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Abstract

Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including

breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has

been shown to promote tumor progression and metastasis through interaction with estab-

lished tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin

have potential therapeutic and diagnostic applications. However, no mesothelin-targeting

molecules are currently approved for routine clinical use. While antibodies that target

mesothelin are in development, some clinical applications may require a targeting molecule

with an alternative protein fold. For example, non-antibody proteins are more suitable for

molecular imaging and may facilitate diverse chemical conjugation strategies to create drug

delivery complexes. In this work, we engineered variants of the fibronectin type III domain

(Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed

evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced

and purified from bacterial culture at high yield. Upon specific binding to mesothelin on

human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early

endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to

bind mesothelin. The results validate that non-antibody proteins can be engineered to bind

to tumor biomarker mesothelin, and encourage the continued development of engineered

variants for applications such as targeted diagnostics and therapeutics.

Introduction

In recent years, the focus in cancer drug development has shifted from relatively non-specific

cytotoxic agents, to selective, rationally designed, and mechanism-based therapies [1]. Tar-

geted cancer compounds, which are designed to inhibit specific molecular targets or molecular

pathways critical for tumor growth and maintenance, are associated with greater efficacy and
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fewer side effects compared to traditional chemotherapies [2]. Currently, over 75 targeted ther-

apies are approved for clinical use as essential treatments for a variety of malignancies [3,4].

For many cancers, however, targeted therapeutics are not yet available, and it is imperative to

develop targeted therapies for patients who do not currently have this treatment option. Fur-

thermore, it has been recognized that a targeted therapy is only effective when a patient’s

tumor expresses the molecular target; therefore, companion diagnostics, including molecular

imaging agents, are a critical component for developing targeted therapies [5].

Mesothelin (MSLN) is a cell surface protein shown to be overexpressed in many ovarian

[6–8], breast [8–10], pancreatic [11–14], liver [15], and lung [16–18] tumors, among others

[19], with limited expression in healthy tissues [20]. MSLN has been shown to bind with estab-

lished cell surface tumor marker MUC16, also known as CA125, leading to increased tumor

cell proliferation and metastasis [8,12,21]. Promising results from ongoing efforts in pre-clini-

cal and clinical trials to target MSLN with antibody and antibody derivatives for therapy dem-

onstrate the promise of MSLN-targeting methods [16,17,22]. However, no MSLN-targeting

agents have thus far received approval from the US Food and Drug Administration (FDA).

Directed evolution by yeast surface display (YSD) has been used extensively in protein engi-

neering to improve the molecular recognition, biophysical, and catalytic properties of target

proteins [23–25]. Directed evolution relies on the generation of mutant libraries followed by

identification of mutants with improvements in a desired phenotype by high-throughput

screening and selection. The YSD platform offers unique advantages over other directed evolu-

tion display formats, including the ability to incorporate post-translational modifications such

as glycosylation and disulfide bonds, eukaryotic protein quality control processes, and compat-

ibility with fluorescent-activated cell sorting (FACS) for quantitative discrimination between

protein variants. YSD has been used for a wide range of protein classes for a variety of applica-

tions, including affinity maturation [26,27], improving thermal stability [28], selecting against

cell-based targets [29–31], and epitope mapping [32,33].

While antibodies are widely used for a variety of research and clinical indications, non-anti-

body protein scaffolds are being developed for research, biotechnology, and medical applica-

tions where the inherent properties of antibodies may be limiting. For example, oncological

molecular imaging allows clinicians to non-invasively obtain information such as a tumor’s

molecular behavior and a patient’s response to treatment [34]. An optimal molecular imaging

agent should efficiently localize to the tumor, while rapidly clearing from non-target tissues

and organs [35]. Unfortunately, because of their large size and long clearance half-life, anti-

bodies tend to produce undesirable images with high background signals and low contrast

[36]. The complex structure of antibodies also poses many challenges when developing chemi-

cal strategies for conjugating polymers or drugs for drug delivery applications, such as in the

development of antibody-drug conjugates [37].

Efforts to engineer non-antibody, alternative protein scaffolds for molecular recognition

have led to binding affinities and specificities once thought to be unique to antibodies [38–43].

Here, we report the engineering of MSLN-binding proteins based on the non-antibody scaf-

fold Fn3, derived from the tenth domain of human fibronectin type III. The hydrophobic core

of the immunoglobulin-like fold of Fn3 provides a stable framework structure and high ther-

mostability (Tm = 88˚ C), while the solvent exposed loops of Fn3 are amenable to high diversi-

fication (Fig 1A) [44,45]. The Fn3 scaffold has shown great versatility for its ability to be

engineered to recognize a variety of targets including ubiquitin [44], epidermal growth factor

receptor (EGFR) [46], carcinoembryonic antigen (CEA) [47], human Fc gamma receptors

[46], and Abelson kinase Src homology 2 (Abl SH2) domain [48]. Further, engineered Fn3 var-

iants have recently been used for molecular imaging applications, demonstrating the potential

of this scaffold as a molecular diagnostic [49,50]. An Fn3 protein that is an antagonist of
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vascular endothelial growth factor receptor 2 (VEGFR-2) has advanced to Phase II clinical tri-

als, demonstrating the protein scaffold’s promise as a targeted therapeutic [51,52].

While engineered Fn3 clones have high affinity for their targets, some engineered variants

have also exhibited oligomeric states or instability [53,54]. Hackel and colleagues demon-

strated that an Fn3 YSD library engineered using loop length diversity and recursive mutagen-

esis could yield highly stable variants that recognized a variety of targets with high affinity [55].

Woldring et al. developed a second generation YSD Fn3 library by incorporating amino acid

distributions that recapitulated binding antigens found in nature, which they termed the Gr2

library [56] (Fig 1B). The Gr2 library also incorporated Fn3 framework mutations that

increased variant hydrophilicity towards the goal of more desirable in vivo biodistribution for

molecular imaging applications [57]. Therefore, the Gr2 Fn3 library is as large in diversity as

its parent library, and is designed to be a higher quality protein library. The sequence space

sampled is biased toward sequences that are likely to be more successful for identifying high

affinity binding variants and for applications in molecular imaging.

Fig 1. Approach to engineering Fn3 proteins to recognize tumor biomarker MSLN for diagnostic and therapeutic

applications. (A) The tenth domain of human fibronectin type III (Fn3) (PDB 1TTG) is a highly stable protein structure with three

loops (BC, DE, and FG) broadly tolerant of mutation to confer novel binding properties. Structure was rendered in PyMOL. (B)

We employed a previously developed hydrophilic Fn3 yeast surface display library [56] that incorporates a range of loop lengths

and biased amino acid composition to mimic the diversity of naturally occurring antibody complementarity-determining regions.

(C) Fn3 proteins that bind cell surface protein MSLN have numerous potential clinical applications, such as through diagnostic

imaging, internalization for drug delivery, and metastatic reduction by blocking MSLN-MUC16 interactions. Stars represent

conjugated imaging or therapeutic molecules.

https://doi.org/10.1371/journal.pone.0197029.g001
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Here, we report the engineering of Fn3 variants that bind with high affinity to the MSLN

tumor cell surface protein, beginning with the naïve fibronectin YSD Gr2 library. The binding

interaction of MSLN and MUC16 is facilitated by non-covalent interactions between the many

carbohydrate chains decorating the surface of MUC16 and a minimal binding domain of

approximately 64 amino acids on MSLN [58]. Therefore, there is no known native polypeptide

sequence that recognizes MSLN, necessitating the use of a naïve protein library as an initial

point for our studies. To our knowledge, this is the first non-antibody protein engineered to

bind MSLN. The engineered Fn3 variants were expressed and purified at high yields (~10 mg/

L) using bacterial culture. Soluble Fn3 variants demonstrated high-affinity binding to tumor

cells positive for MSLN expression, and were internalized into tumor cells upon binding. The

work described here validates the engineered binding proteins for further development as tar-

geted therapeutics and companion molecular imaging agents (Fig 1C).

Materials and methods

Reagents and cell lines

PBSA buffer was composed of phosphate buffered saline (PBS) and 0.1% bovine serum albu-

min (BSA). Escherichia coli (E. coli) XL1-Blue Supercompetent cells and E. coli BL21(DE3) cells

were purchased from Agilent Technologies and New England Biolabs, respectively. The Gr2

YSD library (generously provided by B. Hackel, University of Minnesota) was grown in selec-

tive SD-CAA media containing 20 g/L glucose, 6.7 g/L yeast nitrogen base without amino

acids, 5 g/L casamino acids, 7.4 g/L citric acid monohydrate, 10.4 g/L sodium citrate, pH 4.5.

SG-CAA media for yeast induction contained 18 g/L galactose, 2 g/L dextrose, 6.7 g/L yeast

nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na2HPO4, 8.6 g/L NaH2-

PO4�H2O, pH 6.0. A431/H9 cells (gift of M. Ho, National Cancer Institute, 2016) [59] were cul-

tured in RPMI-1640 (Gibco) supplemented with 10% FBS, 1% penicillin-streptomycin and

700 μg/mL Geneticin selective antibiotic (G418) (Thermo Fisher). KB-3-1 cells (gift of M. Got-

tesman, National Cancer Institute, 2016) [60], and MCF-7 cells (ATCC #HTB-22, gift of S.

Peyton, UMass Amherst, 2017) were cultured in DMEM (Gibco) supplemented with 10% FBS

and 1% penicillin-streptomycin.

Maturation and evolution of mesothelin binders

The naïve Gr2 library (2.8 x 109 diversity), in which EBY100 yeast cells were transformed with

the pCT surface display vector encoding for Fn3 variants [56], was sorted and affinity matured

generally as previously described [61]. Briefly, the induced library was sorted twice by mag-

netic bead selection with depletion of non-specific binders using Dynabeads Biotin Binder

magnetic beads (Life Technologies). This step served as a negative selection by depleting yeast

that displayed Fn3 binders to bare beads or streptavidin. The negative sort was followed by

enrichment of specific binding variants by magnetic beads functionalized with biotinylated

Fc-tagged recombinant human MSLN (Acro Biosystems #MSN-H826x). The magnetic sorts

were followed by a fluorescent-activated cell sorting (FACS) selection for full-length clones

using an antibody against the C-terminal c-myc epitope tag (clone 9E10, Life Technologies,

1:50) and a goat anti-mouse phycoerythrin (PE) conjugate (Sigma #P9670, 1:25). Full-length

clones were induced and incubated with a chicken anti-c-myc antibody (Gallus Immunotech

#ACMYC, 1:330) and the biotinylated Fc-tagged MSLN. To increase the sorting stringency,

concentrations of MSLN were decreased over sorting rounds from 300 nM in the first genera-

tion sorting to 10 nM by the fourth sort of the second generation library. Cells were washed

and incubated with a goat anti-chicken Alexa Fluor 647 (AF647) conjugate (Thermo Fisher

#A-21449, 1:250) and either Alexa Fluor 488 (AF488)-conjugated streptavidin (Thermo Fisher

Engineered mesothelin-binding Fn3 proteins
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#S11223, 1:700) to detect the biotin molecules of the biotinylated Fc-tagged MSLN, or a goat

anti-human IgG Fc FITC conjugate (Thermo Fisher #A18830, 1:500) to detect the human Fc

domain of the biotinylated Fc-tagged MSLN. Alternating between the two sorting detection

methods served to minimize the likelihood of engineering Fn3 variants that bound streptavi-

din. Cells were washed and double-positive yeast cells were collected on a BD BioSciences

FACSAria II. Four iterative rounds of enrichment were performed. Plasmid DNA from the

enriched library was recovered using a Zymoprep Yeast Plasmid Miniprep II kit (Zymo

Research) following manufacturer’s protocol, transformed into bacteria, and individual clones

were sequenced by standard Sanger DNA sequencing methods. Plasmid DNA was subse-

quently mutated by error-prone PCR of either the entire Fn3 gene or the paratope loops using

nucleotide analogues, 8-oxo-2’-deoxyguanosine-5’-triphosphate (8-oxo-dGTP) (TriLink Bio-

technologies) and 2’deoxy-p-nucleoside-5’-triphosphate (dPTP) (TriLink Biotechnologies)

[62]. All error prone PCR reactions were conducted using primers previously reported [56].

Reaction components and cycling conditions were identical to those previously described [61]

with the following exceptions: Standard Taq (Mg-free) Reaction Buffer (New England Biolabs)

was substituted as the reaction buffer and MgCl2 (New England Biolabs, 1.5mM) was added to

each reaction. All error prone PCR reactions were conducted as both 10 and 20 cycle reactions

to vary the extent of mutagenesis. Mutated plasmid DNA was then amplified and reintroduced

into yeast by electroporation with homologous recombination [61].

Binding affinity measurements of yeast surface displayed variants

Plasmids for Fn3 variants 1.4.1 and 2.4.1, as well as wild type Fn3 (Fn3 WT), were transformed

into EBY100 yeast using the Frozen-EZ Yeast Transformation Kit II (Zymo Research) follow-

ing manufacturer’s protocol. Yeast were grown in SD-CAA media at 30˚C and induced with

SG-CAA media at 20˚C with aeration. Aliquots of 106 yeast cells were simultaneously labeled

with 9E10 mouse anti-c-myc antibody (1:50) and a range of concentrations of either biotiny-

lated MSLN-Fc or biotinylated Fc fragment in a total volume of 50 μL PBSA and incubated for

45 minutes with gentle rotation at 23˚C. Cells were washed with PBSA and then incubated

with a goat anti-mouse PE (1:25) and streptavidin-Alexa Fluor 488 (1:700) for 20 min with

gentle rotation on ice in a total volume of 25 μL PBSA, protected from light. Cells were washed

with PBSA, pelleted, and resuspended in PBSA for analysis on an EMD Millipore Guava easy-

Cyte flow cytometer. Mean fluorescence intensity for MSLN binding was determined for yeast

cells displaying full length protein using InCyte software (EMD Millipore). Data was plotted

and fit with a sigmoidal curve using KaleidaGraph software (Synergy). Dissociation constants

(KD) were determined as the half-maximal value of the sigmoidal fit for three separate experi-

ments for each protein variant, and the mean and standard deviation for the KD values are

reported.

Engineered Fn3 protein production and purification

Engineered Fn3 genes 1.4.1 and 2.4.1 were cloned into the NheI and BamHI sites of a pET24b

(+) expression vector modified to include a C-terminal His6-KGSGK tag [61] (provided by B.

Hackel, University of Minnesota) and expressed in BL21(DE3) E. coli. Cultures were grown in

LB media at 37˚C to an optical density at 600 nm of 1.0 before induction with 0.5 mM Isopro-

pyl-β-D-thiogalactopyranoside (IPTG). Fn3 proteins were induced for 3 h at 30˚C. Cells were

harvested by centrifugation for 15 min at 3,200g, and resuspended in lysis buffer (35 mM

Na2HPO4�dibasic, 15 mM Na2HPO4�monobasic, 500 mM NaCl, 5 mM CHAPS, 25 mM imid-

azole, 5% glycerol) supplemented with protease inhibitor (cOmplete, Roche). Cells were incu-

bated on ice for 30 min, lysed by repeated freezing and thawing, then centrifuged at 12,000g

Engineered mesothelin-binding Fn3 proteins
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for 10 min and passed through a 0.45-micron filter. Fn3 proteins were purified by nickel affin-

ity chromatography with Ni-NTA agarose resin (Thermo Fisher). Fn3 variant 1.4.1 was further

purified by size exclusion chromatography (SEC) on a Superdex 75 10/300 column (GE

Healthcare Life Sciences). Fractions of interest were pooled and concentrated with a centrifu-

gal filter unit with a 3 kDa molecular weight cutoff (EMD Millipore). Due to likely nonspecific

adsorption onto our SEC column, Fn3 variant 2.4.1 was alternatively further purified by

reversed phase high-performance liquid chromatography (HPLC) on a Hypersil ODS C18 col-

umn (Thermo Fisher) using a linear gradient of 90% acetonitrile in water containing 0.1% tri-

fluoroacetic acid. Fn3 variant 2.4.1 fractions were pooled, lyophilized, and resuspended. All

protein samples were analyzed by SDS-PAGE on a BioRad ChemiDoc MP imaging system

using Image Lab 6.0 software (BioRad).

Alexa Fluor-488 dye conjugation

Pure, folded Fn3 proteins (1 mg/mL) were incubated with AF488 tetrafluorophenyl ester

(Thermo Fisher) in a 0.1 M sodium bicarbonate solution, pH 8.3, at an 8:1 dye/protein molar

ratio for 1 hr at 23˚C with rotation and protected from light. The resulting AF488-labeled 1.4.1

protein was purified by extensive buffer exchange with PBS using a 3 kDa centrifugal filter

unit. Again, because of likely adsorption onto the membrane of the centrifugal filter unit,

AF488-labeled 2.4.1 protein was purified with an alternative method, using fluorescent dye

removal columns (Thermo Fisher #22858), according to manufacturer’s protocol. Concentra-

tions and degree of labeling (DOL) were determined using UV-Vis spectroscopy, measuring

dye absorption at 494 nm (ε = 71,000 cm-1 M-1).

Binding affinity measurements of soluble Fn3 protein for MSLN-positive

tumor cells

A431/H9 and MCF-7 cells were cultured to 80% confluency, as described above, and detached

by 0.25% trypsin-EDTA (Gibco). Aliquots of 105 cells were washed and pelleted at 200g for 5

min at 4˚C. MSLN expression was detected by a mouse anti-MSLN antibody (clone K1,

Abcam, 1:50) and a goat anti-mouse PE conjugate (1:25). Cells were incubated with a range of

concentrations of AF488-labeled 1.4.1 and 2.4.1 in a total volume of 25 μL PBSA for 1 h at

23˚C with rotation and protected from light. Cells were washed and pelleted as above, resus-

pended with ice cold PBSA, and fluorescence was analyzed using a Guava easyCyte flow

cytometer. Mean fluorescence intensities for Fn3 variant binding were determined using

InCyte software. Data was plotted and fit with a sigmoidal curve using KaleidaGraph software.

Dissociation constants (KD) were determined as the half-maximal value of the sigmoidal fit for

three separate experiments, and the mean and standard deviation for the KD are reported.

Imaging flow cytometry

KB-3-1, A431/H9, and MCF-7 cells were cultured and harvested as described above. Aliquots

of 2.5 x 106 cells were washed, pelleted, and incubated with AF488-labeled 1.4.1 or 2.4.1

(1 μM) in a total volume of 25 μL for 1 hr at either 23˚C or 37˚C with rotation and protected

from light. Cells were washed with ice cold PBSA and pelleted as above. Cells were fixed with

4% paraformaldehyde (PFA) in PBS for 15 min at 23˚C followed by permeabilization with

0.2% Tween 20 in PBS (PBST) for 20 min at 23˚C. Cells were washed twice and pelleted then

incubated with an AF647-conjugated rabbit anti-EEA1 antibody (Abcam #196186, 1:50) in a

total volume of 50 μL PBST for 30 min at 23˚C with rotation and protected from light. EEA1 is

an early endosomal marker. Cells were washed, pelleted, and resuspended in 100 μL PBSA.

Images were acquired on an Amnis ImageStream X Mark II (EMD Millipore) with a 40X

Engineered mesothelin-binding Fn3 proteins
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magnification. Collected data (5000 images) were analyzed with IDEAS 6.2 software (EMD

Millipore). A compensation matrix was created using single color controls acquired with the

brightfield laser turned off. Cells were gated for focused cells with the Gradient RMS feature

and for single cells with the area and aspect ratio. Co-localization quantification was deter-

mined by the Bright Detail Similarity (BDS) metric in IDEAS software.

Results

MSLN-binding Fn3 proteins engineered using yeast surface display and

directed evolution

Yeast surface display has been previously shown to be a robust method for engineering pro-

teins with improved biophysical, catalytic, and molecular recognition properties [23–25,63].

To engineer MSLN-binding proteins, a naïve Gr2 YSD library of 2.8 x 109 variants was

screened. Fn3 expression levels were monitored using an antibody to the terminal c-myc epi-

tope tag. Following two rounds of MACS and a FACS sort for full-length expression to elimi-

nate truncated protein variants, four iterative rounds of dual-color FACS were performed for

binding to MSLN normalized by full length protein expression. An enriched population of var-

iants was isolated that demonstrated selective affinity to MSLN, compared to no visible bind-

ing in the unsorted naïve library (Fig 2). This enriched population of Fn3 variants was then

subjected to a single round of mutagenesis and transformed back into yeast for further enrich-

ment and selection as a second generation library. An enriching population of yeast cells dis-

playing full length protein that bound MSLN was observed throughout rounds of sorting (Fig

2). We note that our initial efforts to engineer Fn3 variants to bind to a small, 64-amino acid

domain of MSLN responsible for binding to MUC16 and using an earlier variation of the Fn3

library were unsuccessful, resulting only in variants that bound to the streptavidin secondary

reagent and no engineered variants that bound to the MSLN minimal binding domain. To

overcome this challenge, we changed our target reagent from this small domain of MSLN to a

full-length extracellular domain of MSLN to provide additional surface topology that Fn3 vari-

ants could interact with, and alternated sorting detection methods to only use streptavidin as a

reagent in some sort rounds, thereby limiting the likelihood of engineering streptavidin

binders.

From E. coli transformed with plasmids obtained from the engineered first and second gen-

eration libraries of enriched MSLN-binding Fn3 variants, 30 independent clones from each

generation were randomly chosen and sequenced. Following four rounds of dual-color FACS

sorting of the first generation library, there were 10 unique sequences. Of those sequences, one

unique clone dominated, representing 18 of the 30 clones sequenced, which we refer to as

clone 1.4.1, denoting the first generation library, with four rounds of sorting by FACS, clone

number one. Following four rounds of sorting of the second generation library, a second

unique clone, variant 2.4.1, emerged. Fn3 variants 1.4.1 and 2.4.1 differ only by their FG loop

and incorporate a single K63N framework mutation compared to the library wildtype frame-

work sequence (Fig 3A). Plasmids for all unique clones were transformed back into EBY100

yeast and their specific binding to 200 nM MSLN was assessed by flow cytometry. Clones 1.4.1

and 2.4.1 had substantially greater binding to MSLN compared to all other variants, and were

subsequently selected for further study.

To measure the binding affinity of these two clones for soluble MSLN extracellular domain,

titration binding assays with the Fn3 variants expressed on the surface of yeast were performed

(Fig 3B). Clone 1.4.1 exhibited a binding affinity of KD = 700 ± 300 nM, and clone 2.4.1 exhib-

ited a binding affinity of KD = 290 ± 40 nM, while Fn3 WT displayed no specific binding to

MSLN. Furthermore, clones 1.4.1 and 2.4.1 exhibited no binding to a biotinylated, Fc fragment
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alone, demonstrating their specific binding interaction with MSLN (Fig 3C). While further

rounds of directed evolution to obtain higher affinity clones will be necessary for eventual clin-

ical translation, we sought to characterize these two variants to learn more about their interac-

tion with tumor cells expressing MSLN, to inform further engineering of Fn3 clones to

recognize MSLN.

Engineered Fn3 proteins were recombinantly produced

To further develop and characterize the engineered Fn3 proteins for future diagnostic and

therapeutic applications, lead variants were solubly expressed and purified. Fn3 variants 1.4.1

and 2.4.1 were expressed in bacteria with a C-terminal hexahistidine tag and purified by nickel

affinity chromatography and either SEC or HPLC. Chromatograms indicated protein elution

at the expected retention times for Fn3 variant 1.4.1 on SEC (Fig 4A) and Fn3 variant 2.4.1 on

HPLC (Fig 2B). Analysis by SDS-PAGE confirmed high purity > 99% for 1.4.1 and 2.4.1 and

(Fig 4C), with routine yields of ~ 10 mg/L.

Soluble engineered Fn3 variants bound tumor cells expressing MSLN

We established a tumor cell binding assay to measure the binding affinities of soluble engi-

neered Fn3 variants for MSLN-expressing cancer cells. The A431/H9 cell line is an A431

(human epidermoid carcinoma) cell line transfected to stably overexpress MSLN on its surface

[16]. MCF-7 is a human breast cancer cell line reported not to express MSLN on its surface

[7]. Using an anti-MSLN antibody (clone K1, Abcam), high levels of MSLN were confirmed

Fig 2. Directed evolution of a naïve yeast surface display library yielded Fn3 variants that bind soluble MSLN. We started with a naïve yeast

surface display library with 2.8 x 109 variants of the Fn3 non-antibody scaffold. The library was sorted for full-length protein expression,

detected by an antibody to a terminal c-myc epitope tag, and binding to MSLN using MACS and FACS. Red polygon indicates example cell

population collected for further enrichment and analysis. Additional diversity was introduced into the enriched library through a single round

of mutagenic PCR and sorting of this second generation library resulted in further enrichment for MSLN binding variants. A double-negative

population of yeast cells is characteristic of yeast surface display.

https://doi.org/10.1371/journal.pone.0197029.g002
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on the surface of A431/H9 cells compared to the MCF-7 cell line expected to be negative for

human MSLN (Fig 5A).

Direct equilibrium binding titrations of the engineered 1.4.1 and 2.4.1 Fn3 variants on the

A431/H9 and MCF-7 carcinoma cells were performed (Fig 5B). The Fn3 variants were directly

conjugated to Alexa Fluor 488 and incubated over a range of concentrations with cells for 1 h

at 23˚C and analyzed by flow cytometry. Equilibrium binding constant (KD) values were

obtained by fitting plots of AF488-labeled 1.4.1 and AF488-labeled 2.4.1 concentrations versus

the mean fluorescence intensity. Consistent with the yeast surface display binding data, Fn3

variant 1.4.1 bound to A431/H9 cells with a binding affinity of KD = 510 ± 90 nM, while Fn3

variant 2.4.1 bound to A431/H9 cells with a binding affinity of KD = 440 ± 30 nM. Neither Fn3

variant displayed binding to the MSLN-negative MCF-7 cell line, with only expected, non-spe-

cific binding observed at the highest concentrations analyzed.

Fn3 variants co-localized to early endosomes following binding to MSLN

Future application of an engineered Fn3 variant for drug delivery to cancer cells could benefit

from the internalization of the targeting molecule upon target binding to effectively deliver a

conjugated payload into the cells. Mesothelin has been previously reported to efficiently inter-

nalize [64–66]. Using imaging flow cytometry, we sought to assess whether engineered Fn3

variants 1.4.1 and 2.4.1 could be internalized into cancer cells following binding to surface

MSLN. The KB-3-1 cell line is a human cervical carcinoma cell line reported to express MSLN

on its surface [67]. Using an anti-MSLN antibody (clone K1) and a PE-conjugated secondary

Fig 3. Yeast displayed Fn3 variants 1.4.1 and 2.4.1 bound specifically to tumor biomarker MSLN. (A) Two dominant Fn3 variants, 1.4.1 and 2.4.1, were

recovered from a first generation and second generation Fn3 library, respectively. (B) Individual clones and Fn3 WT were displayed on the surface of yeast

and incubated with a range of concentrations of soluble MSLN. Experimental triplicate data were collected, and the dissociation constant is reported as the

mean and standard deviation of the KD values calculated for each replicate. A representative binding curve is shown for each variant. (C) Individual clones

were displayed on the surface of yeast and incubated with a range of concentrations of a biotinylated, Fc fragment. Experimental triplicate data were collected.

A representative curve is shown for each variant.

https://doi.org/10.1371/journal.pone.0197029.g003
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antibody, MSLN was confirmed on the surface of KB-3-1 cells while no MSLN expression was

detected on the surface of the MCF-7 cell line (Fig 6A and 6B).

KB-3-1 cells and MCF-7 cells were incubated with either AF488-labeled 1.4.1 (Fig 6C) or

2.4.1 (Fig 6D) at 37˚C and then fixed and permeabilized before incubation with an

AF647-conjugated antibody against the early endosomal marker, EEA1. Co-localization of

EEA1 antibody and engineered variants was quantified using the Bright Detail Similarity

(BDS) metric, which uses a modified Pearson’s correlation coefficient to quantify the degree

of similarity between the AF488-labeled 1.4.1 or 2.4.1 image and the AF647-EEA1 endoso-

mal image. Cells with increased AF488-labeled 1.4.1 or 2.4.1 trafficking to early endosomes

have higher similarity values as a result of greater co-localization of the two fluorescent chan-

nel signals. Imaging flow cytometry data demonstrated that when KB-3-1 cells were incu-

bated with AF488-labeled 1.4.1 (Fig 6C, top) or 2.4.1 (Fig 6D, top), the AF488-labeled 1.4.1

and 2.4.1 was internalized and co-localized with early endosomes with a BDS = 1.31 and

0.919, respectively, for 5000 cells. Further, efficient binding and subsequent internalization is

not observed when AF488-labeled 1.4.1 (Fig 6C, bottom) or 2.4.1 (Fig 6D, bottom) is incu-

bated with the MSLN-negative MCF-7 cell line. BDS values were not determined for the neg-

ative control cell line as this metric requires a substantial population of double positive cells,

which was not present for the negative control cell line. In an additional imaging flow cytom-

etry study, MSLN was again confirmed on the surface of KB-3-1 and A431/H9 cells, and

AF488-labeled 1.4.1 internalized and co-localized with early endosomes when the experi-

ment was conducted at 23˚C (S1 Fig).

Fig 4. Production and characterization of selected Fn3 variants. Engineered Fn3 clones 1.4.1 and 2.4.1 were

expressed in bacteria with a C-terminal hexahistidine tag and a short peptide tag containing GKSK residues for later

bioconjugation chemistry. (A) Fn3 protein 1.4.1 was purified by nickel affinity chromatography followed by SEC,

demonstrating desired product with retention time of ~ 42 min. (B) Fn3 protein 2.4.1 was purified by nickel affinity

chromatography followed by HPLC, demonstrating desired product with retention time of ~30 min. (C) Proteins were

purified to high purity> 99% as analyzed by SDS-PAGE. Yields of Fn3 protein production were routinely ~ 10 mg/L.

https://doi.org/10.1371/journal.pone.0197029.g004
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Discussion

Mesothelin has broad potential as a novel tumor target for both diagnosis and therapy, yet no

MSLN-targeting molecules are currently FDA approved. Thus, there remains critical need for

MSLN-targeting therapeutics and for molecular diagnostics that can identify patients who are

most likely to respond to such therapies. In this work, we used directed evolution and a yeast

surface display library to engineer Fn3 variants that bind specifically to MSLN, for future appli-

cation in diagnosis and therapy. Variants 1.4.1 and 2.4.1 demonstrate specific affinity for the

MSLN tumor marker present on the surface of tumor cells, and, upon MSLN binding, are

internalized and co-localize with early endosomes. Internalization could be valuable for deliv-

ery of cytotoxic molecules conjugated to engineered Fn3 variants into tumor cells. The work

described here validates our approach for engineering MSLN-binding variants, using yeast

surface displayed Fn3 libraries and directed evolution. The results demonstrating specific

binding to, and internalization into, a tumor cell line encourage further engineering of higher

affinity variants towards clinical applications. To our knowledge, this is the first report of a

non-antibody protein engineered to bind MSLN.

In an initial protein engineering strategy, we sought to engineer Fn3 variants that were

selected to bind to a 64-amino acid domain of MSLN previously reported to be the minimal

domain for binding to MUC16 [58]. It was expected that an Fn3 variant that targeted this

binding domain would likely block MSLN and MUC16 interactions, enhancing therapeutic

activity of such Fn3 variants. MSLN and MUC16 binding has been reported to enhance tumor

cell proliferation and metastasis [8,12,21]. This initial protein engineering strategy did not suc-

cessfully yield MSLN binding variants, potentially due to insufficient binding topography on

the 64-amino acid domain, and, instead, resulted in Fn3 variants that bound the streptavidin

secondary reagent. While we had attempted to prevent selecting streptavidin-binding variants

Fig 5. Engineered Fn3 protein variants bound cancer cells expressing MSLN. A431/H9 cells, epidermoid carcinoma cells transfected to express high

levels of MSLN, and MCF-7 cells, breast cancer cells lacking surface MSLN, were used in all binding assays. (A) Analysis by flow cytometry confirms MSLN

presence on the surface of A431/H9 cells as detected by an anti-MLSN antibody. The MCF-7 cell line does not express MSLN. (B) Fn3 variants 1.4.1 and

2.4.1 were isolated and binding to MSLN was measured using equilibrium binding assays. A431/H9 and MCF-7 cells were incubated with a range of

concentrations of soluble fluorescently labeled 1.4.1 or 2.4.1. The assays were performed in experimental triplicate. Data from each replicate were fit to a

sigmoidal curve, and a KD value was calculated for each replicate. The KD is reported as the mean +/- standard deviation. A representative binding curve of

each clone for both cell lines is shown.

https://doi.org/10.1371/journal.pone.0197029.g005
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Fig 6. Engineered Fn3 protein variants 1.4.1 and 2.4.1 localized to early endosomes upon binding MSLN. Analysis

by (A) flow cytometry and (B) imaging flow cytometry confirms MSLN presence on the surface of KB-3-1 cells

compared to the MSLN-negative MCF-7 cells, as detected by an anti-MSLN antibody. (C, D) KB-3-1 cells (top)

internalize AF488-labeled 1.4.1 (C) and AF488-labeled 2.4.1 (D), while MCF-7 cells show no specific binding or

internalization (C bottom, D bottom). Endosomes are detected by an AF647-conjuated antibody recognizing the EAA1

early endosomal marker. Yellow in the merged images indicate co-localization between AF488-1.4.1 or AF488-2.4.1

anti-MSLN engineered proteins (green) and EEA1 (red). Original magnification 40X. Co-localization is quantified by

the Bright Detail Similarity (BDS) metric, with values near 1 indicating co-localization. KB-3-1 BDS = 1.31 and 0.919
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by using negative magnetic sorts, this method is not always adequate to influence the selection

towards the desired interaction with target protein. Because naïve libraries are not based on

pre-existing binding interactions, such libraries display no initial bias toward a specific target

molecule or epitope [68]. We were ultimately successful in engineering Fn3 variants that

bound to our target protein by using the full-length extracellular domain of MSLN and by

avoiding the use of streptavidin in some FACS rounds. Determining the epitopes on MSLN

that the engineered variants bind is of interest to further evaluate therapeutic potential of the

Fn3 proteins.

Diagnostic molecular imaging is one promising application for non-antibody proteins engi-

neered to bind MSLN positive tumors. While antibodies can be engineered to bind to a variety

of targets with high affinities, their large size and slow clearance from circulation can often

result in low contrast images [69]. Instead, non-antibody scaffolds have been explored and

have demonstrated promising results in preclinical and clinical evaluations [70]. Recently, Fn3

proteins engineered to bind EGFR and EphA2 have been shown to identify tumors expressing

their respective molecular target in murine molecular imaging models [50,71,72]. The cystine-

knot, or knottin, protein scaffold has also been engineered for tumor targeting applications

and has shown promise for molecular imaging in pre-clinical studies targeting tumors and

tumor vasculature expressing integrins [73–77]. Likewise, affibodies and DARPins engineered

to bind human epidermal growth factor 2 (HER2) or EGFR have been used to image tumor

xenografts in mice [78–80]. Recently, a novel Gp2 scaffold has been developed for molecular

imaging of EGFR [81]. In each of these studies, the imaging agents were proteins engineered

to have picomolar to single-digit nanomolar dissociation constants for their targets, and the

importance of this high affinity for tumor targeting applications is further supported by theo-

retical modeling [82], motivating additional rounds of mutagenesis and directed evolution for

our engineered proteins targeting the novel tumor target MSLN.

There is also sustained interest around using engineered proteins as drug delivery agents,

such as by conjugating cytotoxic molecules or polymeric systems to proteins that recognize a

tumor biomarker [83,84]. Current drug delivery strategies, such as antibody-drug conjugates

(ADCs), take advantage of the specificity of antibodies to selectively deliver cytotoxic drugs to

antigen-expressing cancer cells [85]. ADCs, including Adcentris1 (Seattle Genetics) [86] and

Kadcyla1 (Genentech)[87], have received FDA approval for targeted treatment of relapsed

Hodgkin Lymphoma and Her-2 positive breast cancer, respectively. ADCs are comprised of a

targeting antibody, a stable linker with acid labile bonds, and the cytotoxic payload [88]. Upon

antigen recognition and binding, the ADC is internalized via receptor-mediated endocytosis

and trafficked through endosomal vesicles to the lysosome [89]. The low pH of the lysosome

will trigger degradation of the antibody and hydrolysis of the linker, thereby releasing the drug

to exert its cytotoxic effect [85]. Dose-limiting toxicities, however, can limit penetration of

ADCs into solid tumors, whereas small non-antibody scaffolds may be advantageous by effi-

ciently delivering cytotoxic payloads deep within a tumor while maintaining rapid clearance

from circulation [90]. The observed internalization of the MSLN-targeting Fn3 variant is

intriguing toward the goal of delivering a payload across the membrane of MSLN-positive

tumor cells. Further understanding of the trafficking of engineered proteins that bind MSLN

will inform development of anti-MSLN therapeutic strategies.

for AF488-1.4.1 and AF488-2.4.1, respectively. BDS values are not quantifiable for the negative control cell line, due to

insufficient fraction of negative control cell population staining for binding or internalization of engineered protein

variants.

https://doi.org/10.1371/journal.pone.0197029.g006
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In summary, we demonstrate that the Fn3 protein scaffold is suitable for engineering target-

ing molecules for the underdeveloped tumor target MSLN. To our knowledge, this is the first

report of a non-antibody protein engineered to bind MSLN. Our data demonstrating specific

binding of the engineered variants to tumor cells positive for MSLN, followed by subsequent

internalization of the engineered Fn3 proteins, establishes the potential for further develop-

ment of MSLN-targeting Fn3 proteins for a variety of clinically relevant applications in diag-

nosis and therapy.

Supporting information

S1 Fig. Engineered Fn3 protein variant 1.4.1 localized to early endosomes in KB-3-1 and

A431/H9 cells upon binding MSLN. (A) Analysis by imaging flow cytometry confirms MSLN

on the surface of KB-3-1 (top) and A431/H9 (bottom) cells as detected by an anti-MSLN anti-

body. (B) KB-3-1 (top) and A431/H9 (bottom) cells were incubated with AF488-1.4.1 at 23˚C

for 1 hr. Cells were fixed and permeabilized, then incubated with an AF647-conjugated anti-

body directed against the early endosomal marker EEA1. Yellow in the merged image indicates

co-localization between AF488-1.4.1 anti-MSLN engineered protein (green) and EEA1 (red).

Original magnification 40X. Quantification of co-localization for KB-3-1 and A431/H9 as

measured by BDS was 0.904 and 0.857, respectively.

(PDF)
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