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Inhomogeneous fragmentation of the rolling tachyon

Gary Feldef
Smith College Physics Department, Northampton, Massachusetts 01063, USA

Lev Kofmar'
CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada
(Received 19 April 2004; published 24 August 2004

Dirac-Born-Infeld type effective actions reproduce many aspects of string theory classical tachyon dynamics
of unstable [p-branes. The inhomogeneous tachyon field rolling from the top of its potential forms topological
defects of lower codimensions. In between them, as we show, the tachyon energy density fragments into a
p-dimensional web-like high density network evolving with time. We present an analytic asymptotic series
solution of the nonlinear equations for the inhomogeneous tachyon and its stress energy. The generic solution
for a tachyon field with a runaway potential in arbitrary dimensions is described by the free streaming of
noninteracting massive particles whose initial velocities are defined by the gradients of the initial tachyon
profile. Thus, relativistic particle mechanics is a dual picture of the tachyon field effective action. Implications
of this picture for inflationary models with a decaying tachyon field are discussed.

DOI: 10.1103/PhysRevD.70.046004 PACS nuniderll.25~w, 98.80.Cq

I. INTRODUCTION Apart from its application to the string theory tachyon, the
search for the structure of general solutions of the thé€bry
In this paper we investigate generic inhomogeneous solus an interesting mathematical problem in and of itself. The
tions of Dirac-Born-Infeld type theories equation of motion arising from the actigh) is an example
of a complicated, nonlinear, partial differential equation
S= _f dP*IxV(T) \/W+ O(9,0*T), (1) yvhich, as we will shoyv, admits a relgtively simple, gene'ral,
inhomogeneous solution. The evolution of the tachyon field
) . . ) o T(t,x) can be viewed as a mappifigty,Xo) — T(t,x) that
whereT(x*) is a(dimensionlesgscalar field and/(T) isits  pecomes multivalued and generates singularities at caustics
runaway potential(no minimg. In string theorya’ is a  [3]. Besides the DBI type theorigd), there are other cos-
square of the fundamental length scale; we @l=1. The  mpjogically motivated phenomenological models of fields
action (1) was proposed iri1] as an effective field theory \ith high derivatives which share the problematicsbf
des_cription of the open string theory tachyo_n V\_/hich de- |f the potentialV(T) is symmetric around =0 and the
scribes unstable non-BPS D-branes. In application to thgnomogeneous tachyon field begins rolling from the top of
string theory tachyoril) should be understood in the trun- jis effective potential, then topological defedtsnks) can
cated approximation, i.e., valid only in the regime wheresorm due to symmetry breaking!]. In this paper we con-
higher derivatives are not large. The_ potential is_ often chosegjger what happens to the tachyon field in the region where it
to beV(T) = 7,/coshT for the bosonic case which we con- ro|is down one side of the potential. We will see the forma-
sider. At largeT the potential has a runaway charactertjon of sharp features in the tachyon energy density due to its
V(T)=e" " with the ground state at infinity. fragmentation. These features, which are related to the con-
There are several motivations for studying the propertiegergence of characteristics of the fiefd have to be distin-
of the effective action(1). It is difficult to find the open  gyished from topological defects. The full picture must in-
string tachyon dynamics for generic tachyon inhomogenegorporate both effects, formation of kinks and tachyon
ities. The actior(1), meanwhile, permits us to study compli- fragmentation in the space between them. Because it is hard
cated tachyon dynamics in terms of classical field theoryig study with CET tachyon dynamics with a generic, spatially
The relatively simple formulation of tachyon dynamics in yarying profile[5], previous calculations dealt with a plane
terms of the effective actiofl), has therefore triggered sig- \ave tachyon profilg6]. In this case the tachyon decays into
nificant interest in the investigation of the field theory of theequidistant plane-parallel singular hypersurfaces of co-
tachyon and the possible role of tachyons in cosmology. Ingimension one, which were interpreted as kinks. The effec-
deed, the end point of string theory brane inflation is annihi+jye action for a plane wave tachyon predicts similar result,
lation of D—D branes, which leads to the formation and as we will see later. However, this inhomogeneous profile is
subsequent fragmentation of a tachyon conderi@dtdhus  atypical in the sense that fragmentation between kinks does
the potential role of the tachyon in cosmology cannot benot occur. In the general case we expect both structures, web-
understood without first understanding its fragmentation. like fragmentation and topological defects.
In this paper we concentrate on tachyon fragmentation
between kinks. We begin by showing an image that illus-
*Electronic address: gfelder@email.smith.edu trates the fragmentation of the tachyon field as it rolls down
"Electronic address: kofman@cita.utoronto.ca one side of its potential. Figure 1 shows the result of a nu-
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$—(V,S)%=1. (5)

The dot represents a time derivative and the spatial deriva-
tives are with respect to the spatial coordinateg on the
brane. This equation is the Hamilton-Jacobi equation for the
evolution of the wave front function of free steaming mas-
sive relativistic particles.

Let us consider this particle description. At some initial
time t; we can label the position of each particle with a
vector q. Equivalently we can say that parametrizes the

FIG. 1. The focusing of energy density into a web-like stlruCtured!f‘ferent particles. The initial four-velocity of the particle is

due to caustic formation. Whiter regions correspond to higher dend!Ve€n byé"“SO’. If we further define the proper time along
sities. The left panel shows a nearly homogeneous initial Gaussiaf@ch particle’s trajectory, we can switch from coordinates
random field profile and the right panel shows the same field a shofit,X) to (7(t,x),q(t,x)) and obtain an exact parametric solu-

time later. tion to (5) [3],

merical lattice simulation of the energy density of a two di- X=0- VS, (6)
mensional tachyon field rolling down one side of its poten-

tial, as described by the equation of moti(®) below. We t= \/qud%, )
used theLATTICEEASY code[7] adapted for Eq(2). Starting

from an initial random Gaussian fieldl the energy rapidly S=Sy+ 7. (8)

became fragmented into an anisotropic structure of clumps

joined by filaments into a web-like network. The interpretation of the solutiof®) is very simple and in-

The tachyon energy density pattern in Fig. 1 is remiNISy itive. It tells us that the fiel® propagates along the trajec-

cent of thle |Iltikr]n|nat|ctJ)nl_|Eatltern at thle b?ttortn of trflethswm_- tories of the massive relativistic particles, growing linearly
ming pool or the Web-like large scalé structure of th€ unl-, ., proper time. The slope of each characteristic depends

vertsr(]a. Tr:_e sr|]m|Iar|ty IS n]?t tc:0|nC|fJen|t|:itIr:] the underllylngho?ly on the initial gradients 08, on that characteristic.
mathematics has common features in all (nrée cases. in what |, geometrical optics photons are massless, but the quali-

follows we present an analytic solution to the tachyon €aU3zative picture of their wave front propagation is similar. This

tion of motion that describes in detail the formation of this expains the similarity between the two dimensional web-like

:{sr:ru?jture. We bfegEin fsz de(;scribing ta g?]Od a;]ppro?ima'ctiondtopattem of Fig. 1 and the illumination pattern at the bottom of
h? ynamics o q( ) and go on 0 show ?W r? ef)féi;‘ a swimming pool. The focusing of particle trajectories cor-
this approximation into an asymptotic series for the fi responds to higher density concentrations and further, to the

formation of caustics at the loci where trajectories cross.
Il. THE FREE STREAMING APPROXIMATION

The equation of motion for the tachyon field follows from ll. THE FULL SOLUTION

the action(1), Let us now consider the energy density. Looking at Eq.

9 aT Vv (3) we see that the exponential pieces are growing exponen-
RT— BTV T arT— T = 2 tially small, as are the arguments of the square roots. The
9,9 =0"Td 0. (2 ; _ - 4
1+9,ToT \ second term in3) will thus rapidly become irrelevant and
o ) ] we need consider only how the exponentially small numera-
For simplicity we will confine ourselves to a pure exponen-tor and denominator of the first term will be relaté@he
tial potential V(T)=e" T, however our results are qualita- leading term inT2 is one)
tively valid for any runaway potentials. The energy density To calculatep we will need to go beyond the free stream-

of the tachyon fielgp="Tqo is ing approximation(4). In view of the exponential in the nu-
merator ofp we conjecture thal can be expanded as

e ' .
=— T?+e "\J1+9,To"T. 3 _
N ey g ® T(x)~S+1,[Sle?, ©

We have observed solvin@) numerically[3] that if we  where f; is a sub-exponential functional @& (We could
define an operatd?(T)=1+4,T#*T the fieldT rapidly ap-  include a lower order ternipeS. As we explain below, we
proaches a regime in whidR(T)~0. We write this by say- can solve exactly forfy in that case and we find that its

ing effects can be absorbed infandf;.) Now we are going to
check the validity of this expansion.
T(x*)=S(x*), (4) Plugging the expansiof®) into Eq. (2) and keeping only
terms proportional t@~ 25 gives the following equation for
whereS satisfies the equation the sub-exponential functiofy:

046004-2
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(9#S9"9)d,0,f1+2(1—09)##Sa,f,—40Sf,= o,( )
10

where(1S=4,0"S= — 5+ V,?S.
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Comparing expressionél5) and (16), we can find(JS
and calculatd ; using(14). We find that a constant originat-
ing from the integration if14) can be absorbed i8 while
the rest off; will be a 2p order polynomial inr. This dem-

This equation can be dramatically simplified by changingonstrates the validity of the approximati@¢8) by showing
from (t, x) coordinates to £, q) coordinates, as defined by that thef, term provides only exponentially suppressed cor-

the characteristics o in (6)—(7). In these coordinated,
has no spatial derivatives and EGO) reduces to

f,,,—2(1-0S)f,,—40Sf,=0. (11)

Note that(1S can be calculated either with respect to X)

or (7, g) coordinates. We can further simplify this equation

by introducing a new variablg,

y=2f,—f,,. (12)
Equation(11) can be rewritten in terms of,

y ,+20Sy=0, (13)

which can be immediately solved
=yo(q)exp(2[7d71S). From this and12)

to givey(7,0)

fl(r,q)=fli(q)e”fdr’exp( —27’—2f7’d7ﬂljs).
(14

To proceed further we need to calculaf&s. In principle

it can be done from the solutiof®) in parametric form by
inverting the ¢,x)—(7,q) coordinate transformation matrix
[12]. Instead we will use the following trick. Plugging the

expansion (9) into the energy density(3) we find p

rections to the leading term.
We could go further and include other powerseof® in
our expansion9),

[

T(x*)~S+ ZO f [Sle” (1S, 17

We have explicitly checked all such terms up throegtt®,
including a possible term proportional ¢ S, and found that
they simply provide corrections to the integration constants
of Sandf, plus terms that are exponentially suppressed rela-
tive to the ones we have discussed. We can further show that
all such termd,, have the same characteristicsaand we
therefore conclude that the general inhomogeneous solution
T propagates along the characteristi6s—(7). Up to expo-
nentially small correctiongwhich could in principle be cal-
culated order by ordgrthe complete solution fof can be
represented by the two functioSg(q) andf4;(q).

With these results, we can evaluate the energy density
(16) to leading order using only,. For an arbitrary brane
dimensionp we have

p
p~pon[[l (1=\p) 4, (18)

where ,(q) are the eigenvalues @f,(S; '9,Sp). From here

~1/J2(2f;+0,Ss"f;). Observe that the denominator here we see that the energy density first reaches large values in

is exactly identicalo /2y, thus

1

p~7y=po<q>exp( der'Ds

. (15

regions where\,(q) is maximal. For some critical trajecto-
ries g; at a critical timet, the energy density becomes sin-
gular, which corresponds to caustic formation. This is exactly
what one would expect in the picture of free streaming, mas-
sive, relativistic particles, where the energy density blows up

This is precisely the expression for the energy density of fre@t the orbit crossings.

streaming relativistic particles which obey the relativistic
continuity equatiorny, S(pd*S)=0. In fact, (15) is the solu-

tion of this continuity equation in the coordinates,q).
However, there is another form of the energy density,
is equivalent ta(15),

p= 220 a6

aq

where the denominator is the Jacobian of xheq transfor-

IV. CONCLUSIONS

Our most important conclusion is that the general inho-

Whicr}nogeneous solution of the field theof) very rapidly ap-

proaches the asymptotic forth7), which is equivalent to the
relativistic mechanics of freely propagating massive particles
with velocitiesv ;= — V4Sg(da). In other words, there is a
duality between the two Lagrangians

V(T)V1+4d,To*Te D, 102, (19

mation. Indeed, from conservation of the energy density in a

differential volume we havelPqpy(qg) =dPxp, which leads

The whole process of unstablzp brane decay in the dual

to the formula(16). It is now straightforward to calculate the picture is described as “crumbling to dust” of massive par-

Jacobian from the formula®)—(7). In p dimensions it is a

ticles. A complete discussion of the interpretation of massive

polynomial in 7 of orderp. For example, in the one dimen- particles and anisotropic high density structutetimps,

sional casgdx/dq=(r.—7), where7.(q) is a function of

the gradients ofS,. In the two dimensional caspx/dq|
=(7c1— 7)(7c2— 7), Wherer,, are function ofV,S,.

filaments, sheetswhich they form would be beyond the
scope of this paper. In thetll case the high density regions
of the orbit crossing were conjectured to b® braned8].
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From the velocities of the characteristi(® we can see pological defects due to symmetry breaking. Outside these
that around maxima of the initial field profile the character-defects, however, the tachyon field will fragment into a web-
istics will tend to diverge and the profile will flatten. In re- like structure as shown in Fig. 1. If the defects are walls
gions around minima, however, characteristics will tend tothese webs will form within each domain; if they are strings
converge, the profile will become sharper, and after soméhe web of caustics will be mixed in with the strings.
critical timet, the field solution will become multivalued. In If the spectrum ofTy(g) inhomogeneities has scaling
the dual picture of relativistic particles this corresponds toproperties(as quantum fluctuations glothen the web-like
caustic formation. At the caustics the energy density blowsietwork will evolve in a scaling manner. The smallest scale
up. Caustic formation also entails divergences in the secondf the web is defined by the largest tachyonic mé&dé&he
derivatives ofT, which signal the breakdown of the truncated dual picture of freely moving massive particles which stick
approximation(1). In short the Lagrangiand9) are unable together as their orbits intersect gives a simple explanation of
to describe the fieldl when its solution becomes multi- such fragmentation.
valued. In the picture of freely moving massive particles we Finally, we note the relevance of our result for cosmologi-
can include interactions to cause them to stick together asal applications of the tachyon. In the context of brane infla-
their trajectories intersect with impact parameteg/a’. tion, which ends with a pair dd3— D3 branes annihilating,

Let us make a remark about a one-dimensional plangéhe tachyon is a complex field and strings will be created and
wave tachyon profilel =cos§) rolling from the top of its  the rest of the energy is transformed into radiafib@). If the
(symmetrig effective potential. Since the parts of the field result of real tachyon field fragmentation which we derive
that roll to the right have no minima they do not form caus-above is extended to the complex tachyon, then annihilation

tics, and by symmetry the parts rolling to the left do not,t 33 pranes results in the net of strings plus massive
either. In this particular case the tachyon fragments intQy5rticles with the matter dominant equation of state. The

kinks only. _ , absence of radiation domination after brane inflation may
We can also consider a more general profile, howeverpose a problem for the modgL1].

Tachyonic instability occurs for all inhomogeneous mokles
for which the effective massn’=k?—1/a’? is negative.
Therefore the generic tachyon initial profile is a superposi-
tion of a number of modes, which produces a random Gauss- We are grateful to D. Kutasov, A. Linde, R. Myers, S.
ian field To(g). These initial conditions typically arise from Shandarin, and J. Martin for useful discussions. The work by
quantum fluctuations during symmetry breaki(gge e.g. L.K. was supported by NSERC and CIAR. G.F. wishes to
[9]). In this case we once again expect the formation of tothank CITA for its hospitality during this research.
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