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Braneworld dynamics with the BRANECODE

Johannes Martifi, Gary N. Feldef, Andrei V. Frolov Marco Pelosd,and Lev A. Kofmah
Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 3H8
(Received 25 September 2003; published 20 April 2004

We give a full nonlinear numerical treatment of time-dependent 5D braneworld geometry, which is deter-
mined self-consistently by potentials for the scalar field in the bulk and at two orbifold branes, supplemented
by boundary conditions at the branes. We describesti»iECODE, an algorithm which we designed to solve
the dynamical equations numerically. We apply #®aNECODE to braneworld models and find several novel
phenomena of the brane dynamics. Starting with static warped geometry with de Sitter branes, we find
numerically that this configuration is often unstable due to a tachyonic mass of the radion during inflation. If
the model admits other static configurations with lower values of de Sitter curvature, this effect causes a violent
restructuring towards them, flattening the branes, which appears as a lowering of the 4D effective cosmological
constant. Braneworld dynamics can often lead to brane collisions. We find that, in the presence of the bulk
scalar field, the 5D geometry between colliding branes approaches a universal, homogeneous, anisotropic
strong gravity Kasner-like asymptotic, irrespective of the bulk or brane potentials. The Kasner indices of the
brane directions are equal to each other but different from that of the extra dimension.

DOI: 10.1103/PhysRevD.69.084017 PACS nunider04.50+h, 98.80.Cq

I. INTRODUCTION mensions typically rely on the interplay between bulk and
brane dynamics.

Braneworlds embedded in higher dimensions bring new So far, the control of dynamical, time-dependent, cosmo-
powerful concepts to cosmolodg], as well as to fundamen- Io_g|cally relevant solutions in t_he_ fundamer_1ta|, co_mprehen—
tal superstring or M theories and phenomenological high enSIVe theory has been rather limited. Relatively simple, yet
ergy particle physici2—5]. Branes enrich our view with new meaningful, are the_ f|ve—d|mer)3|onal phenomenological
ideas underlying the four-dimensional effective field theory,brﬁggwgﬂ? Ta?dle)ls divnvwltehnst\i,(\;cr)]acl)rzlggegrﬁgeiss a(t)ntZeO(?d?hees,
e s Y hranes embedded in tevarped fve-dmensional space
Idgical constani is the curvature of the brane, and we shouITheS-e models ofte_n include one or more bu_lk scalar(ﬁfyeld

. T ’ ) % with the potentialV(¢) and self-interaction potentials
explain why the brane we live in is almost flat. Inflation, by U;(¢) at the two branes, as well as other fiejdcalized at
contrast, corresponds to curved branes. There are interestirﬂgje branes. This class ,of braneworld models covers many
ideas for realizing early Universe inflation in braneworld SCenteresting constructions including the Tdwa-Witten theory
narios where, for example, concepts such as the inflaton pg3] the Randall-Sundrum model with a phenomenological
tential and inflaton decay are reformulated in terms of branestapilization of branef7, 8], warped geometry with bulk sca-
brane or brane-antibrane interactidi®g, or topics of brane |ars [9,10,34, supergravity with domain wallgL1], and oth-
collisions. ers.

The language and images of the braneworld theories are There are a number of important papers studying static
commonly shared by fundamental and phenomenologicajeometries with branes, including flat stabilized branes, in
high energy physics theories, general relativity, and branagreement with low energy physics, curved de Sitter branes,
cosmology, with different degrees of trade between dynamicgorresponding to early Universe inflation, and small fluctua-
and simplification. tions around static warped geometries. Cosmological evolu-

The compactification of the extra space is often a keytion has been studied in some of these pioneering works in
issue in brane models. For example, a stable radion fieldhe simplest cases in the absence of any scalar[fidd 3.
controlling the volume of the extra space, is usually needed’he 4D evolution on the brane, in terms of effective Fried-
to recover standard four-dimensional cosmology at “late” mann equations, is typically different from the standard four-
times and to satisfy precision tests of general relativity. Indimensional cosmology. The effective 4D Einstein equations
addition, the compactification has to be consistent with theyn the brane were also derived for the more general situation
fact that bulk fields have not yet been excited in acceleratoof self-consistent geometry with the bulk-brane scalar field
experiments, because they are too massive and/or too weakKly4].
coupled to the visible brane. Schemes for compact inner di- Standard cosmology can be recovered after the extra di-

mensions have been stabilizglb]. In this respect, the pres-
ence of bulk scalar field) becomes crucial. In this more

*Email address: johannes@physics.utoronto.ca relevant case, however, the evolution is only known for lim-
"Email address: gfelder@email.smith.edu iting situations. In general, the system is very complicated,
*Email address: frolov@cita.utoronto.ca since the effective four-dimensional Einstein equations are
SEmail address: peloso@cita.utoronto.ca not closed and require solutions of the full five-dimensional
'Email address: kofman@cita.utoronto.ca equationd 16].
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In this paper we address the problem of self-consistentvorld models where we encounter qualitatively different dy-
fully nonlinear dynamics of the 5D braneworld with bulk namics.
scalar fields) with a bulk potential as well as brane poten-  In order to check our numerical code, in Sec. IV we first
tials required for brane stabilization. We consider plane-apply it to a simpler brane model without a scalar field, for
parallel orbifold branes, so that the problem is effectivelyWwhich analytic solutions are known. As a playground here
two dimensional, with the metric and fields depending onwe use the Randall-SundrufRS) model of two branes em-
time and the extra dimension, ). Although this setting is Pedded in an AdS 5D background. In Sec. IV A we first use
already too involved to be studied analytically, it is still sig- the static RS solution without moving branes. In Sec. IV B
nificantly simpler than what we will need in order to under- W€ €xtend the calculations to the case of moving branes. In
stand cosmological solutions in “realistic” higher dimen- this case the_ oD geometry is described by the a_nalytlc AdS-
sional theories. However, as we shall see, already this st chwarzschild solutiorwith the mass of the virtual 5D

requires the introduction of new techniques. We have de- ack hole screened by the brahés/e compare our numeri-

signed and used a numerical code to solve the partial di1’“fer(—:al calculations with the analytic solution.
9 P In Sec. V we consider de Sittéinflating) branes which

ential equations describing the system of nonlinear graVi%re initially in a static configuration. It turns out that we

aqd a scalar field, cpmplementmg the existing approaches {Gren ghserve an instability of the inflating branes. Analytic
this problem found in the literature. ~_ calculations of small scalar perturbations around this back-
We aim for generic fe_atures of bra_neworld dynamlcs—mground geometry show that the radion mass squaédor
particular, attractor solutions. They will generally depend onghjs case can be negatif/e8]. A strong tachyonic instability
the specific braneworld model—i.e., on the bulk-brane scalapredicted analytically is in full agreement with the instability
field potentialsV(¢),U;(¢). As a simple illustration, con-  of inflating branes found numerically. For certain configura-
sider a static five-dimensional warped geometry with a bulkions of potentiald/(#),U;(¢), we find the existence of two
scalar and four-dimensional slices of constant curvature. It isvarped geometry solutions with different values of the 4D
possible to exhaust the global properties of the static warpedosmological constant\, (i.e., the curvatures of the 4D
geometry using the method of phase trajectofi€8], al- slices. The brane configuration with the higher 4D curvature
though some details of the phase portraits depend on the bui& in general unstable due to this tachyonic radion mode and
potential. For this problem the phase space is three dimenolently reconfigures to the second static configuration with
sional, the critical pointglike attractors, repulsors, and oth- lower 4D curvature. We illustrate this effect with numerical
erg can be identified, and all trajectoriésolutions start and ~ Simulations as well as analytic calculations; see fls§).
end at critical points. In Sec. VI we give an example where the instability of the
The (t,y) problem of the time-dependent braneworld dy- brane configuration causes a brane collision. In Sec. VI Awe
namics is much more Comp"(:ated than the St@)cprob_ show that the Space-time metric of the 5D geometry between
lem. Using theBRANECODE we were trying to give examples colliding branes becomes homogeneous—y.éadependent.
of interesting dynamical features. We notice several novefhe time-dependent solutions asymptotically cease to feel
phenomena including a transition between different warpedhe scalar field potentialé(¢#) andU;(¢), and approach a

states and a generic strong gravity solution of collidinguniversal asymptotic. It sounds natueaposteriorithat this
branes. universal asymptotic is nothing but a Kasner-like asymptotic

The p|an of the paper is as follows. with a scalar f|8|d, which we describe in Sec. VIB. The
In Sec. ||, we give the Setup of the braneworld models an@ﬁect of the branes here is manifested by the fact that the
write down the bulk equations supplemented by the junctiorkasner indices associated with the three brane directions are
conditions at the branes. We pay especially close attention tdual, but different from that associated with theirection.
the choice of gauge in order to have a suitable metric for thd his is a strong gravity regime, so it is not surprising that the
numerical calculations. It turns out that, without any loss of4D induced metric on the brane is different from that derived

generality, it is possible to choose coordinates where the twi/ith moduli approximations in terms of 4D effective theory.

branes have fixed positions along the fifth directioriThe In the Conclusion we summarize the most interesting
geometry is described by two metric Componehts’y) and phyS|CaI results. Technical details are collected in the Appen-
B(t,y). dixes.

In Sec. lll, we describe thBRANECODE, an algorithm we
use to solve the dynamical equations numerically. At the mo-
ment we have slightly different implementations of the
BRANECODE (in C+ + and FORTRAN-90) in order to cross- The class of braneworld models we are interested in is
check them. We plan to release thRRANECODE using the  characterized by the action
most optimized and documented versigm C+ +). As is
typical for numerical general relativityGR) problems, we 1 1
have to take initial conditions for the metric and fields which K2S= _J d5x\/—_gR+f d5x\/—_g{ - _(a¢)2_v(¢)}
satisfy the constraint equations at an initial time hypersur- 2 2
face. In Sec. Il C, we discuss how to fix the initial condi-
tions for the numerical integration with tHERANECODE -2 | d% = HIKI+Ui(e)}, (N

In Secs. IV=VI, we apply OuBRANECODE0 three brane- i=12 Jb,

Il. SETUP
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wherekZ=1/M2 is a 5D gravitational constant. In this con- This gauge still has the residual freedom to changg)(
vention ¢ is measured in units ok; * and physical poten- —(t’,y’) in a way that preserves the 2D conformal form. It
tials are multiplied byxgz. The first term describes gravity can be demonstrated that this freedom can be used to fix the
in the five-dimensional bulk space. We use the “mostly posi-Position of the two branes alonygWithout loss of generality,
tive” metric signature. The second term corresponds to &ve can locate them at=0,1. We found that in the 2D con-
(minimally coupled bulk scalar field with the potential formal gauge the set of bulk equatiot® acquires a rela-
V(¢). The last term corresponds to two+{3)-dimensional  tively simple form, which is well suited for the numerlpal
branes, which constitute the boundary of the five-Scheme we have adoptésee the next sectionThe possi-
induced metric on the two branes and Kytheir extrinsic ~ €xPlicitly in Appendix A 1. As is discussed in Appendix A 2,
curvature. Here and in the following[Q]=Q(y,) €ven these requirements do not fix the gauge choice com-
—Q(y_) denotes with the jump of any quantiy across a  Pletely. _ _
brane ¢ defined with respect to the normal of the brane  Although in the system of coordinates we have chosen the
We assumesl/7, symmetry across each brane. branes to be always at a fixed position alongyteis, their

The algorithm we have written is implemented for genericPhysical distance is encoded in the metric comporint
bulk and brane potentials. In this paper we specify the p0\_/vh|ch is a time-dependent quantity. Clearly, the distance be-

tentials introduced for the brane stabilizatig. We choose tWeen two extended objects is not an invariant quantity in
general relativity, and different definitions can be adopted

L oo when they are in relative motion. A simple heuristic possi-
V(g)=3zm¢+A, bility, which we adopt here, is to integrate the line element
across the extra dimension at a fixed time:

Ui(¢)= 3 Mi(¢i— )2+, (2 N L
D(t)Efo dyVgss= fo dyePty), (4)

where ¢; is the value of¢ on theith brane. A 5D cosmo-

logical constantA in the bulk and tensions; on the branes o ] ]

are included in the potentials. One can check' thab (t) |s.|nvar|ant yndgr t.he re3|dgal
The two branes are assumed to be parallel. We denote l%auge freedom in our coordinaté®, which is discussed in

y the coordinate transverse to them andkidjpe three spatial _ppend|x A 2(but not under general coordinate transforma-

longitudinal coordinates. We assume isometry along threeions). . .

dimensionak slices including the branes. We have to specify ~FOr the output of our numerical calculations, we rely on

a metricg g that respects this symmetry. In brane cosmologydauge invariant quai\nE;uCtlgs such as the invariants of the 5D

it is customary to use the metric in the fomis2= —n2dt2 eyl tensorCagcpC™7, the curvature scald, and oth-

+a2dx2+b2dy?, where the metric componentsa,b de- ers. These |r!\{ar|ants are calculated using the metric in the

pend on {,y). However, this form of metric does not ex- form (3). Additionally, we can use the-41 gpht of the 5D

haust the freedom of the coordinate choices. Most significurvature, symbolically written aB=R,+K?, whereR, is

cantly, in this metric the branes do not stay at the fixedthe curvature of the 4D sI!ceg. Th|§ will be especially useful

positions; in generaly,=y;(t). There are other gauge when we work with de Sittefinflating) branes of constant

choices, which were used for specific braneworldCurvature. o

problems—for example, coordinates comoving with one of N theé gauge we have chosen, the nontrivial five-

the branes, the choice of the bulk scafaas they hypersur- dlmgn3|onal E_mstem equations can be split into three dy-

face, and others. In these contexts, a gauge in which tha&@mical equations

position of one of the two branes is time dependent was often ]

preferred and identified with the radion fieR(t) associated A—A"+3A%?—3A'2= 2¢e?By,

with the extra dimension. Although this choice may lead to

an easier interpretation of the interbrane distance, the result-

ing bulk and junction conditiongsee beloware significantly B—B"—3A%+3A'%+ j¢7— ¢'?=— 5 &V,
more complicated. In addition, in terms of the four dynami-
cal quantitiesa, b, n, ¢ and R the system is actually un- ¢—¢”+3A¢—3A’¢’=—eZBVY¢, (5)

derdetermined, and some gauge fixing is needed to have a
closed set of equations.

For numerical simulations, it is preferable to have coordi-
nates where neither brane is moving, although it is not obvi-

plus two constraint equations

ous a priori that such a gauge can be constructed without ~A'A+B'/A+A'B-A'= 304,
loss of generality. It is possible to choose coordinates such
that the bulk metric has the “2D conformal gauge” A2 A'B'+A"—A2— AB
ds?= Bt (—dt2+dy?) + e AtV dx?, (3) =— 12— 1p'2- 1By, (6)

084017-3
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Overdots and primes denote derivatives with respetarud t
y, respectively. It is easy to show that the constraint equa-
tions are preserved by the dynamical equations.

In addition, from the boundary terms in the action for the
two branes we recover the following junctigisrae) condi-
tions

Boundary
oo
ﬂ_.__..-“

[A']=%3U€, 0 1 ---N2N-1IN7Y
[B']=F3U€, FIG. 1. Numerical evolution scheme.

— 4 models—this is to say that all length scales are greater than
[¢']=%€U 4 (7

the 5D fundamental scalés= Mg *. We discuss this issue at
where the upper and lower signs refer to the braneg at greater length in Sec. Il D.
=0 and 1, and respectively. We impoégsymmetry across
the two branes. That is, for any given functiQawe assume A. Bulk evolution

that The system of bulk equations consists of the three second

"Mo=20"(0"), "= —20'(17). 8 order differential equation&) for the functionsA, B, and ¢,
[Q7Jo=2Q7(07), 1Qlx Q) ® which we call bulk evolution equations, as well as the two
To conclude, we describe the four-dimensional inducedronstraint equation). The latter are preserved by the evo-
metrics of the two branes. Since they are at fixed positiondution equations and can be used as a check of accuracy of

their induced metrics are simply given by the numerical integration. o .
In the evolution equation$5), derivatives of functions
ds’=—dr*+a’(7)dx% (9 only appear in the formé—f” andfg—f'g’.

_ ) We discretize the equations by finite-differencing these
That is, we recover a Friedman-Robertson-WalkeRW)  compinations using the leapfrog schefsee Fig. 1 Let fp,
universe with proper timedr=€®idt and scale facto@  denote the value of the fieldat a given grid poing; on the
=M (whereA; and B; refer to quantities evaluated at the |55t time stept that had been computeél,=f(t,y;). Then
positions of the two brangsThe Hubble parameters on the definef, andf , to be the value of at the same timeand on

two branes are thus given by the left and right neighboring siteg,=f(t,y;_,) and f,
1 da =f(t,yi;+1). Finally, denote withf 4, andf, the value of the

=——| =e BiA,, (100 function ony; at the two times just before and afterespec-

adr|, tively fyg="f(t—dt,y;) andf =f(t+dty;) (see Fig. 1 In

terms of these quantities, the relevant differential operators

where, as usual, an overdot denotes derivative with respect i f at the point ,y;) can be discretized with second order
the bulk timet. The Hubble parametets; are invariant un-  accuracy as

der residual gauge transformations of the metsic
¢ o, 1 )
IIl. NUMERICAL CODE f=1"=—(fupt fan— = Tr) + O(e%),

In this section, we describe the algorithm that we employ 1
to integrate the equations of motid®) numerically. The fg—1'g"= [ (fup— Far) (Gup— Yo
algorithm copes with two tasks: It provides the time evolu- 4e
tion of N+1 grid sites, equally spaced between the two
branes aty=0,1, and it solves the constraints arising from = (fr=fi) (9n— g ]+ O(€?).
the boundary conditions at the two branes. In both cases,
second order discretization scheme is used. In the currery
version of the program, the same step size of discretization iﬁ’o
employed in both the time and spatial directionk=dy
=1/N=e. This assumption is made not only for simplicity, T
but also to assure the proper propagation of the numericzﬂ
data along the characteristics of the partial differential equ
tions.

It is convenient to scale the factorkB/=M?3 out of the
action (1). This fixes the units of the scalar fiell and its
potentials. However, the dynamical equations of motion ad- The numerical scheme described in the previous subsec-
mit a scaling of the metric functions, which allows us to tion allows us to determine the value of the metric coeffi-
choose, in principle, arbitrary units of the space-time scalescients and of the scalar field at the next time step for all the
We use this freedom to secure the supergravity limit of oubulk sites, but not for the two sités=0,N, corresponding to

(11)

ecall thate=1/N corresponds to the distance between con-
cutive grid sites. After the discretization, the three evolu-
n equations become three algebraic equations, which can
be solved for the unknown quantities,,, By, and ¢,.

his procedure is repeated at each bulk site, leading to the
ulk values of the three functions &t dt, which are then
Ased in the subsequent time steps.

B. Boundary conditions

084017-4
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the pOSitionS of the two branes. To obtain the |atter, tthhere the second time derivativé&y) are rep|aced by the

boundary condition$7) have to be used. First we advance all equations of motioit6). This “conversion” is needed to have

the bulk sites as described in the previous section. Once Wge initial conditions in a form suitable for the leapfrog

know the value of, B, and¢ in the bulk at timet+dt, Eqs.  scheme described in Sec. Il A.

(7) can be finite-differenced into a set of algebraic equations |n general, the initial time derivatives can be nonvanish-

for the boundary values at that time. In the following we jng, so that one can study situations in which the geometry of

describe how to implement this procedure/at0. The com-  the extra dimension is time dependent already at the begin-

putation for the other brane proceeds analogously. ning of the numerical integration. For example, this is the
The boundary conditions contain first derivatives with re-case for the AdS-Schwarzschild solution we will deal with in

spect toy of the metric coefficients and of the scalar field at Sec. IV B. For each such case the choice of initial conditions

the brane locations. An asymmetric discretization for the firsinust be consistent with the constraint equatitB)sWe dis-

derivative of a generic functiofi which preserves second cuss one such algorithm in Sec. IV B.

order accuracy irE, is given by A particularly interesting class of initial conditions is,

1 however, the one of static warped solutions

r_ 2
fo=r_(—3fo+4f1— ) +0(). (12) 4L Wy Ay — 2+ e2Hichd) an

_ Since the right-hand sides of the first two boundary concharacterized by a fixed bulk geometry and maximally sym-
d|t|o,ns coincide, we replace the first of them simply Ay metric (de Sitter or Minkowski branes. This metric turns to
—B(=0 or, using Eq(12), the form (3) with the identification

—3(Ap—Bo) +4(A;—B;)—(A;—By)=0. (13 B(t,y)—B(y)=InW, A(t,y)—B(y)+Ht, (18

If we define 3=e®, the second boundary condition simpli-

fies to (18)" =Uo(¢o)/6, which can be rewritten as the bulk scalar field$ is also a function ofy only. Such
34,8 solutions were ;tudi_ed With'dynamical system methods in
Bo= 172 . (14 [17]. The numerical integration can be used to check their
48, B EU (bo) BB stability. Numerical errors due to the grid discretization act
2 P13 FolvolPim2 as small perturbations. If the initial configuration is not
stable, the tiny numerical errors accumulate with time and

whereH is the Hubble parameter of the de Sitter brane and

Finally, the third boundary condition gives eventually lead to an evolution of the system. When this
happens, a full numerical calculation is the only tool to study
41— dr— 3o~ €BoUq( o) =0. (15  where this evolution leads to—namely, whether the two

branes collide, move apart to infinity, or get stabilized at a
Only the values of the three functions on the brane arginite distance in another static but stable configuration. As
unknown. By substituting the value f@k, given by Eq.(14)  we will see below, in many cases de Sitter branes turn out to
into Eq. (15), the latter becomes an equation where the onlybe unstable. Therefore even static warped geometry configu-
unknown quantity is¢. For specific brane potentialdg,  rations can provide suitable initial conditions for time-
this equation can be solved analytically; more generally, onglependent braneworld dynamics.
can solve it numerically through some iterative method. In \When numerical inaccuracy is used to seed the evolution,
our algorithm, the iterative Newton's method is employed.as described above, the initial amplitude and consequently
Finally the value ofBy=In(5,) can be used in Eq13) to  the timing of the instability depend on the accuracy of the
determineA,. numerical integrator. This accuracy is in turn related to the
spacing of the grid sites in the bulk. Increasing the number of
C. Initial configurations grid sites decreases their separation, and the instability de-
. . . . velops later. Alternatively, initial perturbations on the top of
Inmal Cond't'ons are .|mpose.d b_y specifying Fhe .threethe static configurations can be imposed directly as initial
functlons_ "?‘T‘d the_|r first ime derivatives on the grid sites alonditions. This allows a quicker development of the insta-
some |n|tlgl time t=0. We denote them S bility or, for static configurations, the excitation of some of
Ao(Yi), - - - oly;), with i ranging from 1 toN—1 in the  the lowest eigenmodes of the system. A simple class of initial
bulk (i=0,N are the sites of the two brane3hese functions perturbations, which can be implemented in our numerical
cannot be chosen arbitrarily but rather must satisfy the conaigorithm, is described in Appendix C and illustrated in Fig.
straint equations(6). Once this is done a second order 5 We found, however, that the qualitative behavior of the
Runge-Kutta time step is used to “convert” the initial con- system did not depend on the details of how the initial per-
ditions of the formfy(y),fo(y) into initial conditions given turbations are generated, whether imposed explicitly or
at the first two initial time step$y(y) and fy, 4(y). The through numerical roundoff errors. In the following, we

Runge-Kutta step is done as follows: therefore discuss instead how the static configurations are
. ) determined.
forar(yY)=Fo(y)+dt[fo(y)+ 3 dt fo(y)], (16) For static configurations, the bulk equations reduce to

084017-5
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¢"+3B' ' — BV () =0, Indeed, as discussed [17], many potentials do not give
static solutions at all, while some others typically lead to
only a finite number of them. In Appendix B we discuss the
numerical methodknown as the “shooting” method19])
which we employ to find these solutions.

B'2+ 3 V() — £ ¢'2=HZ (19

In addition, the last two of the boundary conditiai™s have
to be satisfied at each brane. In the gauge we are using here
the constraint equation®) are automatically satisfied.

The bulk equations are thus reduced to a system of first Let us inspect the dynamical equatioff), constraint
order differential equations for the functioBs ¢, and¢’,  €quations(6), and the boundary conditiond). While the
so that the phase space of possible solutions is effectivelynits of the bulk scalar field are fixed by our form of the
three dimensional17]. To solve these equations subject to action(1), it is easy to see that these equations are invariant
(given) boundary conditions, we specify the values of theunder the scaling transformation
three functions ay=0, as well as the value of the constant ,
parameteH.! For a given brane potential,, only two of A—A+S, B-B+S, (20
these four numbers can be chosen arbitrarily, and the Oth%hereS’
two are determined by the junction conditions at the first
brane.(In the 3D phase space this means that the junctio
condition at the first brane defines a 1D curve in phase spa
along which the trajectory must begirthe bulk equations
(19) are then integrated with a standard fourth order Runge- Voe 25V, U—e SU. (21)
Kutta integrator. Depending on the initial values and on the
bulk potential, the bulk solution may become singular before  gyppose some metric functiodsB are the solutions of
the brane ay=1 is encountered. If this happens, some otherzys (5) for given potentialsv,U. The scaling transforma-
initial values(or some other bulk potentiahave to be con-  tions(20) and(21) tell us that from these metric functions we
sidered. _ can generate a family of solutions for rescaled potentials.

Even if the brane ay=1 is reached, we face the non- Thjs is very useful for introducing the units of scales for
trivial problem of satisfying the boundary conditions also atpymerics. Indeed, whilg andt in Eq. (3) are 2D conformal
the second brane. The simplest way to solve it is to regargength and time(i.e., affine parameters along corresponding
the junction conditions as equations for the parameters of thgjrectiong, the metric functiore® defines the physical inter-
brane potentials. One can freely choose the three numericglane distanc® and the physical time. As often occurs in
values at the first branes well as the numerical value of nymerical simulations, it is not always easy to extend the
H), integrate the bulk equations, and then use the junctiopange of variables, like® in our case. As we will see in the
conditions to determine the potentials at the two brénes-example of the next section, numerical stabilityithout
However, one is typically interested in the more difficult prane stabilizationhas a controlled but finite lifetime. If we
situations in which the brane potentials are specified, and thgajyely increase the scale ef, the stability will be short
initial configurations have to be determined accordingly. —jived. The trick is to continue to work with numerically con-

In the second case, we face a boundary-value problemenient values ofe®, but interpret scales in units df
values of the fields satisfying the boundary conditions at the_ eSls. One can tak&to be large enough to have the scale

first brane do not in general lead to field values that satisf;@s|5 much greater than the fundamental bulk s¢gleThis is
the boundary conditions at the second brane, once they af§ gy that numerically we solve our equations not only for a
evolved across the bulk according the bulk differential €QUagiven scale and given choice of parameters of the potential,

tions (19). It is by no means guaranteed that any choices, for the whole family of scales and parameters which
consistent with the junction conditions at both branes eX'Stcorresponds to the orbit of the group transformati{@n)

(21). For the parameters of the potentid® we have the
_ _ _ ~units [m]=e"SMg, [M]=e SMs, [A]=e 25M2, [A]
'One may be wondering why we can specify four variables in a_ e SM? [p]=[c]=M —-3/2
. i - 51 - _ 5 .
3D phase space. Rec.a”’ however, that in our gauge the position of The time evolution of variables in the paper will be plot-
the second brane is fixed gt=1. In the language df17] we are d f i h its oft he ligh
using three degrees of freedom to specify the starting point of ouFe Versus contorma time T e.unlts oft are the lig tcro_ss—
g time between branes. This corresponds to the distance

trajectory in phase space and one to specify the length of th - b in th f I di hich is si
trajectory—i.e., at what point on the trajectory the second bran € e_en rane_s in the contormal coordinamhich is sim-
ply 1 in our units.

will be found. . . .
2In general, this does not determine the brane potentials, but only AS usual, the parameters for the numerical simulations do

their values and their derivatives at a single value of the figld ~ Not allow the introduction of a large hierarchy, since numeri-
One can complete the functional form of the potential arbitrarily— Cal inaccuracies accumulate much faster. Therefore most of
say, as in Eq(2). In this case, one is for example free to choosethe parameters are chosen to be of order unity in our units.
large positive values for the two mass parametdis favoring  The values of parameters that correspond to the numerical
values of the scalar field at the branes which are close to théuns shown in the figures of this paper are collected in Table
vacuum expectation values . | at the end of the Appendixes.

D. Units

and S are arbitrary real valued transformation pa-
rameters. The scalar field potentials enter the equations only
" the combination?8V andeBU. Therefore Eqs(20) can

e accompanied by the transformation
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FIG. 2. Left panel: drift of the free modulus of the RS model depending on the numerical accuracy. Right panel: stabilization of the RS
radion.

IV. BRANES IN AdS BACKGROUND cretization. Thus, this setup is particularly useful for verify-
WITHOUT A SCALAR FIELD ing the accuracy of the code. Notice, also, that numerical

The algorithm presented above allows an exact inte rai_nstability is much worse for the RS model without stabili-
. 9 P . . . 9% ation. In the left panel of Fig. 2 we show how the time scale
tion of general two-brane configurations with bulk scalar

fields. In this and in the next sections we discuss in detaiiit which the instability develops is related to the numbier
) > ; . . of bulk sites. The more we increabk the more the accuracy
several applications. The first two examples of this sectio

! SO ) ' the computation increases, and numerical instability is
have no scalar field, and the evolution is known analyt'ca”y'delayed for the later times. We estimate the time scale

We report _ther_n mal_nly to discuss the accuracy of the codg here the code is stable as being proportional to the grid
and to outline its main features. The code is accurate enou solutionN

ts()eéggac;d\lljvzev\t/ﬁfslt(ljngwtr]h:r:gg’técci)?‘:]m;i%g?.ecljnng]rii:]OeI:;V\(Ial\r)g- The right panel of Fig. 2 also shows how the introduction
) Ay ) P i "~ of the stabilization mechanisfwith the bulk scalar fields
lution of a system with a scalar field, for which the solutions

were not previously known. Fortunately, we still will be able with the potential(2)] can, for appropriate choices of the
previously o Y, . parameters, lead to a stabilization of the interbrane distance.
to check certain properties of the solutions analytically.

In this section we first consider the static unstabilized.In this case ihe code IS much more stable. We discuss this

Randall-Sundrum flat brane solution, from the point of view'>>oc In more detail in Sec. V.
of the numerical solution of the e l’Jations Thpen we stud The choice of parameters and initial conditions that was
nonstatic(moving branes in an AgS-SchWarzschild back_yused in the numerical runs plotted in Fig. 2 as well as the
. . ; ones for all following simulations are collected in Table I.
ground and compare the numerical solution with the known
AdS-Schwarzschild solution.
B. AdS-Schwarzschild solution
A. Randall-Sundrum model Starting from a setting similar to the Randall-Sundrum

Our first example is the two-brane Randall-Sundrum?xample of the previous section, but allowing for nonvanish-

model 5. It represents a particularly simple example of agf TS B L (O8 CEECER T8 SSTEEE RS o
brane world that only consists of a five-dimensional AdS p 9 9

; Lo ; . solutions. Assuming the initial spatial profild(tg,y)
space with a curvature radiud=—6/A, determined by its . .
5D cosmological constank, and of two flat branes with = B(to.y) of Eq.(22), the constraint equatiori6) are solved

tensions\;= *6/. The system is entirely described by one

time-independent function. In terms of the 2D conformal
gauge(3) we have At)=c y+m . B(tg=—A(ty), (29
N 2 (ot U
Aly)=B(y)==In | k (22) where ¢ is a constant. The choice=0 gives Randall-

Sundrum solutions, while a nonvanishiegcorresponds to
whereD can take any constant value, which—according tomoving branes. From the Birkhoff theorem for plane-parallel
Eq. (4)—corresponds to the interbrane distance. brane configurations it followg20] that the generic 5D bulk

We can reproduce this setup in our code by simply settingnetric must be a stripe of the AdS-Schwarzschild geometry
to zero all the scalar field related parameters in the bulk an@wvhere the Schwarzschild mass is virtual because it is
brane potentials in Eq$5) (as well as the initial conditions screened by the brane§hus, the branes are moving in an
for the scalar fieldd The numerical solutions of the Eq®) AdS-Schwarzschild background. To see this, note that in the
are in agreement with Eq22). As discussed in Sec. Il C, absence of the scalar field and for brane tensions as in the
small perturbations are unavoidably introduced by the disRandall-Sundrum model, the boundary conditidiis give
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FIG. 3. Comparison between numeric and analytic solutions for the Hubble parameter and Weyl tensor on the brane.

A'(A"+B')=2A exp(2B) at the location of the two branes.
From the bulk equations, we then recover
A+2A2-AB=0, y=0,1, (29)

which, in terms on the proper timeand the Hubble param-
eterH; on the two branefcf. Egs.(9) and (10)], becomes

dH,

2_
. +2H=0.

(29

C2=C[1+2H(7—79)] . (27)
The two equationg26) and (27) are independent of the
choice of coordinates in the bulk and can be easily repro-
duced with our code. For a particular realization of the initial
conditions(23) with the parametec=1, in Fig. 3 we plot
the numerical calculatiofsquarey of the time evolution of
H and the 5D Weyl tensor on the brane. Solid curves corre-
spond to the AdS-Schwarzschild analytic soluti¢2é) and
(27). The agreement between numerics and analytics is
manifest.

In the left panel of Fig. 4, we show instead the evolution

This corresponds to a radiation dominated standard fourof the metric componerB(t,y) for the same configuration

dimensional universe:

Ho

N T oHe(r— 7o)

(26)

used to generate Fig. 3. The ripplesBift,y) are not physi-
cal. As mentioned in Sec. Il, our choice of coordinates does
not fix the gauge completely. The residual gauge freedom
appears numerically as ripples B(t,y). The precise form
of these gauges modes is worked out in Appendix A 2 and is

The appearance of effective radiation domination on thén agreement with the numerical plots. The lowest frequency
branes is characteristic of an AdS-Schwarzschild bulk geommode of these gauge modes generically appears in the evo-

etry [21]. The invariant of the 5D Weyl tensocC?

=CABBCDCABCD projected into the brane scales &
ca

lution of B(t,y). In the left panel of Fig. 4, we see this effect
in the form of two bulk waves with period 2, which propa-

, wherea(r) is the scale factor of the induced FRW gate on top of the profile dB(t,y). As discussed in Sec. II,

brane metric. Sinca(7) is radiation dominated, at the brane these gauge modes do not affect the interbrane distance, as

we have

defined in EqJ(4).

1.2

1F

0.8 r
0.6
04 | s
Llc=1 e ~ o
D2 T, === S
o Le=001 ——| . Wil
0.001 0.01 0.1 1 10 100 1000 10000

Bulk Time t

FIG. 4. Left panel: nonphysical waves appearing as gauge modes in the metric fuBttigh (for c=1). Right panel: interbrane

distance for various initial conditions controlled by the parameter
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FIG. 5. Instability of static solutions with dS branes: Perturbations have induced significant departure from the static salution at
~40. The two unstable solutions shown correspond to posiiiygper surfaces and increasi) and negative(lower surfaces and
collapsingD) initial perturbations ofé¢; see Appendix B 1.

The numerical evolution of the interbrane distance for the Fortunately, this unexpected result, which we found here
AdS-Schwarzschild solution is shown in the right panel ofnumerically, can be independently obtained with analytical
Fig. 4 for different values and signs of the parameteFor  methods reported in the accompanying pajis] (for re-
positivec the branes approach each other, while for negativéated comments also s¢84,35]). Indeed, it is possible to

c they move apart. consider linearized perturbations of the bulk scalar figjsl
and scalar metric perturbations
V. INSTABILITY OF de SITTER BRANES AND d2=W(y)2[ (1+2®)dy2+ (1+2W)(—dt?+ e dx?)]

RESTRUCTURING OF WARPED CONFIGURATIONS (29

Let us now study the evolution of the systdB) in the
presence of a bulk scalar field. We have to specify initialaround the background warped geométty), where® and
conditions, which do satisfy the constraint equations. ThisV are small metric perturbations. From the linearized Ein-

task is now more complicated than it was without the scala®t€in equations one can derive second order differential equa-
field. tions for the fluctuations, which can be factorized into 4D

massive scalar harmonics on the de Sitter slices and KK
N ) eigenfunctions with eigenvalu@s The lowest eigenvalue in
A. Instability of warped geometry with curved branes the KK spectrum corresponds to the radion mass. The lowest
As a starting point we can check the code for known staticeigenvaluem? is estimated as
warped geometry configurationd8) with the scalar field
and potentials chosen so as to stabilize the branes. We can
cquations(This technique 5 desoribed in detai n Append erems=S/dye ®/ dye ©¢'  is a funcional ofH. In
many cases the firghegative term in Eq.(30) exceeds the

B.) " j D -
Static solutions of warped geometries with bulk scalarsecond positive term, causing a tachyonic instability of the

fields and with branes at the boundaries have been studieﬁ% ;VZ?] Z;ar:)ensénltri];jleiigi;tr:i?ittemporal part of the eigenmodes
and classified if17]. In the 2D conformal gauge the static P Y

m?=—4H2+mj(H), (30)

solutions with curved branes are given by f (1) ocert, (31)
Aly,t)=B(y) +Ht, ¢=¢(y), (28 where

whereB(y) and ¢(y) are related through a set of ordinary B 9 |m’ 3 H 32

differential equations, which can be treated with the methods M= 27 H2 2] (32)

of [17].

We use scalar field potential®), which are designed for The time dependence from numerical calculations corre-
brane stabilization. The outputs of the numerical integratiorsponding to Fig. 5 is consistent with the analytic re$8it).
of an initially static configuration of two curve@e Sittej In the limit of H=0 formula (30) is reduced to the known
branes and bulk scalar filed with small perturbations aroundesult for flat branes where the branes configuration is stable
it is shown in Fig. 5. [22]. The curvature of the branes upsets the balance between

We see the appearance of time dependence in the initiallhe bulk scalar gradients and its potentials, which otherwise
static field¢(y), departure of the metric functiohfrom the  provide stabilization.
hypersurface described by the equatidfy,t) =B(y) + Ht, Thus, both from numerics and analytics we conclude that
and a change in the interbrane distarideWe show two many static configurations with de Sitter branes are unstable
realizations of this model with different initial perturbations. against classicalor quantun fluctuations. While in the fol-
From these results we conclude that, surprisingly, the statitbwing we mostly discuss the physical meaning and conse-
solutions with scalar field potentials that are supposed tguences of this result, here we also note that this effect pro-
stabilize branes are unstable for a rangéHof vides us with a tool to study brane dynamics numerically.
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FIG. 6. Left panel: transition between two static brane configurations. Right panel: transition observed on the p+ahdoatvarious
values of the parametéd of Eq. (2), where the last ploM =1 corresponds to colliding branésee Sec. jl

This is because we can start with a simple controllable statievolution of the distancB (t) between the branes, the radion
configuration, without needing to resolve the time-dependentnassm?, the Hubble parametécurvatureé H, and the Weyl
constraint equations. Doing so, we can investigate numeritensor invarianC?2. The last two are defined as the averages
cally fully nonlinear time-dependent dynamics due to theof these quantities over the extra dimension. We observe a
real physical tachyonic instability of the initial configuration. transition between two states, from an initial brane configu-

Depending on the sign of the initial perturbatioftee  ration with higher brane curvatuéargerH) to a final con-
coefficientp in Eq. (B3)] we encounter runaway behavior figuration with lower curvaturésmallerH). The first state is
towards smaller or larger interbrane distances as shown instable; during this regime, the radion mass is tachyonic,
Fig. 5. We consider this type of nonlinear dynamics in Sec <0. The valueH decreases with time until the second
VI. Sometimes we do not find a runaway behavior, but rathefe™ in Eq. (30) dominates and the tachyonic instability
a restructuring of brane configurations as a transition beS€@Ses. In the cases we have studied, the decreadeiof
tween(at least two static warped geometries. This case will accompan_lledhby a glecreasg of the physma:% '_r%;?rbr.anle dis-
be considered in the next subsection. tance, until the stable conﬂgurghon is reachethe fina
static configuration has positiva“.

The dynamics of the transition between the two static
configurations is quite violent and is accompanied by a burst
of the Weyl tensorC?. The value ofC? vanishes for the

As we discussed in the Introduction, the construction ofwarped geometry configurations at the beginning and the end
brane models with de Sitter branes is particularly challengef the transition.
ing. Stable static solutions with inflating branes can only be Remember that we restrict ourselves toyj] dependence
achieved provided the spatial gradient of the bulk scalar fiel&and “planar” symmetry of the metric. Of course, the actual
is sufficiently high; cf. Eq(30). dynamics between two warped configurations does not nec-

In the context of static warped geometries, brane embedessarily occur in this class of metrics, and 3D inhomogene-
dings can be investigated in geometrical terms in a threeities along the brane can be excited. As shownli8], the
dimensional phase spa¢&7]. This technique is especially tachyonic instability of warped geometry with de Sitter
useful to show that more than one static solution for a giverbranes occurs for scalar long-wavelength inhomogeneous
brane model—i.e., given potentidl§ ¢) andU;(¢)—might  modes with 3D moment&k. The present form of the
exist as illustrated in Fig. 10, below. Many of these solutionsBRANECODE cannot take them into account. We assume that
are unstable, as shown above. A fully numerical integratiorthe backgrounck—0 mode dominates, but this should be
is a powerful(and maybe the onjytool to study the nonlin- investigated in the future. Tensor inhomogeneous modes do
ear dynamics of the unstable brane configurations. A moreot have tachyonic KK spectri®3,33 around the curved
comprehensive study of this issue, with different bulk andbrane warped geometry. In fact, gravitational waves are ab-
brane potentials taken into account, will be presented elsesent for systems with planar symmetry. However, based on
where. Here we limit our discussion to potentials of the classhe evolution of the Weyl tensaZ?, we conjecture that the
(2). In this subsection we discuss the case in which thectual
braneworld model admits one unstable and one stable static
solution, and the evolution of the system drives a transitiom——
between the two. Small perturbations around the unstable®The quantityH was defined in Eq(18) only for static configu-
solution trigger the tachyonic instability of the system, whichrations. During the time evolution, we choose to define it as the
is followed by a rapid evolution of the bulk configuration. average ovey of B(t,y)—A(t,y) at any fixed timet. In the ex-

An example of dynamical transition between two staticamples discussed, we saw that the combinatitiny) — B(t,y) de-
brane configurations is shown in Fig. 6. We plot the timepended only weakly oy during the whole evolution.

B. Dynamical transition between two static solutions
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FIG. 7. Flattening of¢ gradients during the brane collision. The left panel sha\g) for differentt, going from top to bottom. The
lower panel shows)(t) differenty. In either plot you can see thdt becomes nearly homogeneous at later times.

dynamics is accompanied by a burst of gravitational wavdn cosmology colliding branes appear in models of brane
emission with 3D momenta of the order of the nonadiabatianflation [6] as well as in models withoutearly universg

frequency~ 1/At, whereAt is the time of transition. It will  inflation [24]. The latter models have difficulties which were
be interesting to check this with a linear tensor mode analydiscussed elsewhelsee e.g[25]). In this paper, we focus
sis around the background geometry of the Fig. 6. on the issue of the bulk geometry and scalar field profiles of

It is interesting to follow how the final state of the un- colliding brane configurations, in a more general context.
stable warped configuration depends on the parameters of the In the next subsection, Sec. VI A, we show a numerical
potentials. We illustrate this with the parametdr of the  example of the brane collision and try to understand the
potential (2). In the example shown, the four-dimensional properties of the interbrane geometry. We find that they be-
cosmological evolution on the two branes is characterized bgome independent of the specific brane and bulk potentials of
a transition between two de Sitter spaces. In the right panghe model. In Sec. VI B we further argue that there is a
of Fig. 6 we show how the four-dimensional Hubble param-universal Kasner-like space-time asymptotic of the inter-
eter on one of the two branes changes as we change the brdm@ne geometry. This is a strong-gravity regime which can-
mass parametévl of the scalar field, while leaving the other not be described in 4D by the moduli approximation.
parameters unchanged. In the limit of lange the value of
the scalar field on the branes is always very close to its
expectation valuer. Moreover, phase space portrajts7] A. Geometry between branes
(see Appendix Bindicate that the two static configurations  Figures 7 and 8 show in detail the evolution of the bulk
approach each other in this limit. This is also visible in Fig.scalar field ¢(t,y), metric functionsA(t,y), B(t,y), and
6, where we see that the difference between the initial an¢hterbrane distanc®(t) in runs which begin with an un-
the final value oH decreases ad is increased. As an anal- stable warped de Sitter brane configuration and end with a
ogy, one may say that higher mass parametrorrespond  prane collision.
to more rigid systems, characterized by stiffer and quicker The first thing to notice is that the system becomes homo-
transitions between the two static regimes. Tuning the pageneous along thgcoordinate. This is seen as the flattening
rameters of the model, one can have flat Minkowski brane@f d) gradients over time. A similar f|attening mdirection
in the stable final configuration. occurs for the metric components; see Fig. 8. Also notice that

In the limit of negligible M the system does not admit the absolute value of increases with time. This increase
stable configurations at all. The curve with=1, shown in  can be fit well by(t)~Int.

Fig. 6, corresponds to a case in which the dynamics of the A second feature of the brane collision is the decrease of
system leads to a collision between the two branes. This casge metric componené®; asymptotically,B— — o during
is discussed in detail in the next section. the collision[cf. the definition(4) of the interbrane distange
Recall that the bulk and brane scalar field potentials in the
bulk equationg6) and boundary conditioné7) are always
multiplied by exponents®. Therefore the contribution of the
Unstable warped configurations of curvede Sittej  bulk and brane potentials becomes more and more negligible
branes provide suitable initial conditions for studying collid- in the dynamical equation®) during the collision.
ing branes, as we saw in Sec. V A. By controlling the initial ~ This leads us to the important conclusion that asymptoti-
fluctuations(see Fig. 5we can generate numerical runs with cally the dynamics of the brane collision do not depend on
brane collisions. the form of the bulk and brane potentials. Notice, however, a
The collision of branes is an interesting subject by itself.potential exclusion from this rule related to exponential po-

VI. BRANE COLLISIONS
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Numerical solution
Kasner solution

FIG. 8. Numerical solutionflower surfacesasymptotically approach universal Kasner-like solutioppery-independent surfaces

tentialse*®. In this case the typical logarithmic time diver- versal Kasner solution in five dimensions with a massless
gence of¢ leading up to the collision leads to the growth of scalar field. Four-dimensional homogeneous but anisotropic
the value of the potentials with time which may compensateéKasner solutions with the massless scalar field were con-
the decrease of the metric functi@¥. In this paper we structed a long time ago ii26]. Its higher dimensional gen-
concentrate on the potentialg) where asymptotically the eralization is obviou27]. Indeed, in 5D we have the fol-
dynamics is potential free. lowing exact solution with the massless scalar field:

This potential-free asymptotic immediately helps to ex-
plain heuristically the first feature, why the system becomes
homogeneous along thecoordinate. Indeed, looking at the
boundary conditions, we see that the gradient&,@, and¢
at the branes are proportional to eBpénd therefore vanish
ase®—0.

Next, let us consider Eq%5) under the assumption that 2, 2. 2, o2 2
the bulk and brane potentials for the scalar field can be ne- Pt Pzt pstpy=1-07,
glected and that the geometry becomes homogeneous. After
this simplification Egs.(5) become ordinary differential $=qlnr. (34
equations, which can be easily solved. We find

3
ds?= —d 72+ 2Pvdy?+ >, r2Pidx?,
=1

P1+ P2t pszt+py=1,

The vacuum Kasner solution hgs=0. The parameteq
characterizes the contribution of the scalar field. The time
in the 2D conformal gaug€3) and 7 are related by transfor-
mation

1
A=Ayt §|n(tc—t),

b= o= IN(te=1), -~ 5

1 . t 1
B=Bo— =(1—3Bpte— 2r?)— — = (1— 3 r?)In(t,—t). The significance of the Kasner-like space-tirf8) is not
3 te 3 . - . . .
only in the fact that it is an exact solution of the Einstein
(33 . S ) :
equations, but mostly because it igganericasymptotic of

The constants of integratiof,, Bo, and ¢, correspond to  a/bitrary collapsing solution$28].
the values of the fields at some tinte0. The timet=0 In this section we explicitly demonstrate how the geom-
cannot be the beginning of integration where we know thaftry of colliding branes, as a case of the collapsing solution,
the approximation does not hold. We will give meaning to@PProaches the universal Kasner-like asymptotic. =
the integration constants shortly. The collision timetis Kasner-like geometry as generic collapsing solution was
— _1/A,. We also introduce a convenient intermediate pa e2dy advocated in string cosmologgol. As we show

o = o Pahere, this asymptotic also applies to brane cosmoltay
rameter_r=¢0tc. The brane Collls_lon corresponds to valuesgther words, string cosmology with brane¥here is, how-
of r satisfyingr<%. The scalar field potentials, as well as ever, a specific new feature that appears in the brane cosmol-

inhomogeneities along the coordinate, result in small cor- ogy case. The isometry in the brane directions is reflected in
rections which are neglected in E483). Asymptotically the  the additional constraint. In 5D,

logarithmic terms in Eqs(33) dominate and we arrive at a
homogeneous metric with power-law dependence on time. P1=Py=Ps. (36)
This is nothing but the recognizable Kasner-like space-time

metric. This constraint and the two equalities for Kasner indices al-

low to expresg, and p, through the parametey.
B. Universal Kasner-like asymptotic

The regime when the logarithmic terms in E¢33) de- pi=7(1xV1-30%, py,=7(1%3V1-30?).
termine the behavior of the system corresponds to the uni- (37)
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The range of the parametey is —3/2<q=<\/3/2; the Bulk time t
ranges ofp, andp, correspondingly are- %ipyil and 0 22.5 23 241
<p;=<3. In the vacuum limit of vanishing] one findsp, ' ' '
=0 or 1/2 andp,=1 or —1/2.

One of the feature of the Kasner-like asymptotic is a cha-
otic alteration of the indicep, [28], with alternating con-
traction and expansion in some of the directions. In the pres-
ence of the scalar field the process ceases gs,dilecome

positive. For colliding branep,>0, which gives 6<p,

<%, so both indices are positive and no alteration of indices - (e - T)/p
is expected. TE & . & Tihis)

For our cas&36) the Kasner solutiori34) can be rewrit- 17.04 17.05 17.06 1,
ten to the 2D conformal gauge with the help of the time Brane time T
redefinition(35):

FIG. 9. Induced Hubble parametdi(7) at the colliding branes.
ds?=1t2Py/(1=Py (dy2— dt?) +tZ3d x2. (39
plane-parallel branes at the edge and with a bulk scalar field
In terms of the metric functiond andB and the field$, the  with arbitrary bulk and brane potentials. It is possible to
Kasner solution38) reads as choose a convenient gauge where the brane positions are not
changing with time, and dynamics is imprinted in the two

Aziln(t 1) metric components and the bulk scalar field. These bulk
3¢ equations for gravity and the scalar field are supplemented

by boundary conditions at the orbifold branes and initial con-

Py ditions in the bulk. We also treat the constraint equations at
B=1" D, In(tc—1), the initial time hypersurface. So far we have only included a

single bulk scalar field, but the code could in principle be
q extended to include other layers such as additional scalars in
d= = In(te—t). (399  the bulk or on the branes.

Py We check the code for the brane models with known ana-
lytic solutions. For two branes embedded in the 5D back-
ground with negative 5D cosmological constant without the
scalar field we numerically reproduce generic AdS-
§chwarzschi|d solutions.

Next, we considered more comprehensive braneworlds
with a bulk scalar field. We investigated numerically small
m perturbations around warped stationary configuration with a

bulk scalar and with de Sitter branes including the bulk and

brane potentials, which are introduced for brane stabilization.

However, for the large enough 4D curvature of inflating

branes the system is unstable and runs away from the initial

The induced Hubble parameter on either branes is then givefjarPed configuration with de Sitter branes. This effect is
confirmed independently by an analytic calculation of small

The solution(39) is identical to the leading terms of Eqgs.
(33) by the identificatiorg=6r/(3r2+4). Thus the integra-
tion constant in Eqs.(33) is related to the parameters of the
Kasner solution. Figure 8 shows how the metric component:
A andB and the field¢ found numerically, approaches the
universal Kasner asymptoti@8).

Next, consider metrics induced by the bulk Kasner geo
etry at the braneéwhich is independent of):

ds?= —d 7+ (7.~ 7)2PrdX2. (40

b
y scalar perturbations in this setting8]. The scalar fluctua-
Py tions around a warped configuration with curved branes have
H=—-——". (41)  as their lowest eigenvalue
Cc
This time dependence of the Hubble parameter at the brane is m2= — 4H?2+ mg(H). (42

a good fit to the asymptotic behavior of the Hubble param-
eter we found numerically, as illustrated in Fig. 9. ) ] ]

The induced metric at the brarié0) depends on the pa- The termmg(H) is a functional ofH and depends on the
rameterq through the indexp;. This parameter is absent in Parameters of the model. If parameters are suchrtffate-
the simple moduli approximation of the 4D effective theory COMes negative due to excessive curvatttid®, the brane

at the brane, which does not take into account strong gravitgonfiguration becomes unstable. For relatively low values of
arising in the bulk geometry. 2 the radion mas$42) is positive and the system is stable.

Our interpretation of this instability is the following. Stabili-
zation of flat branes is based on the balance between the
gradient¢’ of the bulk scalar field and the brane potentials
We designed the numerical COHRANECODEtO treat non- U (¢) which tends to keeg pinned down to its valueg; at
linear time-dependent dynamics of 5D braneworlds withthe branes. The interplay between different forces becomes

VIl. SUMMARY
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more delicate if the branes are curved, and for the braneations with parameters which do not allow another warped
curvature exceeding some critical value the brane configurggeometry configuration. In such cases the end point of the
tion becomes unstable. brane dynamics is either a brane collision or branes moving
Tachyonic instability of curved branes has serious impli-apart. We investigated in detail the geometry of colliding
cations for the theory of inflation in braneworlds and is dis-branes. The bulk metric and bulk scalar field become
cussed in details in the accompanying pais. homogeneous—i.ey, independent—and the brane dynamics
Our numerical simulations allow us to follow the dynam- asymptotically does not depe_nq on the scalar field potentials.
ics of the brane configuration triggered by the tachyonic inInStéad, the geometry of colliding branes asymptotically ap-
stability. The end point of the evolution depends on the Ioresproaches a universal Kasner-like solution with a free scalar

ence or absence of one or more additional warped stationafif!d- It is known that the Kasner asymptotic is a generic
configurations in the model. solution of the high-dimensional gravity-dilaton systg28)].

The question about the multiplicity of warped solutions N OUr case the isometry of the brane slices guarantees the
can be studied in the framework of warped geometry with ngauality of the Kasner indices; =p,=ps. In 5D this con-
time dependence. We implemented the geometrical construition leaves only one free paramegrof the Kasner-like
tions in the phase space of solutions of the gravity plus scalatolution, associated with the bulk scalar field contribution.
system that had been developed earlier. In the model witd his parameter is determlned. by the |n|t|all conditions. _For
quadratic bulk and brane potentials, depending on the parar?€ 5D brane system we considered, there is no chaos in the
eters there are single or double warped solutions. alter_atlon of the Kasner |nd|ce§. It ywll be interesting to in-
Thus we see that in some cases the warped branes syst&gstigate this issue for other situations—for example, when
can admit two solutions for the same parameters of the IOOt_he fo_rm field is _mcluded and the brane dimensions and codi-
tentials, with different values of the curvature of the de Sittermensions are different.
brane, which is proportional tbl2. Suppose we start a nu-
merical run with a warped solution that has a larger value of ACKNOWLEDGMENTS
the brane curvature, which is unstable. Then we observe nu-
merically that this configuration evolves dynamically and We are grateful to A. Linde, S. Mukohyama, A. Peet, and
ends up in the state which corresponds to the second warp&¥ Pogosyan for valuable discussions. This research was sup-
solution. The second solution is stable if the correspondingported in part by the Natural Sciences and Engineering Re-
radion massnm? is positive, as in the example shown in the search Council of Canada and CIAR.
text. This restructuring is accompanied by strong dynamical
features like a burst in the Weyl tensor, which vanishes in the
initial and final warped configurations. Although inhomoge-
neous tensor modes are not included in the code, based on The system we are studying has a gauge freedom which
this behavior of the Weyl tensor we conjecture that braneamounts to different possible coordinates for the five-
restructuring should be accompanied by the emission oflimensional metric and for the positions of the two branes.
gravitational waves due to the nonadiabaticity of the procesur choice does not only aim for simplifying the equation of
All together, this process looks like a decay of the meta-motions, but also for removing “redundant” degrees of free-
stable state of the strongly curved branes due to the tachylom, which would not allow us to write a closed system of
onic instability into the more stable state where the branegquations for the numerical integration. In Sec. Il, we
have lower curvature. This transition is marked by a burst otlaimed that it is always possible to choose a system of co-
gravitational field anisotropygravitational waves? It will ordinates in which thet(y) part of the metric is conformally
be interesting to investigate what applications this may havélat and in which the two branes are fixed at the positipns
to cosmology with branes. Another potential application of=0 andy=1, irrespective of whether their physical separa-
brane restructuring would be the problem of the 4D cosmotion is constant or changing in time. We show this explicitly
logical constant in the braneworld picture. The cosmologicain Appendix A 1. This choice does not fix the gauge com-
constant problem was discussed recently from a braneworlgletely, however. The form of the remaining gauge degrees
perspective, in which a low 4D cosmological constant corre-of freedom, which are expected to affect the numerical solu-
sponds to a flat brane. There was a suggestion that the flébns, is worked out in Appendix A 2.
brane is a special solution of the bulk gravity-dilaton system
with a single brang30], but the model has difficultiels31].
In our setup, we consider two branes. The new element
which emerges from our paper is the instability of the curved By assumption, the system is homogeneous and isotropic
branes. So far we have only shown an example of restructuelong the spatial coordinates and the position of each
ing between two curved brane configurations. It will be in-brane in the extra space is specified by a function of time
teresting to see if there are brane models with more than twonly (parallel branes Since the metric coefficients depend
stationary warped geometry configurations, or with severabnly on the two coordinatesandy, the metric can be written
scalar fields, and to investigate if there is a mechanism fom the 2D conformal gaugé3).

APPENDIX A: CHOICE OF GAUGE

1. Comoving branes

brane flattening. The change of coordinates
Finally, we studied the geometry of colliding branes. As -
initial conditions we used the unstable curved brane configu- t—t=3[f(t+y)+g(t—y)],
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y—y=3[f(t+y)—g(t—y)], (A1) f(w)=g(w)=F(w), F(w+2)=F(w)=2. (A6)

wheref and g are two arbitrary scalar functions, preservesThe most generic functiok with this property is
the 2D conformal gauge, since it affects the met8conly
by the change

F(W)=W+2 (a,cosnrw+b, sinn7w), (A7)
n=0

B(t,y)—B(t,y)
_ 1 , , - with arbitrary coefficientsa, ,b,. The appearance of these
={B(t,y)— z In[f'(t+y)g" (t=y) T}t y—7t,y- gauge degrees of freedom is manifest in some of the numeri-
(A2) cal results we obtained; for example, in Fig. 4 they are
shown as ripples in the metric compond{t,y).
This is most easily seen in null coordinates, where

3. Perturbations of the Randall-Sundrum geometry

1 1
t=—(v+u), y=-—=(v—u)=ds’=—2dudv. It is interesting to note that, apart from pure gauge modes
V2 V2 described in the previous appendix, there exists only one
(A3) kind of x-independent small fluctuations about the Randall-

. . Sundrum geometr{22). As we show now, this perturbation
Generally, the two branes will have a time-dependent po- g 122) P

L . : . . "Is related to a small change of the interbrane distaDce
sition in the extra dimension, described by the two funCtlon%Nhich is not stabilized without a scalar field. We know that

¥1(t) andy,(t), respectively. However, as_ Iopg as the_lr mo- any x-independent configuration can be written in the con-
tion occurs slower than the speed of lighys| and |y,|  formal gauge with the position of the branesat0,1. Thus,
<1, we can perform a change of coordinatéd) to have || the perturbations we are interested in can be written in
them at fixed position along, as we now show. terms of the metric components(t,y)=Ay(y)+ sa(t,y),

Let us first fix the first brane at=0. For this to happen, p(t,y)=B(y)+ db(t,y), where A;=B, is the Randall-
the two functionsf and g appearing in Eqs(Al) have to  syndrum solution22). To find which perturbations are al-

satisfy lowed, we linearize the bulk Einstein equations. The dynami-
cal ones reduce to
ft+ys(t) =gt -y (). (A4)
. 6sa’ 86b
We can chooséarbitrarily and use EqA4) to determinegg. sa—sa'+ —+

=0
. - ) + 2 ’
The condition|y,;|<1 guarantees this can be always done, YTy (y+v)

since the arguments of both the two functions increase
monotonically in time. . , 6aa’ 46b

In the new coordinate system, the first brane is fixed at ob—6b"— y+_y_ (y+ )2:
y,=0, while again the second one will be generally moving yTy

according to some functiog,(t). This function describes \yjle the two constraint equations are conveniently recast in
the parallel motion of the second brane with respect to thgnhe form

first one. Since in the old system of coordinates the relative

0, (A8)

motion was at a speed lower than that of light, this will be d Sb
the case also in the new coordinatgs|<1. To preserve the gt sa' + v b 0,
first brane at the origin, the residual freeddwl) is re- y
stricted tof(w)=g(w); i.e., f andg are the same functions sb
of their arguments. If we choodeo satisfy — v+ -3 sa’+ _
dy (y+7y)°| da v+ 0. (A9)

f(t+Ya(1)=F(t=ya(1)+2, (A5) _
Here y=(eP'—1)71; cf. Eq. (22). The last two equations

we finally reach a third system of coordinates where the tw@ive
branes are fixed at;=0 andy,=1, respectively. As before,

the functionf can always be constructed. Singg|<1, the , ob 3
arguments of both terms increase monotonically in time. We da’+ y+ y=C(y+ )% (A10)
can then use the value bht the right-hand-side of EGA5)
to “construct” the value off on the left-hand-side. with C constant. Finally, linearizing the boundary conditions
we have
2. Residual gauge freedom
Even with the position of the branes fixed, the freedom of sa' + ob ) -0 ( Sb' + b =
reparametrization is not exhausted yet. The residual gauge YY) \y—o1 ’ Y+ y—01 '

degrees of freedom are again of the foffi), with (A1)
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the first of which enforce€=0. Substituting Eq(A10) into B B _B F(t+y)-F(t—y)
the second equation of Eq§A8), we have a differential 0-"=0 =0 2
equation in terms ofsb and its derivatives only. Fourier _ _
transformi Fr(t+y)+F'(t—
ransforming + (t+y) 5 ( y). (A18)
_ i 0T R,
5b—j dwe®'sb(w,y), (A12) By choosing
we get an ordinary differential equation which is solved by iF,
f=—————— n=12,..., (A19)
. N cog Nwy)
— sin(wz) , coq wz)
db=F| codwz) = ———|+ G sinwz)+ — ——|, we see that the perturbation&16) are equivalent to
— Foy Foy -~
z=y+y. (AL3) Ao+ da=Ag— — +K=Ag+ — +K
0 O yty Tyty
The boundary conditions fafb at the two branes become
two equations for the two parametérandG. Nonvanishing Foy
solutions are possible only for Bo+ ob=Bo+ vy (A20)

w=nm, n=0132.... (AL4) whereK =K —F is also constant.

For these values, the two coefficieftandG are related by By an appropriate rescaling of the spatiakoordinates

G=Ftanwy. The Fourier transform ofa is then easily ~We can seK to zero.
obtained from the remaining two equations
APPENDIX B: DETERMINATION OF STATIC

1 . CONFIGURATIONS
da=—[~Fsinwz)+Gcogwz)]+Kd(w), (AL5)

Here we describe the method used to determine static so-
lutions, once the bulk and brane potentials for the scalar field

whereK is a constant. Back in coordinate space, . S .
are given. This is done by a numerical boundary-value prob-

—F, €"sinnmy) lem solve( using the_ shooting method. As discy_ssed in Sec.
sa=3, +K, Il C, we first deal with the two boundary conditions at the
cognmy) nw(y+y) first brane. Any two ofBy, ¢, ¢4, andH can be chosen
. freely, while the other two are determined by the junction
sb=3, Fn é"™| cognry)— sin(ny) _ conditions at the first brane. We find it more convenient to
cognmy) nm(y+vy) choose the values @, and ¢}, since the latter cannot be

(A16) taken arbitrarily large if we want the solutions to remain
regular all across the bulk. A fourth-order Runge-Kutta inte-
These are the most genexdéndependent perturbations of grator is then employed to integrate Eq$9) in the bulk.
the Randall-Sundrum solutiof22). However, most of them The aim is to find the values d8, and ¢, for which the
are pure gauge modes. Let us consider infinitesimal changsolutions are regular in thesOy<1 interval and for which
of coordinates of the residual gauge discussed in Appendithe boundary conditions on the second brane are also satis-

A 2: fied. We can recast the latter in the form
- . AP . 1du,
F(w)=w+FE(w)=w+ >, f,é"™, C1=Bi— §U:"1=0, c;=¢;+5 we%:o. (B1)
n

, Both ¢, andc, are only functions of the chosen value &
t—t+ > f,é"™cognay), and ¢, and in general do not vanish. We use Newton’s
" method to find the zeros of these two functions—that is, the
initial configurations at the first brane for which the junction
y—y+ >, £, sinnmy). (Al7)  conditions at t_he second brane are also satisfied. In practice,
n for the potentials we have studied, Newton’s method does
S ) _not converge globally. Fortunately, the bulk equati¢hs)
Under this infinitesimal change of coordinates, the metriccgn pe integrated very quickly, so that we can perform a

coefficients undergo the infinitesimal changes “brute force” scan in the{By,$4} plane. We then apply
- - Newton’s method starting only from those values which are
A ,F(t+y)—F(t—y) sufficiently close to a solution—i.e., for whiah andc, turn
2 out to be sufficiently close to zero.
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-0 Each of the two thick curves refers to one of the two
/y— branes, and it joins points for which the junction conditions
on that brane are satisfied. The thin curves are a sampling of
const bulk trajectories which satisfy the junction conditions at one
of the two branegat y=0). Valid static solutions consist of
trajectories that satisfy the junction conditions at both branes.
Hence, in the phase portrait they are represented by the few
y=1 trajectories which intersect both the thick curves. Lines per-
pendicular to the trajectories represent liney sfconst. We
see that in the case at hand, corresponding to quadratic po-
tentials(2), there are two intersections.

Boundary
Conditions

’ APPENDIX C: PERTURBATIONS OF STATIC SOLUTIONS
2 Solutions . _ . .
Generic perturbations around a static configuraiib®

FIG. 10. Phase space illustration of the two solutions for givenare described by the functio@B,(y), Aq(y), andSdo(y)
potentials. and their first time derivativessBy(y), SAq(y), and

The existence of static solutions is not guaranteed for ard%o(y), which are obtained by equating the time-dependent
bitrary bulk and brane potentials. As discusseflifi, many fields and the first time derivatives at an |n_|t_|al momegt
potentials do not give static solutions at all, while some oth-=0. In the bulk, four of them can be specified arbitrarily,
ers typically lead to a finite number of them. Using the geo-While the remaining functions are obtained from the con-
metrical method of phase portraits for quadratic potential$traint equations. One possm_le chc_)|ce_of|n|t|al perturbations,
(2) we found at most two static solutions in theide) space  adopted in the example of Fig. 5, is given by
of possible initial configurations we have scanned. Figure 10

shows how the phase portrait method allows us to visualize 0Bo(y) = 8Ag(Y) = 6Ao(Y)=0,
the quest for static configurations. Following the method of
[17], we draw curves in thép,e B¢’,e BB’} phase space. So(Y)=38h(Y),

TABLE |. Parameters used for simulations presented in the figures.

Figure 2 Figures 3,4 Figure 5 Figure 6 Figures 7,8,9 Figure 10
Bulk m=0 m=0.5 m= 0 m=0.5 0.5 0.5
V=1m2¢2+ A A=—6 A=-6 A=-6 A=-6 -6 -6 -6
Branes Mg= 0 My= 300 M;=0 Mo= 2 300 2 100
Ui:%Mi(¢_Ui)2+)\i No=6 No= 5.98 No=6 A= 36.6 6.04 6.24 7.86
oo= 0.5 N=—6 o= 0.201 0.000202 0.33 0.00815
M,= 0 M,;= 300 M,= 2 300 2 100
N=—6 N, =—6.04 A= —49.7 —-7.02 -102 -13.9
o= 0.60 o,=—0.692 —0.406 -1.05 —0.715
(cf. Sec. IVB
Initial conditions H=0 H=10" H= 0 H= 03 0.2 0.3 0.0354 0.368
for static solution $o=0  $o=0.5 D=In2 b= O 0 0  —0.0508 —0.00276
$6=0  ¢(=0 c=1 ¢o= —0.02 —0.05 -0.3 —0.393 -0.241
Bo=0 By=0 A=y+1 Bi= -0.3 0.5 -0.1 -2.01 -0.818
B,=—1 B,=—0.997 Bi=— A By=—0.304 —1.66 —0.96 -0.179 —0.579
Mass bound m2;=0 m2,<0.0016 NO static solution m2y< —0.360 —0.139 0.041 0.17
—-0.387
Perturbations no no 5¢:Clecz(y—(1/2))2 no no no
¢, =+10"°
C2 :_l
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H2
G

_ 2
$'2+ 54224 50’ 5¢=pen{—géjgaj (€2

Sibo(y) =
olY A
- vz is centered between the branes. Sufficiently small values for
—2e[V(¢)—V(d—09)]| h guarantee that the perturbations are exponentially sup-
pressed at the brane locations, leaving the junction condi-
tions (practically) unaffected.

. 1¢" .
9Bo(Y) =3 7 99 (Cy
A APPENDIX D: NUMERICAL DATA
The perturbations¢(y) can be specified arbitrarily. In the All the initial data, which we used to run the simulations
example shown, the Gaussian profile presented in the figures of this article, is collected in Table I.
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