml Sigma Aldrich Inc., St. Louis, MO, USA), prior to shipping
on heat pads overnight to McGill in 15 mL of the same solution.
Upon arrival, worms were allocated to individual culture plate
wells containing 6 mL RPMI-1640 (Sigma-Aldrich Corp., St. Louis,
MO, USA) supplemented with 10% v/v heat-inactivated fetal bovine
serum (Sigma-Aldrich Corp., St. Louis, MO, USA), 5% penicillin/
streptomycin (SigmaeAldrich Corp., St. Louis, MO, USA) and 2% v/v
gentamycin (Gibco, Thermo Fisher Scientific Inc., Grand Island, NY,
USA) with or without drug. FLBZ (Epichem, Murdoch, WA,
Australia) was prepared in 100% DMSO and diluted in media to a
final concentration of 0.1% v/v DMSO; control media also contained
0.1% DMSO. Worms were incubated for 2 or 5 days at 37 �C and 5%
CO2, with daily media changes by replacing 3 mL of appropriate
media.

2.3. RNA extraction

Total RNA was prepared using a previously described protocol
(Ballesteros et al., 2016a) which combines organic extraction using
Trizol LS reagent (Ambion, Life Technologies, Burlington, ON) and
phase lock gel tubes (5 PRIME, Gaithersburg, MD). RNAwas purified
and concentrated using columns (RNeasy MinElute Cleanup Kit,
Qiagen, Valencia, CA) and treated with DNase (Ambion DNA-free
Kit, Life Technologies, Burlington, ON). Samples were shipped on
dry ice to the NIH-FR3 (Molecular Division) at Smith College
(Northampton, MA) for cDNA library preparation and Illumina
sequencing.

2.4. cDNA library preparation and RNA sequencing

RNA concentration and purity were measured using the Qubit
RNA BR Assay Kit (Life Technologies, Q10210, Burlington, ON) on an
Agilent 2100 Bioanalyzer (Santa Clara, CA). mRNA was obtained by
Poly (A) magnetic isolation (NEBNext Poly (A) mRNA Magnetic
Isolation Module, NEB, Ipswich, MA). The enriched mRNA served as
template for cDNA library preparation with the NEBNext® Ultra

Table 1
Study design. Worms were randomly allocated to one of three treatment groups. At
each time point, three groups of 10 worms were washed, flash-frozen and used for
RNA extraction.

Treatment group Time to RNA isolation after arrival

2 Days 5 Days

Control (0.1% DMSO) 3 � 10 worms 3 � 10 worms
1 mM Flubendazole 3 � 10 worms 3 � 10 worms
5 mM Flubendazole 3 � 10 worms 3 � 10 worms
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RNA Library Prep Kit Illumina (NEB, E7530) and NEBNext Multiplex
Oligos for Illumina (Dual Index Primers Set 1) (NEB, E7600)
following the manufacturer's instructions. Assessment of quality,
DNA concentration and product size of the cDNAwas performed for
each library using a Qubit® 2.0 Fluorometer (Life Technologies,
Q32866), Qubit® dsDNA BR assay kit (Life Technologies, Q32850),
High Sensitivity DNA Analysis Kit (Agilent, 5067-4626) and Agilent
2100 Bioanalyzer. cDNA libraries were sequenced on an Illumina
MiSeq Platform employing a 150 base pair paired-end NGS setting.

2.5. Data analysis

2.5.1. RNA sequencing analysis
The Mason-Galaxy platform (http://galaxy.iu.edu) was used to

execute the RNAseq analysis. FastQ Groomer (v 1.0.4) was used to
convert files to FastQ Sanger format and quality assessed using
FastQC (v 0.52). Quality assessment was based on %GC content,
Illumina adaptor contamination, and average base quality and
content. The GC plot is expected to have a normal distribution at the
projected GC, multiple peaks was indicative of contamination with
non-mRNA material. Based on Fast QC statistics on base sequence
content, sequences were trimmed from the 50 and 3’ ends using
FastQ Quality Trimmer (v 1.0.0). Trim Galore (v 0.2.8.1) was used to
remove sequences reported as being contaminated with adaptors.

2.5.2. Sequence alignment and transcript quantification
Sequence reads were aligned to the B. malayi reference genome

(ftp://ftp.wormbase.org/pub/wormbase/species/b_malayi/
sequence/genomic/b_malayi.PRJNA10729.WS243.genomic.fa.gz)
using TopHat2 (v 0.6), a spliced read mapper built on the short read
aligner Bowtie (Kim et al., 2013). The resulting BAM files were used
to obtain RNA sequencing metrics (Table 2) using SAM/BAM
Alignment Summary Metrics (v 1.56.0). Aligned reads were
enumerated using the HTSeq-count package (v 0.6.1) on the
Galaxeast-Galaxy platform (http://www.galaxeast.fr/) (Anders
et al., 2015) using the mode parameter set to ‘union’ which
counts reads overlappingmore than one genemodel as ambiguous.

2.5.3. Differential gene expression analysis
Differential gene expression was analyzed in edgeR (v 3.10.5)

(Robinson et al., 2010) using the web interface NetworkAnalyst
(http://networkanalyst.ca) (Xia et al., 2014, 2015). The trimmed
mean of M-values (TMM) normalization method was used to cor-
rect for library size and reduce RNA compositional effect (Robinson
and Oshlack, 2010). Using the Bayes method based on weighted
conditional maximum likelihood, tag-wise dispersion parameters
were estimated for each gene to facilitate between-gene compari-
sons (Robinson and Smyth, 2008). Differential expression analyses
were performed by conducting pairwise comparisons between the
control and drug-treated groups at each time point. Significant
genes were selected using a false discovery rate (FDR) cutoff value
of 0.15 based on the Benjamini-Hochberg method (Benjamini and
Hochberg, 1995).

2.5.4. Bioinformatics analysis
The Wormbase gene name was used to retrieve the protein

coding sequence (Error! Hyperlink reference not valid.) (Harris
et al., 2003) and the Uniprot accession number (http://www.
uniprot.org/). Gene Ontology (GO) terms were obtained from
Wormbase and nematode.net (v 4.0; http://nematode.net/NN3_
frontpage.cgi) (Wylie et al., 2004; Martin et al., 2009). Statistically
over-represented GO terms (p < 0.05) in gene lists of given treat-
ment groups were identified using WebGestalt (WEB-based Gene
SeT AnaLysis Toolkit) (Zhang et al., 2005) using the UniProt acces-
sion number for Caenorhabditis elegans orthologues (a minimal E-

value of 1*10�20) of B. malayi genes. RNAi phenotypes associated
with the C. elegans orthologs were retrieved from Wormbase.
Venny (v 2.0.2; http://bioinfogp.cnb.csic.es/tools/venny/) was used
to create a Venn diagram of overlapping significantly differentially
expressed genes (DEGs) in all treatment groups. R was used to
generate a volcano plot of differentially expressed genes.

2.5.5. Validation of gene expression
To validate Illumina sequencing results, 3 genes (Bm3608,

Bm3280, and Bm4506) were chosen to analyze gene expression by
quantitative polymerase-chain reaction (qPCR) methods. Bm5699
(glyceraldehyde-3-phosphate dehydrogenase, GAPDH) was chosen
as an endogenous control and normalizer, as its expression was
stable over time and across samples. For each RNA sample, 100 ng
total RNA were reverse transcribed using the SuperScript VILO
MasterMix (Invitrogen, #11755e050, Life Technologies, Burlington,
ON) and diluted 5-fold for qPCR reactions. Real-time PCR was
performed in triplicate using specific primers designed using
Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/;
Table S3). Assays were carried out in 20 ml-reaction volumes con-
taining 10 ml 2X SYBR Select Master Mix (Life Technologies,
#4472908), 200 nM final concentration of forward and reverse
primers, and 2 ml cDNA in MicroAmp Fast Optical 96-well plates
(Life Technologies, # 4346907). Plates were sealed with optical
adhesive film (Life Technologies, #4360954) and run in an ABI 7500
real time PCR system using the following program: 50 �C for 2 min,
95 �C for 2 min, 40 cycles defined as 95 �C for 15 s, 58 �C for 15 s,
72 �C for 1 min, followed by a melt curve. Relative expression in the
samples of interest was calculated using the DDCt method (Livak
and Schmittgen, 2001) and the correlation between Illumina RNA
sequencing and qPCR data analyzed by the Pearson test (p < 0.05).

3. Results

3.1. Transcriptomic quantification

The average number of paired-end reads generated from polyA-
tailed mRNA ranged from 1.7 to 2.8 million reads (Table 2).
Approximately 80% of the sequenced reads were mapped to the
reference genome after removal of low quality alignments, ac-
counts for ~9000 different transcripts. Sequencing depth varied
slightly between the treatment groups; however, it is important to
note that there is no obvious trend in the number of transcripts
between treated and control groups.

3.2. FLBZ-dependent changes in the transcriptome

Pairwise comparisons revealed that the number of DEGs ranged
from 94 to 159 (Table 3), which accounts for less than 1% of the
estimated 14500e17800 protein coding genes in the B. malayi
genome (Scott and Ghedin, 2009). In general, more genes were
downregulated than upregulated (Fig. 1). The largest number of
DEGs was found after 120 h exposure to both concentrations of
FLBZ. 62.6%e78.6% of DEGs had a known C. elegans orthologue.

Exposure to 1 mM FLBZ resulted in 257 genes that were differ-
entially expressed at both time points cumulatively, of which only
seven overlapped. These genes were glycosyl hydrolase family
protein (Bm4567), clec-1 (Bm3563) PAN domain containing protein
(Bm6023), unc-22 (Bm7502), peptidase family M1 containing
protein (Bm5654), a putative cuticle collagen (Bm9021) and snf-11
(Bm5517). Exposure to 5 mM FLBZ led to 217 DEGs over both time
points with only 5 overlapping genes, including an uncharacterized
protein (Bm982), clec-1 (Bm3563), a sugar transporter (Bm5053),
oxidoreductase (Bm2014) and snf-11 (Bm5517).

At 48 h, eight genes overlapped between the two
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concentrations: an uncharacterized protein (Bm8094), two ground-
like domain containing proteins (Bm3090, Bm14305), clec-1
(Bm3563), snpn-1 (Bm1903), membrane-anchored cell surface
protein (Bm8956), peptidase family M1 containing protein
(Bm5654) and snf-11 (Bm5517).

The 120 h time point saw the greatest number of DEGs as well as
the greatest number which were shared between the FLBZ con-
centrations. 82 of the 282 genes overlapped, including genes
involved in signaling (2), metabolism (3), transcription (4), trans-
port (7), development (10), collagen or cuticle related (15) or other/
unknown functions (41).

Only two genes were differentially expressed in all treatment
groups (Fig. 2). Bm5517, a sodium-dependent neurotransmitter
symporter family protein (snf-11), was upregulated in all treatment
groups. An orthologue of clec-1 in C. elegans (Bm3563) was also
differentially expressed in all treatments. Interestingly, Bm3563
was downregulated in all treatment groups except the 5 mM FLBZ,
120 h group (Fig. 2).

3.3. Gene ontology (GO) analysis of differentially expressed genes
associated with FLBZ exposure

To identify the major biological processes affected by FLBZ
exposure, GO terms were mined from Wormbase. Because the
B. malayi genome is not fully annotated, the annotation relies on
sequence similarity to evolutionarily related species, with many of
the mined GO terms associated with the C. elegans orthologues. At
all time points and concentrations of FLBZ, the most common GO
term for up-regulated genes was “development” (Fig. 3A). Devel-
opment was also one of the more abundant GO terms for down-
regulated genes; however, this changed at the 120 h time point,
at which a dramatic increase in the proportion of GO terms relating
to the cuticle/collagen was evident (Fig. 3B).

GO term enrichment analysis was conducted with the online
interface WebGestalt using C. elegans orthologues curated from
UniProt. Significantly enriched GO terms varied among the treat-
ment groups. The majority of GO terms for DE genes across treat-
ment groups were related to development and cell division. In the
120 h treatment groups, only two GO terms were enriched at both
concentrations: ‘structural constituent of cuticle’ and ‘structural
molecule activity’. Interestingly, ‘structural molecule activity’ was
the only GO term enriched in all treatment groups.

Genes assigned the GO term ‘structural constituent of cuticle’
were generally down-regulated by FLBZ exposure (Table S1). The
only cuticle gene to be up-regulated was Bm5273, a orthologue of

cut-3 in C. elegans, which is required for alae development in larvae
(Sapio et al., 2005). Because the cuticle is initially synthesized in
late embryogenesis and during eachmolt (Johnstone,1994), it is not
unexpected to find that the majority of the C. elegans orthologues
are highly expressed in these developmental stages and for which
mutations result in impairment of the cuticle (Table S1). However, 5
of the C. elegans orthologues of these 25 genes were most highly
expressed in adults (Bm9729, Bm8024, Bm2854, Bm9021, Bm7608),
one of which (Bm2854, col-19) is an adult-specific marker for
modification and assembly of the cuticle in C. elegans (Thein et al.,
2003).

Similarly, for genes assigned to “structural molecule activity”, 15
of the 29 genes were collagens (Table S2). Of the five cytoskeletal
components assigned this GO term, twowere tubulins, including an
a-tubulin (Bm9228, C. elegans mec-12; Bm10379, C. elegans tba-5)
and a b-tubulin (Bm4733, C. elegans tbb-1). In addition, 6 DEGs
are structural components of the ribosome.

Table 2
RNA sequencing summary. Picard alignment summary tool was used to summarize the sequencing and mapping of sequences to the B. malayi transcriptome.

Treatment group Average total # of reads Aligned reads (%) High quality alignments (%) # Of transcripts

48 h Control 2805561 99.9 82.7 9329
FLBZ 1 mM 1724686 99.9 82.8 8864
FLBZ 5 mM 2065240 99.9 82.3 9076

120 h Control 2462188 99.9 81.8 9054
FLBZ 1 mM 2087268 99.9 81.1 8827
FLBZ 5 mM 2771021 99.9 81.8 9126

Table 3
Summary of differential gene expression analysis.

Time point Treatment group Upregulated genes Downregulated genes Total # of DEGs Genes with C. elegans orthologue

48 h FLBZ 1 mM 18 80 98 77
FLBZ 5 mM 62 32 94 72

120 h FLBZ 1 mM 24 135 159 115
FLBZ 5 mM 19 104 123 77

Fig. 1. Volcano plot of all differentially expressed genes. Green dots denote signifi-
cantly differentially expressed genes (FDR<0.15) and black dots symbolize those which
are not significant. The x-axis is the fold difference (log 2) between groups and the y-
axis represents the log10 of the p-value.
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3.4. qRT-PCR validation

qRT-PCR was performed to validate changes in the level of gene
expression measured by RNAseq. Three significantly up or down-
regulated genes were compared to the corresponding controls. A
robust correlation was found between Illumina RNA sequencing
and qPCR data, with a correlation coefficient r ¼ 0.9978 (Fig. 4),
analyzed by the Pearson test (p < 0.05).

4. Discussion

The present study capitalizes on the precision of RNAseq tech-
nology for measuring transcript abundance (Wang et al., 2009) to
understand transcriptomic changes induced by FLBZ exposure in
adult female B. malayi. Our results indicate that differentially
expressed genes resulting from FLBZ exposure are involved pre-
dominantly in structural molecule activity, cuticle, embryogenesis
and larval development (Table 4).

4.1. Tubulin-related genes

Analysis of significantly enriched GO terms showed that the
‘structural molecule activity’ is the only GO term to be enriched
across both FLBZ concentrations at both time points. This was not
completely unexpected, as FLBZ, a benzimidazole, is known to
inhibit the polymerization of tubulin, an important structural
molecule. In fact, three of the 29 genes with structural molecule
activity were tubulins, including two a-tubulins (Bm10379,
Bm9228) and one b-tubulin (Bm4733). All three genes were up-
regulated at various time points, but not consistently across treat-
ment groups (Table S2). It is surprising that FLBZwould elicit an up-
regulation of functionally redundant tubulin genes, given that
destabilizing drugs typically decrease tubulin synthesis; however,
the theory that tubulin monomers auto-regulate transcription
(Cleveland, 1988) may suggests that the increasing monomer pool
fails to negatively regulate tubulin synthesis, leading instead to
increased tubulin synthesis.

It is also interesting to note that the expression of other tubulin-
related genes is also altered; Bma-hcp-6 (log2FC of�1.43) the heavy
chain of dynein (Bm-dhc-1; log2FC of �1.14), the dynein interme-
diate accessory chain (Bm-dyci-1,log2FC ¼ 2). Differential

expression of tubulin genes provides a proof-of-concept of the
mechanism of action of FLBZ.

4.2. FLBZ dysregulates expression of cuticle-associated genes

The nematode cuticle is a collagen-rich extracellular matrix
which covers underlying epithelial cells and is required for normal
body morphology, movement, and interactions with the external
environment (Page and Winter 2003). The cuticle is first synthe-
sized during late embryogenesis (Page et al., 2014). In the current
study, 26 DEGs were annotated as cuticle components (Table S1).
Five of them overlapped with the set of DEGs detected during
culture of B. malayi, indicating that these genes may be related to
changes associated with in vitro culture, as opposed to drug-
induced effects (Ballesteros et al., 2016a). Six additional cuticle-
related genes overlapped with a study assessing differential gene

Fig. 2. DE genes that overlap among treatment groups. Venn diagram created in Venny
2.0.2.

Fig. 3. Gene ontology analysis of DE genes associated with FLBZ exposure. Up-
regulated (A) and down-regulated (B) genes were manually assigned to GO terms
using information available in Wormbase.

Fig. 4. Correlation between qPCR and RNAseq data. The correlation coefficient be-
tween RNAseq (x-axis) and qPCR (y-axis) data (log2 fold-change) analyzed by the
Pearson test was 0.9978 with a statistical significance p < 0.05.
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expression in ivermectin-treated B. malayi which was conducted
alongside the current study (Ballesteros et al., 2016b); however, in
the ivermectin study, these genes were up-regulated, while they
were down-regulated by exposure to FLBZ (Table S1), suggesting
they are related to FLBZ treatment.

Utilizing gravid female worms introduces a layer of complexity
when assessing the consequence of changes in expression of
cuticle-related genes. Differential expression of these genes could
stem from a general effect on embryogenesis, through which fewer
embryos develop to the stage at which the cuticle is first synthe-
sized. Alternatively (or simultaneously), FLBZ may act on the hy-
podermis of the adult worm, impairing normal turnover of
cuticular components. The genes involved in “Structural constitu-
ent of cuticle” (GO: 0042302) are overrepresented in both embry-
onic and somatic tissue expression (Table S1). C. elegans
orthologues of these genes reveal that the majority exhibit highest
expression in embryos and larval stages (Fig. S1) and have RNAi
phenotypes such as “larval lethal”, “molt defective” and “dumpy
embryos”. While this suggests that FLBZ-induced cuticular changes
are primarily relevant in the context of embryonic development,
the C. elegans orthologues of several B. malayi DEGs exhibit high
expression either in all stages (col-107, col-182, dpy-31, T19B10.2) or
in adults (col-97, col-130, col-19, col-89, Fig. S1).

A few of the genes found to be expressed in adults deserve more
comment. RNAi knockdown of T19B10.2 (Bm5834 orthologue)
impairs the ability of the nematode to resist hypertonic stress
(Lamitina and Strange, 2005). The zinc-metalloprotease dpy-31,
essential to embryonic development, is also required for normal
cuticle formation and proper body morphology and is primarily

expressed in hypodermal cells (Novelli et al., 2004). col-130 is not
well characterized, but is one of the two genes for which expression
is predominantly confined to adult worms (Fig. S1). The other gene
is col-19, an adult-specific marker for collagen assembly (Thein
et al., 2003). It is expressed exclusively in the adult cuticle, and
RNAi led to structural defects in the cuticle, including disrupted
cuticular ridges. The downregulation of these genes suggests that
FLBZ exposure elicits negative consequence on the adult cuticle.
While no studies demonstrate cuticular damage by FLBZ, a scan-
ning electron microscopy study of Wuchereria bancrofti exposed to
either DEC or DEC þ ABZ found that ABZ exposure results in
cuticular damage (Oliveira-Menezes et al., 2007). Using a TUNNEL-
based assay, ABZ was found to damage the adult cuticle in the
bovine filariid Setaria cervi (Nayak et al., 2011). This study also
found extensive damage to the hypodermis. Hypodermal damage is
a common theme among the benzimidazoles including FLBZ (Lacey,
1988; Franz et al., 1990a; Kumar and Lai, 1998; Hanser et al., 2003;
Shalaby et al., 2009; C�ardenas et al., 2010; O'Neill et al., 2015).
Previous studies have shown that short-term exposure to FLBZ
leads to extensive damage to B. malayi hypodermal tissue (O'Neill
et al., 2015). Given that components of the nematode cuticle are
synthesized and delivered to the surface through the hypodermis
(Page and Winter 2003), it is not surprising that hypodermal tissue
damage would result in a dampening of cuticle synthesis.

We know relatively little about the normal turnover rate of
cuticular components in adult filariae. Early studies reported that
adult surfaces appeared to be quite stable with limited protein
shedding (Marshall and Howells, 1986; Scott et al., 1988), but later
work suggested that small amounts of surface proteins are released,

Table 4
GO term enrichment. Top biological processes andmolecular functions associatedwith C. elegans orthologues of B. malayi genes curated using UniProt. Statistically significantly
enriched GO terms are reported as p-value.

GO term GO ID 48 h 120 h

FLBZ 1 mM FLBZ 5 mM FLBZ 1 mM FLBZ 5 mM

Biological Process
Anatomical structure development GO:0048856 6.46E-06
Multicellular organismal development GO:0007275 2.94E-05
Cell cycle process GO:0022402 7.46E-05
M phase GO:0000279 9.28E-05
Mitotic chromosome condensation GO:0007076 9.91E-05
Cell cycle GO:0007049 0.0001
Cell cycle phase GO:0022403 1.00E-04
Body morphogenesis GO:0010171 0.0001 0.084
Developmental process GO:0032502 2.00E-04
Anatomical structure morphogenesis GO:0009653 3.00E-04
Larval development GO:0002164 0.0012 0.01
Locomotion GO:0040011 0.0018 0.0033
Tissue development GO:0009888 0.0046 0.0087
Regulation of growth rate GO:0040009 0.0085
Molting cycle GO:0042303 0.0067
Positive regulation of growth rate GO:0040010 0.0084
Molting cycle, collagen and cuticulin-based cuticle GO:0018996 0.0067
Positive regulation of growth GO:0045927 0.0031
Regulation of growth GO:0040008 0.0047
Collagen and cuticulin-based cuticle development GO:0040002 0.0087
Molecular Function
ATP binding GO:0005524 8.23E-07
Adenyl ribonucleotide binding GO:0032559 8.38E-07
Adenyl nucleotide binding GO:0030554 8.38E-07
Motor activity GO:0003774 6.03E-06
Purine ribonucleoside triphosphate binding GO:0035639 1.15E-05
Purine ribonucleoside binding GO:0032550 1.17E-05
Purine ribonucleotide binding GO:0032555 1.18E-05
Purine nucleotide binding GO:0017076 1.18E-05
Nucleoside binding GO:0001882 1.24E-05
Ribonucleoside binding GO:0032549 1.24E-05
Structural molecule activity GO:0005198 1.51E-02 3.95E-05 2.31E-07 1.03E-08
Structural constituent of cuticle GO:0042302 8.37E-09 2.84E-09
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albeit slowly (Devaney, 1988; KwaneLim et al., 1989; Maizels et al.,
1989). Given that filariae are long-lived parasites, some rate of
turnover of cuticle proteins is expected to occur, and the inhibition
of this process by FLBZ could lead to slow death of the worm.

Another possible explanation for the involvement of apparently
adult-expressed collagen genes is that components incorporated
into the cuticle of developing embryos may originate from the fe-
male, as is the case for microfilarial sheath proteins (Selkirk et al.,
1991; Jiang et al., 2008). Our ability to determine the conse-
quences of FLBZ exposure on the integrity of the adult cuticle is
limited given that only female worms were included in this study.
Performing a similar study in male worms could provide insight
into the impacts FLBZ has on the adult cuticle in the absence of
embryogenesis.

4.3. FLBZ influences expression of genes related to embryonic/larval
development

Impairments to embryogenesis and larval development
emerged as common themes in our analysis. Genes critical for
embryogenesis were among themost notable functional categories,
including structural molecules, cuticle-related genes, and those
involved in mitosis and meiosis.

Effects on embryogenesis can be seen as direct effects on various
stages of the cell cycles. A number of genes involved in meiotic
chromosome condensation and segregation were down regulated
by FLBZ exposure; viln-1 (Bm2146 orthologue), hcp-6 (Bm8795
orthologue, Log2FC �1.57), the dynein heavy chain (Bm589,
Log2FC �1.14) and an orthologue of MIX-1 (Bm13786,
Log2FC �1.57), of PQN-85 (Bm6552, Log2FC �1.63), rad-50
(Bm5562, Log2FC �1.44),.

Interestingly, genes with roles in anatomical structure
morphogenesis (GO:0009653) and developmental process (GO:
0032502) have roles in embryonic elongation. Early embryogenesis
entails rapid cell proliferation, but little change in the shape of the
embryo (Priess and Hirsh, 1986). Approximately mid-way through
embryogenesis, the embryo begins to elongate (Priess and Hirsh,
1986; Ding et al., 2004). This drastic change in shape is heavily
dependent on hypodermal development, as stretching of this tissue
is essential during the elongation process (Ding et al., 2004). In
preparation for morphogenesis, epithelial actin filaments and mi-
crotubules organize circumferentially (Priess and Hirsh, 1986).
NMY-1 (encoded by Bm4244), a non-muscle myosin which was
down regulated in this study (Log2FC �1.68), forms filamentous
structures in proximity to actin and functions as the motor driving
actin constriction (Piekny et al., 2003). Microtubules and the em-
bryonic sheath function together to apply uniform pressure to in-
ternal cells as actin filaments contract circumferentially (Priess and
Hirsh, 1986). The rate of constriction is regulated by sma-1
(Bm14776 orthologue in C. elegans), which was also found to be
down-regulated in this study (log2FC �1.62). sma-1 stabilizes actin
fibers during elongation by linking them to the embryonic hypo-
dermis (Praitis et al., 2005). Mutations in sma-1 slow elongation as
actin filaments dissociate from the membrane (McKeown et al.,
1998). Pressure distributed evenly across the worm creates an in-
ternal hydrostatic pressure that has been suggested to drive elon-
gation (Chin-Sang and Chisholm, 2000).

Studies have shown that muscle contractions are also necessary
for elongation (Williams and Waterson, 1994). Contraction is
transmitted through the hypodermis to the external surface me-
chanically through trans-epidermal attachments (TEAs) (Ding et al.,
2004). In the present study, two genes related to this process were
down-regulated by exposure to FLBZ. Bma-myo-3 (Bm5021,
log2FC�1.53) encodes amyosin heavy chain necessary for initiating
the assembly of thick filaments (Waterston, 1989). Loss-of-function

mutations in C. elegans myo-3 prevent elongation (Waterston,
1989), highlighting the importance of muscle interaction in
morphogenesis. The other gene is C. elegans orthologue vab-10
(Bm7639, Log2FC �1.36), which encodes a spectraplakin cross-
linker of actin and microtubules (Applewhite et al., 2010). It is
required for the interaction between TEAs and the circumferential
actin bundles (Ding et al., 2004) and is suggested to protect cells
from tension that builds up in the epidermis (Bosher et al., 2003).

Down-regulation of genes involved in early embryo morpho-
genesis may explain the apparent halt of embryogenesis associated
with FLBZ exposure (O'Neill et al., 2016). Short-term in vitro
exposure to FLBZ followed by long-term maintenance in vivo
resulted in an increase in late morula stage embryos, the stage
preceding the onset of elongation. This effect on genes relating to
elongation might well be specific to FLBZ; this general trend was
not observed in the concurrently run study summarizing the effects
of ivermectin on B. malayi (Ballesteros et al., 2016b, suggesting it is
not simply a general response to a pharmacological stressor.

It should be noted that virtually all FLBZ-affected genes involved
in development were down-regulated; only one gene was up-
regulated, accounting for ~2% of DEGs in this functional category.
Considering that FLBZ destabilizes microtubules, which are integral
to developmental processes, it is not surprising that these processes
would be impeded. Conversely, there is an alternative explanation
which may be occurring simultaneously. The evolutionary life-
history theory predicts that there is a trade-off between repro-
duction, growth and survival depending on the availability of re-
sources (Zera and Harshman, 2001). It is conceivable that the insult
of drug exposure or resulting damage to tissues involved in nutrient
acquisition (O'Neill et al., 2015) could stimulate down-regulation of
genes not required for immediate survival, such as those involved
in reproduction.

The difficulty in assessing drug-induced damagemotivated us to
search for FLBZ specific markers of damage. Exposure to relatively
high but pharmacologically relevant concentrations (10 mM) of
FLBZ for 24 h was not lethal and worms were able to recover
(O'Neill et al., 2015, 2016). These studies used histological tech-
niques to assess tissues damage in an effort to determine a con-
centration range which may be lethal over this time-period.
Duration to lethality is an important detail in defining target
pharmacokinetic profiles. Extended exposure and monitoring of
viability, using a FLBZ-specific marker as an index of damage, would
provide valuable information for defining dosage profiles.

Comparison of DEGs in each treatment group uncovered two
genes that were common in all treatment groups - Bm3563 and
Bm5517 (Table 1). To determine the suitability of these genes as
markers, their expression profiles were compared to results re-
ported in a study on the transcriptomic changes associated with
in vitro culture of B. malayi (Ballesteros et al., 2016a), as well as the
study that identified DEGs associated with ivermectin exposure
(Ballesteros et al., 2016b). Bm5517, a sodium-dependent GABA
transporter (Mullen et al., 2006) which was up-regulated in all
groups in the present study, was also up-regulated in both of the
previous transcriptomic studies, rendering it an unsuitable marker.
Bm3563 was not differentially expressed following exposure to
ivermectin (Ballesteros et al., 2016b), but was up-regulated as a
result of in vitro culture (Ballesteros et al., 2016a). However, FLBZ
exposure caused down-regulation of this gene across all treatment
groups. The large difference in expression profiles of this gene be-
tween the two studies lends support to the use of this gene as a
marker of FLBZ-induced damage.

Bm3563 is an orthologue of C. elegans clec-1, which encodes a C-
type lectin. Parasitic nematodes exploit lectin receptors to evade
the host immune response by secreting C-type lectins (Loukas and
Maizels, 2000; Vazquez-Mendoza et al., 2013). However, very little
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is known about clec-1. RNAi studies of clec-1 in C. elegans suggest
that it is involved in body morphogenesis, larval development and
growth (Ceron et al., 2007), events which are commonly impaired
by FLBZ. Further studies are needed to explore the utility of this
gene as a marker of damage.

5. Conclusions

RNAseq is a valuable technology as it enables unbiased and
comprehensive gene expression profiling of complex biological
systems. In the current study, we used the RNAseq approach to
identify significant genes and biological processes that were being
affected in B. malayi when challenged with FLBZ. Analysis of GO
terms highlights the influence FLBZ on filarial embryonic devel-
opment, consistent with previous findings (O'Neill et al., 2015,
2016). Significantly enriched GO terms are commonly associated
with RNAi phenotypes of embryo/larval lethality or impairments to
overall morphogenesis for C. elegans homologues. We also noted
changes in cuticular components, for which all DEGs were down
regulated. The exact tissue origins where these changes occur are
yet unknown; the contribution from the adult cuticle vs. devel-
oping embryos is the subject of future work. One DEG (Bm3563)
overlapped all treatment groups and emerged as a possible marker
of FLBZ-induced damage. Although more work is necessary to
confirm the utility of this gene as a marker, it would be highly
beneficial to pharmacodynamic experiments if a dependable, FLBZ-
specific marker of drug lethality was available.
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