
Masthead Logo Smith ScholarWorks

Computer Science: Faculty Publications Computer Science

11-2009

Sparse Hypergraphs and Pebble Game Algorithms
Ileana Streinu
Smith College, streinu@cs.smith.edu

Louis Theran
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs

Part of the Discrete Mathematics and Combinatorics Commons

This Article has been accepted for inclusion in Computer Science: Faculty Publications by an authorized administrator of Smith ScholarWorks. For
more information, please contact scholarworks@smith.edu

Recommended Citation
Streinu, Ileana and Theran, Louis, "Sparse Hypergraphs and Pebble Game Algorithms" (2009). Computer Science: Faculty
Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/14

http://www.smith.edu/?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.smith.edu/?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/14?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu

Sparse Hypergraphs and Pebble Game

Algorithms

Ileana Streinu and Louis Theran

Abstract

A hypergraph G = (V, E) is (k, `)-sparse if no subset V ′ ⊂ V spans
more than k|V ′|−` hyperedges. We characterize (k, `)-sparse hypergraphs
in terms of graph theoretic, matroidal and algorithmic properties. We ex-
tend several well-known theorems of Haas, Lovász, Nash-Williams, Tutte,
and White and Whiteley, linking arboricity of graphs to certain counts
on the number of edges. We also address the problem of finding lower-
dimensional representations of sparse hypergraphs, and identify a critical
behaviour in terms of the sparsity parameters k and `. Our construc-
tions extend the pebble games of Lee and Streinu [11] from graphs to
hypergraphs.

1 Introduction

The focus of this paper is on (k, `)-sparse hypergraphs. A hypergraph (or set
system) is a pair G = (V,E) with vertices V , n = |V | and edges E which
are subsets of V (multiple edges are allowed). If all the edges have exactly
two vertices, G is a (multi)graph. We say that a hypergraph is (k, `)-sparse if
no subset V ′ ⊂ V of n′ = |V ′| vertices spans more than kn′ − ` edges in the
hypergraph. If, in addition, G has exactly kn− ` edges, we say it is (k, `)-tight.

The (k, `)-sparse graphs and hypergraphs have applications in determining con-
nectivity and arboricity (defined later). For some special values of k and `, the
(k, `)-sparse graphs have important applications to rigidity theory: bar-and-
joint minimally rigid frameworks in dimension 2, and body-and-bar structures
in arbitrary dimension are both characterized generically by sparse graphs.

In this paper, we prove several equivalent characterizations of the (k, `)-sparse
hypergraphs, and give efficient algorithms for three specific problems. The de-
cision problem asks if a hypergraph G is (k, `)-tight. The extraction problem
takes an arbitrary hypergraph G as input and returns as output a maximum
size (in terms of edges) (k, `)-sparse sub-hypergraph of G. The components
problem takes a sparse G as input and returns as output the maximal (k, `)-tight
induced sub-hypergraphs of G.

1

ar
X

iv
:m

at
h/

07
03

92
1v

1
 [

m
at

h.
C

O
]

 3
0

M
ar

 2
00

7

The dimension of a hypergraph is its minimum edge size. A large dimension
makes them difficult to visualize. We also address the representation problem,
which asks for finding a suitably defined lower-dimensional hypergraph in the
same sparsity class, and we identify a critical behaviour in terms of the sparsity
parameters k and `.

There is a vast literature on sparse 2-graphs (see Section 1.2), but not so much
on hypergraphs. In this paper, we carry over to the most general setting the
characterization of sparsity via pebble games from Lee and Streinu [11]. Along
the way, we develop structural properties for sparse hypergraph decompositions,
identify the problem of lower dimensional representations, give the proper hy-
pergraph version of depth-first search in a directed sense and apply the pebble
game to efficiently find lower-dimensional representations within the same spar-
sity class.

Complete historical background is given in Section 1.2. In Section 2, we describe
our pebble game for hypergraphs in detail. The rest of the paper provides the
proofs: Sections 3 and 4 address structural properties of sparse hypergraphs;
Sections 5 and 6 relate graphs accepted by the pebble game with sparse hyper-
graphs; Section 7 addresses the questions of representing sparse hypergraphs by
lower dimensional ones.

1.1 Preliminaries and related work

In this section we give the definitions and describe the notation used in the
paper.

Note: for simplification, we will often use graph instead of hypergraph and edge
instead of hyperedge, when the context is clear.

Hypergraphs. Let G = (V,E) be a hypergraph, i.e. the edges of G are
subsets of V . A vertex v ∈ e is called an endpoint (or simply end) of the edge.
We allow parallel edges, i.e. multiple copies of the same edge.

For a subset V ′ of the vertex set V , we define span(V ′), the span of V ′, as the
set of edges with endpoints in V ′: E(V ′) = {e ∈ E : e ⊂ V ′}. Similarly, for a
subset E′ of E, we define the span of E′ as the set of vertices in the union of
the edges: V (E′) =

⋃
e∈E′ e. The hypergraph dimension (or dimension) of

an edge is its number of elements. The hypergraph dimension of a graph G is
its minimum edge dimension. A graph in which each edge has dimension s is
called s-uniform or, more succinctly, a s-graph. So what is typically called
a graph in the literature is a 2-graph, in our terminology. Figure 1 shows two
examples of hypergraphs.

We say that a hypergraph H = (V, F) represents a hypergraph G = (V,E)
with respect to some property P, if both H and G satisfy the property, and

2

(a) (b)

Figure 1: Two hypergraphs. The hypergraph in (a) is 3-uniform; (b) is 2-
dimensional but not a 2-graph.

abc

acd
bcd

c

a

b

d

c

a

b

d

(a)

abc abc

cd

c

a

b

d

c

a

b

d

(b)

Figure 2: Lower dimensional representations. In both cases, the 2-uniform graph
on the right (a tree) represents the hypergraph on the left (a hypergraph tree)
with respect to (1, 1)-sparsity. The 2-dimensional representations of edges have
similar styles to the edges they represent and are labeled with the vertices of
the hyperedge.

there is an isomorphism f from E to F such that f(e) ⊂ e for all e ∈ E. In this
paper, we are primarily concerned with representations which preserve sparsity.
In our figures, we visually present hypergraphs as their lower dimensional repre-
sentations when possible, as in Figure 2. We observe that representations with
respect to sparsity are not unique, as shown in Figure 3.

The standard concept of degree of a vertex v extends naturally to hypergraphs,
and is defined as the number of edges to which v belongs. The degree of a set of
vertices V ′ is the number of edges with at least one endpoint in V ′ and another
in V − V ′.

An orientation of a hypergraph is given by identifying as the tail of each
edge one of its endpoints. Figure 4 shows an oriented hypergraph and a lower
dimensional representation of the same graph.

In an oriented hypergraph, a path from a vertex v1 to a vertex vt is given by a
sequence

v1, e1, v2, e2, . . . , vt−1, et−1, vt (1)

where vi is an endpoint of ei−1 and vi is the tail of ei for 1 ≤ i ≤ t− 1.

3

abc abc

cd

abc
abc

cd
c

a

b

d

c

a

b

d

c

a

b

d

Figure 3: Lower dimensional representations are not unique. Here we show two
2-uniform representations of the same hypergraph with respect to (1, 1)-sparsity.

abc

acd
bcd

c

a

b

d

c

a

b

d

Figure 4: An oriented 3-uniform hypergraph. On the left, the tail of each edge
is indicated by the style of the vertex. In the 2-uniform representation on the
right, the edges are shown as directed arcs.

The concepts of in-degree and out-degree extend to oriented hypergraphs. The
out-degree of a vertex is the number of edges which identify it as the tail and
connect v to V − v; the in-degree is the number of edges that do not identify
it as the tail. The out-degree of a subset V ′ of V is the number of edges
with the tail in V ′ and at least one endpoint in V − V ′; the in-degree of V ′

is defined symmetrically. It is easy to check that the out-degree and in-degree
of V ′ sum to the undirected degree of V ′. Notice that loops (one-dimensional
edges) contribute nothing to the out-degree of a vertex-set.

We use the notation NG(V ′) to denote the set of neighbors in G of a subset V ′

of V .

The standard depth-first search algorithm in directed graphs, starting from a
source vertex v, extends naturally to oriented hypergraphs: recursively explore
the graph from the unexplored neighbors of v, one after another (ending when
it has no unexplored neighbors left). We will use it in the implementation
of the pebble game to explore vertices of hypergraphs. Figure 5 shows the
depth-first exploration of a hypergraph. Notice that the picture uses a uniform
2-dimensional representation for a 3-hypergraph (the hyperedges should be clear
from the labels on the 2-edges representing them).

Table 1 gives a summary of the terminology in this section.

4

cde

cde

cde

cde

a a b

c d

e

ce

abc
abc

abc

bce

(a)

cde

cde

cde

cde

a a b

c d

e

ce

abc
abc

abc

bce

(b)

abc

ce

cde

cde

cde

cde

a a b

c d

e
abc

abc

bce

(c)

bce
abc

ce

cde

cde

cde

cde

a a b

c d

e
abc

abc

(d)

bceabc

ce

cde

cde

cde

cde

a a b

c d

e
abc

abc

(e)

abc

bceabc

ce

cde

cde

cde

cde

a a b

c d

e
abc

(f)

abc

abc

bceabc

ce

cde

cde

cde

cde

a a b

c d

e

(g)

Figure 5: Searching a hypergraph with depth-first search starting at vertex e.
Visited edges and vertices are shown with thicker lines. The search proceeds
across an edge from the tail to each of the other endpoints and backs up at an
edge when all its endpoints have been visited (as in the transition from (b) to
(c)).

5

Term Notation Meaning
Edge e e ⊂ V
Graph G = (V,E) V is a finite set of vertices ; E ⊂ 2V is a set of edges
Subset of vertices V ′ V ′ ⊂ V
Size of V ′ n′ |V ′|
Subset of edges E′ E′ ⊂ E
Size of a subset of edges m′ |E′|
Span of V ′ E(V ′) Edges in E that are subsets of V ′

Span of E′ V (E′) Vertices in the union of e ∈ E′

Dimension of e ∈ E |e| Number of elements in e
Dimension of G s Minimum dimension of an edge in E.
Max size of an edge s∗ Maximum size of an edge in E
Neighbors of V ′ in G NG(V ′) Vertices connected to some v ∈ V ′

Table 1: Hypergraph terminology used in this paper.

a b

c

d

e

Figure 6: A (2,0)-tight hypergraph decomposed into two (1, 0)-tight ones (gray
and black).

Sparse hypergraphs. A graph is (k, `)-sparse if for any subset V ′ of n′

vertices and its span E′, m′ = |E′|:

m′ ≤ kn′ − ` (2)

A sparse graph that has exactly kn− ` edges is called tight; Figure 6 shows a
(2, 0)-tight hypergraph. A graph that is not sparse is called dependent.

A simple observation, formalized below in Lemma 3.1, implies that 0 ≤ ` ≤
sk− 1, for sparse hypergraphs of dimension s. From now on, we will work with
parameters k, ` and s satisfying this condition.

We also define Kk,`
n as the complete hypergraph with edge multiplicity ks − `

for s-edges. For example Kk,0
n has: k loops on every vertex, 2k copies of every

2-edge, 3k copies of every 3-edge, and so on. Lemma 3.3 shows that every sparse
graph is a subgraph of Kk,0

n .

6

Term Meaning
Sparse graph G m′ ≤ kn′ − l for all subsets E′, m′ = |E′|.
Tight graph G G is sparse with kn− ` edges.
Dependent graph G G is not sparse
Block H in G G is sparse, and H is a tight subgraph
Component H of G G is sparse and H is a maximal block
Decision problem Decide if a graph G is sparse
Extraction problem Given G, find a maximum sized sparse subgraph H
Optimization problem Given G, find a minimum weight maximum sized sparse subgraph H
Components problem Given G, find the components of G
Representation problem Given a sparse G, find a sparse representation of lower dimension

Table 2: Sparse graph terminology used in this paper.

A sparse graph G is critical if the only representation of G that is sparse is
G itself. In terms of BG this means that no proper subgraph of B′ of BG

corresponds to a hypergraph that is sparse.

There are two important types of subgraphs of sparse graphs. A block is a
tight subgraph of a sparse graph. A component is a maximal block.

In this paper, we study five computational problems. The decision problem
asks if a graph G is (k, `)-tight. The extraction problem takes a graph G
as input and returns as output a maximum (k, `)-sparse subgraph of G. The
optimization problem is a variant of the extraction problem; it takes as
its input a graph G and a weight function on E and returns as its output
a minimum weight maximum (k, `)-sparse subgraph of G. The components
problem take a graph G as input and returns as output the components of G.
The representation problem takes as input a sparse graph G and returns as
output a sparse graph H that represents G and has lower dimension if this is
possible.

Table 2 summarizes the notation and terminology related to sparseness used in
this paper.

While the definitions in this section are made for families of sparse graphs, they
can be interpreted in terms of matroids and rigidity theory. Table 3 relates the
concepts in this section to matroids and generic rigidity, and can be skipped by
readers who are not familiar with these fields.

Fundamental hypergraphs. A map is a hypergraph that admits an ori-
entation such that the out degree of every vertex is exactly one. A k-map is
a graph that admits a decomposition into k disjoint maps. Figure 7 shows a
2-map, with an orientation of the edges certifying that the graph is a 2-map.

An edge e connects subsets X and Y of V if e has an end in both X and Y .

7

Sparse graphs Matroids Rigidity
Sparse Independent No over-constraints
Tight Independent and spanning Isostatic/minimally rigid
Block — Isostatic region
Component — Maximal isostatic region
Dependent Contains a circuit Has stressed regions

Table 3: Sparse graph concepts and analogs in matroids and rigidity.

a b

c

d

ea

ce

abc
abc

cde

cde

abc

bce

cde

cde

Figure 7: The hypergraph from Figure 6, shown here in a lower-dimensional
representation, is a 2-map. The maps are black and gray. Observe that each
vertex is the tail of one black edge and one gray one.

A graph is k-edge connected if |E(X, V −X)| ≥ k, for any subset X of V ,
where E(X, Y) is the set of edges connecting X and Y .

A graph is k-partition connected if∣∣∣∣∣∣
⋃
i 6=j

E(Pi, Pj)

∣∣∣∣∣∣ ≥ k(t− 1) (3)

for any partition P = {P1, P2, . . . , Pt} of V . This definition appears in [3].

A tree is a minimally 1-partition connected graph. A reminder that this is
the definition of a tree in a hypergraph, but we use the shortened terminology
and drop hyper. A k-arborescence is a graph that admits a decomposition
into k disjoint trees. For 2-graphs, the definitions of partition connectivity and
edge connectivity coincide by the well-known theorems of Tutte [24] and Nash-
Williams [16]. We also observe that for general hypergraphs, connectivity and
1-partition-connectivity are different; a hypergraph with a single edge containing
every vertex is connected but not partition connected.

8

1.2 Related work

Our results expand theorems spanning graph theory, matroids and algorithms.
By treating the problem in the most general setting, we will obtain many of the
results listed in this section as corollaries of our more general results.

In this paragraph, we use graph in its usual sense, i.e. as a 2-uniform hypergraph.

Graph Theory and Rigidity Theory. Sparsity is closely related to graph
arborescence. The well-known results of Tutte [24] and Nash-Williams [16] show
the equivalence of (k, k)-tight graphs and graphs that can be composed into k
edge-disjoint spanning trees. A theorem of Tay [22, 23] relates such graphs to
generic rigidity of bar-and-body structures in arbitrary geometric dimension.
The (2, 3)-tight 2-dimensional graphs play an important role in rigidity theory.
These are the generically minimally rigid graphs [10] (also known as Laman
graphs), and have been studied extensively. Results of Recski [19, 20] and Lovász
and Yemini [14] relate them to adding any edge to obtain a 2-arborescence.
The most general results on 2-graphs were proven by Haas in [6], who shows
the equivalence of (k, k + a)-sparse graphs and graphs which decompose into k
edge-disjoint spanning trees after the addition of any a edges. In [7] Haas et al.
extend this result to graphs that decompose into edge-disjoint spanning maps,
showing that (k, `)-sparse graphs are those that admit such a map decomposition
after the addition of any ` edges.

For hypergraphs, Frank et al. study the (k, k)-sparse case in [3], generalizing
the Tutte and Nash-Williams theorems to partition connected hypergraphs.

Matroids. Edmonds [2] used a matroid union approach to characterize the 2-
graphs that can be decomposed into k disjoint spanning trees and described the
first algorithm for recognizing them. White and Whiteley [26] first recognized
the matroidal properties of general (k, `)-sparse graphs.

In [25], Whiteley used a classical theorem of Pym and Perfect [18] to show that
the (k, `)-tight 2-graphs are exactly those that decompose into an `-arborescence
and (k − `)-map for 0 ≤ ` ≤ k.

In the hypergraph setting, Lorea [13] described the first generalization of graphic
matroids to hypergraphs. In [3], Frank et al. used a union matroid approach to
extend the Tutte and Nash-Williams theorems to arbitrary hypergraphs.

Algorithms. Our algorithms generalize the (k, `)-sparse graph pebble games
of Lee and Streinu [11], which in turn generalize the pebble game of Jacobs and
Hendrickson [9] for planar rigidity (which would be a (2, 3)-pebble game in the
sense of [11]). The elegant pebble game of [9], first analyzed for correctness in

9

[1], was intended to be an easily implementable alternative to the algorithms
based on bipartite matching discovered by Hendrickson in [8].

The running time analysis of the (2, 3)-pebble game in [1] showed its running
time to be dominated by O(n2) queries about whether two vertices are in the
span of a rigid component. This leads to a data structure problem, considered
explicitly in [11, 12], where it is shown that the running time of the general
(k, `)-pebble game algorithms on 2-graphs is O(n2).

For certain special cases of k and `, algorithms with better running times have
been discovered for 2-multigraphs. Gabow and Westermann [4] used a matroid
union approach to achieve a running time of O(n3/2) for the extraction prob-
lem when ` ≤ k. They also find the set of edges that are in some component,
which they call the top clump, with the same running time as their extraction
algorithm. We observe that the top clump problem coincides with the compo-
nents problem only for the ` = 0 case. Gabow and Westermann also derive an
O(n3/2) algorithm for the decision problem for (2, 3)-sparse (Laman) graphs,
which is of particular interest due to the importance of Laman graphs in many
rigidity applications. Using a matroid intersection approach, Gabow [5] also
gave an O((m + n) log n) algorithm for the extraction problem for (k, k)-sparse
2-graphs.

1.3 Our Results

We describe our results in this section.

The structure of sparse hypergraphs. We first describe conditions for the
existence of tight hypergraphs and analyze the structure of the components of
sparse ones. The theorems of this section are generalizations of results from
[11, 21] to hypergraphs of dimension d ≥ 3.

Theorem 1.1 (Existence of tight hypergraphs). There exists an n1 de-
pending on s, k at ` such that uniform tight graphs on n vertices exist for all
values of n ≥ n1. In the smaller range n < n1, such tight graphs may not exist.

Theorem 1.2 (Block Intersection and Union). If B1 and B2 are blocks of
a sparse graph G, 0 ≤ ` ≤ ik, and B1 and B2 intersect on at least i vertices,
then B1 ∪B2 is a block and the subgraph induced by V (B1)∩ V (B2) is a block.

Theorem 1.3 (Disjointness of Components). If C1 and C2 are components
of a sparse graph G, then E(C1) and E(C2) are disjoint and |V (C1) ∩ V (C2)| <
s. If ` ≤ k, then the components are vertex disjoint. If ` = 0, then there is only
one component.

Hypergraph decompositions. Extending the results of Tutte [24], Nash-
Williams [16], Recski [19, 20], Lovász and Yemini [14], Haas et al. [6, 7], and

10

Frank et al. [3], we characterize the hypergraphs that become k-arborescences
after the addition of any ` edges.

Theorem 1.4 (Generalized Lovász-Recski Property). Let G be (k, `)-tight
hypergraph with ` ≥ k. Then the graph G′ obtained by adding any ` − k edges
of dimension at least 2 to G is a k-arborescence.

In particular, the important special case in which k = ` was proven by Frank et
al. [3].

Decompositions into maps. We also extend the results of Haas et al. [7]
to hypergraphs. This theorem can also be seen as a generalization of the char-
acterization of Laman graphs in [8].

Theorem 1.5 (Generalized Nash-Williams-Tutte Decompositions). A
graph G is a k-map if and only if G is (k, 0)-tight.

Theorem 1.6 (Generalized Haas-Lovász-Recski Property for Maps).
The graph G′ obtained by adding any ` edges from Kk,0

n − G to a (k, `)-tight
graph G is a k-map.

Using a matroid approach, we also generalize a theorem of Whiteley [25] to
hypergraphs.

Theorem 1.7 (Maps and Trees Decomposition). Let k ≥ ` and G be tight.
Then G is the union of an `-arborescence and a (k − `)-map.

Pebble game constructible graphs. The main theorem of this paper, gen-
eralizing from s = 2 in [11] to hypergraphs of any dimension, is that the ma-
troidal families of sparse graphs coincide with the pebble game graphs.

Theorem 1.8 (Main Theorem: Pebble Game Constructible Hyper-
graphs). Let k, `, n and s meet the conditions of Theorem 1.1. Then a hyper-
graph G is sparse if and only if it has a pebble game construction.

Pebble game algorithms. We also generalize the pebble game algorithms of
[11] to hypergraphs. We present two algorithms, the basic pebble game and
the pebble game with components.

We show that on an s-uniform input G with n vertices and m edges, the basic
pebble game solves the decision problem in time O((s + `)sn2) and space
O(n). The extraction problem is solved by the basic pebble game in time
O((s + `)dnm) and space O(n + m). For the optimization problem, the basic
pebble game uses time O((s + `)snm + m log m) and space O(n + m).

On an s-uniform input G with n vertices and m edges, the pebble game with
components solves the decision, extraction, and components problems in

11

time O((s + `)sns + m) and space O(ns). For the optimization problem, the
pebble game with components takes time O((s + `)sns + m log m).

Critical representations. As an application of the pebble game, we obtain
lower-dimensional representations for certain classes of sparse hypergraphs, gen-
eralizing a result from Lovász [15] concerning lower-dimensional representations
for (hypergraph) trees.

Theorem 1.9 (Lower Dimensional and Critical Representations). G
is a critical sparse hypergraph of dimension s if and only if the representation
found by the pebble game construction coincides with G. This implies that G is
s-uniform and ` ≤ sk − 1.

The proof of Theorem 1.9 is based on a modified version of the pebble game
(described below) that solves the representation problem. Its complexity is
the same as that of the pebble game with components: time O((s + `)sns + m)
and space O(ns) on an s-graph.

As corollaries to Theorem 1.9, we obtain:

Corollary 1.10 (Lovász [15]). G is an s-dimensional k-arborescence if and
only if it is represented by a 2-uniform k-arborescence H.

Corollary 1.11. G is a k-map if and only if it is represented by a k-map with
edges of dimension 1.

Corollary 1.12. G has a maps-and-trees decomposition if and only if G is
represented by a graph with edges of dimension at most 2 that has a maps-and-
trees decomposition.

2 The pebble game

The pebble game is a family of algorithms indexed by nonnegative integers k
and `.

The game is played by a single player on a fixed finite set of vertices. The
player makes a finite sequence of moves; a move consists of the addition and/or
orientation of an edge. At any moment of time, the state of the game is captured
by a graph: we call it a pebble game graph.

Later in this paper, we will use the pebble game as the basis of efficient algo-
rithms for the computational problems defined above in Section 1.1.

We describe the pebble game in terms of its initial configuration and the allowed
moves.

12

⇒

(a)

⇒

(b)

⇒

(c)

Figure 8: Adding a 3-edge in the (2, 2)-pebble game. In all cases, the edge,
shown as a triangle, may be added because there are at least three pebbles
present. The tail of the new edge is filled in; note that in (c) only one of the
pebbles on the tail is picked up.

⇒

(a)

⇒

(b)

Figure 9: Moving a pebble along a 3-edge in the (2, 2)-pebble game. The tail of
the edge is filled in. Observe that in (b) the only change is to the orientation of
the edge and the location of the pebble that moved.

Initialization: in the beginning of the pebble game, H has n vertices and no
edges. We start by placing k pebbles on each vertex of H.

Add edge: Let e ⊂ V be a set of vertices with at least `+1 pebbles on it. Add
e to E(H). Pick up a pebble from any v ∈ e, and make v the tail of e.

Figure 8 shows an example of this move in the (2, 2)-pebble game.

Pebble shift: Let v a vertex with at least one pebble on it, and let e be an
edge with v as one of its ends, and with tail w. Move the pebble to w and make
v the tail of e.

Figure 9 shows an example of this move in the (2, 2)-pebble game.

The output of playing the pebble game is its complete configuration, which
includes an oriented pebble game graph.

Output: At the end of the game, we obtain the oriented hypergraph H, and
a map peb from V to N such that for each vertex v, peb(v) is the number of
pebbles on v.

13

Comparison to Lee and Streinu. The hypergraph pebble game extends
the framework developed in [11] for 2-graphs. The main challenge was to come
up with the concept of orientation of hyperedges and of moving the pebbles in a
way that generalizes depth-first search for 2-graphs. Specializing our algorithm
to 2-uniform hypergraphs gives back the algorithm of [11].

3 Properties of sparse hypergraphs

We next develop properties of sparse graphs, starting with the conditions on s,
k, ` and n for which there are tight graphs.

Lemma 3.1. If ` ≥ ik, and G is sparse, then s > i.

Proof. If i ≥ s, then for any edge e of dimension s the ends of e are a set of
vertices for which (2) fails.

As an immediate corollary, we see that the class of uniform sparse graphs is
trivial when ` ≥ sk.

Lemma 3.2. If ` ≥ sk, then the class of s-uniform (k, `)-sparse graphs contains
only the empty graph.

We also observe that when ` < 0, the union of two disjoint sparse graphs need
not be sparse. Since this is a desirable property, for the moment we focus on
the case in which ` ≥ 0. Our next task is to further subdivide this range.

Lemma 3.3. Let G be sparse and uniform. The multiplicity of parallel edges
in G is at most sk − `.

Proof. (2) holds for no more than sk − ` parallel edges of dimension s.

The next lemmas establish a range of parameters for which there are tight
graphs.

Lemma 3.4. Let ` ≥ (s− 1)k. There are no tight subgraphs on n < s vertices.

Proof. By Lemma 3.3 no sparse subgraph may contain edges of dimension less
than s.

Lemma 3.5. If ` ≥ (s − 1)k then there is an n1 depending on s, k at ` such
that for n ≥ n1 there exist tight s-uniform graphs on n vertices. For n < n1,
there may not be tight uniform graphs.

14

Proof. When ` ≥ (s − 1)k there are no loops in any sparse graph. Also, by
Lemma 3.3 no edge in a uniform graph has multiplicity greater than k in a
sparse graph. It follows that any tight uniform graph is a subgraph of the
complete s-uniform graph on n vertices, allowing edge multiplicity k.

For tight uniform subgraphs to exist, we need to have

kn− ` ≤ k

(
n

s

)
(4)

Since the function f(n) = knss−s−kn+` is asymptotically positive, the desired
n1 must exist.

Notice that there is no tight 2-uniform graph for n = 3, k = 3 and ` = 5; the
complete graph K3 has only 3 edges, and by Lemma 3.3 any (3, 5)-sparse graph
must be simple. Such examples can be constructed for all values of n ≤ n1.

We next turn to showing that tight graphs exist.

Lemma 3.6. Suppose that ` ≥ (s− 1)k and that n ≥ n1, where n1 is taken as
in Lemma 3.5. Then there are tight graphs on n vertices.

Proof. Start with the complete d-uniform hypergraph with k parallel edges,
Kk

n1
. Identify a vertex v and discard up to ` edges having v as an end until the

resulting graph Gn1 is sparse. This graph must be sparse: any subgraph H not
spanning v is sparse, as is any subgraph containing only edges spanning v by
construction. Since Gn1 is maximally sparse, it is tight.

To complete the proof, proceed inductively: create Gn from Gn−1 by adding
a new vertex and k edges having the new vertex as an endpoint such that the
subgraph induced by the new edges is sparse.

We next characterize the range of parameters for which there are tight graphs.

Theorem 1.1 (Existence of tight hypergraphs). There is an n1 depending
on s, k at ` such that for n ≥ n1 there are uniform tight graphs on n vertices.
For n < n1, there may not be tight graphs.

Proof. Immediate from Lemma 3.5 and Lemma 3.6; the existence of tight uni-
form hypergraphs implies the existence of tight hypergraphs.

We next turn to the structure of blocks and components.

Theorem 1.2 (Block Intersection and Union). If B1 and B2 are blocks of
a sparse graph G, 0 ≤ ` ≤ ik, B1 and B2 intersect on at least i vertices, then
B1 ∪B2 is a block and the subgraph induced by V (B1) ∩ V (B2) is a block.

15

Proof. Let mi = |E(Bi)| for i = 1, 2; similarly let vi = |V (Bi)|. Also let
m∩ = |E(B1) ∩ E(B2)|, m∪ = |E(B1) ∪ E(B2)|, v∪ = |V (B1) ∪ V (B2)|, and
v∩ = |V (B1) ∩ V (B2)|.

The sequence of inequalities

kn∪ − ` ≥ m∪ = m1 + m2 −m∩ ≥ kn1 − ` + kn2 − `− kn∩ + ` = kn∪ − ` (5)

holds whenever n∩ ≥ i, which shows that B1 ∪B2 is a block.

From the above, we get

m∩ = m1 + m2 −m∪ = kn1 − ` + kn2 − `− kn∪ + ` = kn∩ − `, (6)

completing the proof.

From Theorem 1.2, we obtain the first part of Theorem 1.3.

Lemma 3.7. If C1 and C2 are components of a (k, `)-sparse graph G then
E(C1) and E(C2) are disjoint and |V (C1) ∩ V (C2)| < s.

Proof. Observe that since 0 ≤ ` < sk, components with non-empty edge in-
tersection are blocks meeting the condition of Theorem 1.2, as components
intersecting on s vertices. Since components are maximal, no two components
may meet the conditions of Theorem 1.2.

For certain special cases, we can make stronger statements about the compo-
nents.

Lemma 3.8. The components of a (k, k)-sparse graph are vertex disjoint.

Proof. Observe that ` ≤ k and apply Theorem 1.2 as above with i = 1.

Lemma 3.9. There is at most one component in a (k, 0)-sparse graph.

Proof. Applying Theorem 1.2 with i = 0 shows that the components of a (k, 0)-
sparse graph are vertex disjoint. Now suppose that C1 and C2 are distinct
components of a (k, 0)-sparse graph. Then, using the notation of Theorem 1.2,
m1 +m2 = kn1 +kn2 = kn∪, which implies that C1∪C2 is a larger component,
contradicting the maximality of C1 and C2.

Together these lemmas prove the following result about the structure of com-
ponents.

Theorem 1.3 (Disjointness of Components). If C1 and C2 are components
of a sparse graph G, then E(C1) and E(C2) are disjoint and |V (C1) ∩ V (C2)| <
s. If k = `, then the components are vertex disjoint. If ` = 0, then there is only
one component.

Proof. Immediate from Lemma 3.7, Lemma 3.8, and Lemma 3.9.

16

4 Hypergraph Decompositions

In this section we investigate links between tight hypergraphs and decomposi-
tions into edge-disjoint maps and trees.

4.1 Hypergraph arboricity

We now generalize results of Haas [6] and Frank et al. [3] to prove an equivalence
between sparse hypergraph and those for which adding any a edges results in a
k-arborescence.

We will make use of the following important result from [3].

Proposition 4.1 (Frank et al. [3]). A hypergraph G is a k-arborescence if
and only if G is (k, k)-tight.

Theorem 1.4 (Generalized Lovász-Recski Property). Let ` ≥ k and let
G be tight. Then the graph G′ obtained by adding any `− k edges of dimension
at least 2 to G is a k-arborescence.

Proof. Suppose that G is tight and that ` ≥ k. Let G′ = (V, F) be a graph
obtained by adding ` − k edges of dimension at least 2 to G, and consider a
subset V ′ of V . It follows that

|EG′(V ′)| ≤ |V ′|+ `− k ≤ kn′ − ` + `− k = kn′ − k, (7)

which implies that G′ is (k, k)-tight, since |F | = kn− k. By Proposition 4.1 G′

is a k-arborescence.

Conversely, if adding any ` − k edges to G results in a (k, k)-tight graph, then
G must be tight; if V ′ spans more than kn − ` edges in G, then adding ` − k
edges to the the span of V ′ results in a graph which is not (k, k)-sparse.

4.2 Decompositions into maps

The main result of this section shows the equivalence of the (k, 0)-tight graphs
and k-maps. As an application, we obtain a characterization of all the sparse
hypergraphs in terms of adding any edges.

Theorem 1.5 (Generalized Nash-Williams-Tutte Decompositions). A
graph G is a k-map if and only if G is (k, 0)-tight.

Proof. Let G = (V,E) be a hypergraph with n vertices and kn edges. Let
Bk

G = (Vk, E, F) be the bipartite graph with one vertex class indexed by E and
the other by k copies of V . The edges of Bk

G capture the incidence structure of

17

G. That is, we define F = {vie : e = vw, e ∈ E, i = 1, 2, . . . , k}; i.e., each edge
vertex in B is connected to the k copies of its endpoints in Bk

G. Figure 10 shows
K3 and B1

K3
.

Figure 10: The (1, 0)-sparse 2-graph K3 and its associated bipartite graphs B1
K3

.
The vertices and edges of K3 are matched to the corresponding vertices in B1

K3

by shape and line style.

Observe that for any subset E′ of E,∣∣∣NBk
G

(E)
∣∣∣ = k |V (E′)| ≥ |E| . (8)

if and only if G is (k, 0)-sparse. By Hall’s theorem, this implies that G is (k, 0)-
tight if and only if Bk

G contains a perfect matching.

Figure 11: An orientation of a 2-dimensional 2-map G and the associated bi-
partite matching in B2

G.

The edges matched to the ith copy of V correspond to the ith map in the k-map,
as shown for a 2-map in Figure 11. Assign as the tail of each edge away from
the vertex to which it is matched. It follows that each vertex has out degree
one in the spanning subgraph matched to each copy of V as desired.

Theorem 1.5 implies Theorem 1.6.

Theorem 1.6 (Generalized Haas-Lovász-Recski Property for Maps).
The graph G′ obtained by adding any ` edges from Kk,0

n − G to a (k, `)-tight
graph G is a k-map.

18

Proof. Similar to the proof of Theorem 1.4. Because the added edges come from
Kk,0

n −G, the resulting graph must be sparse.

We see from the proof of Theorem 1.6, that the condition of adding edges of
dimension at least 2 in Theorem 1.4 is equivalent to saying that the added edges
come from Kk,k

n .

To prove Theorem 1.7, we need several results from matroid theory.

Proposition 4.2. Let r be a non-negative, increasing, submodular set function
on a finite set E. Then the class N = {A ⊂ E : |A′| ≤ r(A′),∀A′ ⊂ A} gives
the independent sets of a matroid.

We say that N is generated by r. In particular, we see that our matroids of
sparse hypergraphs are generated by the function rk,`(E′) = k |V (E′)| − `.

Pym and Perfect [18] proved the following result about unions of such matroids.

Proposition 4.3 (Pym and Perfect [18]). Let r1 and r2 be non-negative, sub-
modular, integer-valued functions, and let N1 and N2 be matroids they generate.
Then the matroid union of N1 and N2 is generated by r1 + r2.

Let M1,0 and M1,1 be the matroids which have as bases the (1, 0)-tight and
(1, 1)-tight hypergraphs respectively. That these are matroids is a result of
White and Whiteley from [26] proven in the appendix of this paper for complete-
ness. Theorem 1.5 and Proposition 4.1 imply that the bases of these matroids
are the maps and trees and that these matroids are generated by the functions
r1,0(E′) = |V (E′)| and r1,1(E′) = |V (E′)| − 1.

With these observations we can prove Theorem 1.7.

Theorem 1.7 (Decompositions into maps and trees). Let k ≥ ` and G
be tight. Then G is the union of an `-arborescence and a (k − `)-map.

Proof. We first observe that r1,0 meets the conditions of Proposition 4.3. Since
r1,1 does not (it is not non-negative), we switch to the submodular function

r′(V ′) = n′ − c (9)

where c is the number of non-trivial partition-connected components spanned
by V ′. It follows that r′ is non-negative, since a graph with no edges has no
non-trivial partition-connected components. Observe also, that if V ′ spans c
partition-connected components with n1, n2, . . . , nc vertices we have

r1,1(V ′) =
c∑

i=1

(ni − 1) = n′ − c = r′(V ′), (10)

since the partition-connected components are blocks of trees, and thus disjoint.

19

Applying Proposition 4.3 to r1,0 and r′ now shows that the union matroid of
k − ` maps and ` trees is generated by

r(V ′) = (k − `)r1,0(V ′) + `r′(V ′) = (k − `)n′ + `n′ − `, (11)

proving that the union of the matroid with bases that decompose into (k − `)
maps and ` trees is Mk,` as desired.

5 Pebble game constructible graphs

The main result of this section is that the matroidal sparse graphs are exactly
the ones that can be constructed by the pebble game.

We begin by establishing some invariants that hold during the execution of the
pebble game.

Lemma 5.1. During the execution of the pebble game, the following invariants
are maintained in H:

(I1) There are at least ` pebbles on V .

(I2) For each vertex v, span v + out v + peb v = k.

(I3) For each V ′ ⊂ V , span V ′ + out V ′ + peb V ′ = kn′.

Proof. (I1) The number of pebbles on V changes only after an add edge move.
When there are fewer than ` + 1 pebbles, no add edge moves are possible.

(I2) This invariant clearly holds at the initialization of the pebble game. We
verify that each of the moves preserves (I2). An add edge move consumes a
pebble from exactly one vertex and adds one to its out degree or span. Similarly,
a pebble shift move adds one to the out degree of the source and removes a
pebble while adding one pebble to the destination and decreasing its out degree
by one.

(I3) Let V ′ ⊂ V have n′ vertices and span m+ edges with at least two ends.
Then

out V ′ =
∑
v∈V ′

out v −m+ (12)

and

span V ′ = m+ +
∑
v∈V ′

span v. (13)

20

Then we have

span V ′ + out V ′ + peb V ′

=
∑
v∈V ′

out v −m+ + m+ +
∑
v∈V ′

span v +
∑
v∈V ′

peb v

=
∑
v∈V ′

(out v + span v + peb v) = kn′,

where the last step follows from (I2).

From these invariants, we can show that the pebble game constructible graphs
are sparse.

Lemma 5.2. Let H be a hypergraph constructed with the pebble game. Then
H is sparse. If there are exactly ` pebbles on V (H), then H is tight.

Proof. Let V ′ ⊂ V have n′ vertices and consider the configuration of the pebble
game immediately after the most recent add edge move that added to the span
of V ′. At this point, peb V ′ ≥ `. By Lemma 5.1 (I3),

kn′ ≥ span V ′ + out V ′ + `. (14)

When span V ′ > kn′−`, this implies that −1 ≥ out V ′, which is a contradiction.

In the case where there are exactly ` pebbles on V (H), Lemma 5.1 (I3) implies
that span V = kn− `.

We now consider the reverse direction: that all the sparse graphs admit a pebble
game construction. We start with the observation that if there is a path in H
from u to v, then if v has a pebble on it, a sequence of pebble shift moves can
bring the pebble to u from v.

Define the reachability region of a vertex v in H as the set

reach v = {u ∈ V : there is a path in H from v to u}. (15)

Lemma 5.3. Let e be a set of vertices such that H+e is sparse. If peb e < `+1,
then a pebble not on e can be brought to an end of e.

Proof. Let V ′ be the union of the reachability regions of the ends of e; i.e.,

V ′ =
⋃
v∈e

reach v. (16)

Since V ′ is a union of reachability regions, out V ′ = 0. As H + e is sparse and
e is in the span of V ′, span V ′ < kn′ − `.

21

It follows by Lemma 5.1 (I3), that peb V ′ ≥ ` + 1, so there is a pebble on
V ′ − e. By construction there is a v ∈ e such that the pebble is on a vertex
u ∈ reach v− e. Moving the pebble from u to v does not affect any of the other
pebbles already on e.

It now follows that any sparse hypergraph has a pebble game construction.

Theorem 1.8 (The Main Theorem: Pebble Game Constructible Hy-
pergraphs). Let G be a (k, `)-sparse hypergraph with k, ` and s meeting the
conditions of Theorem 1.1. Then G can be constructed by the pebble game.

Proof. For each edge e of G in any order, inductively apply Lemma 5.3 to the
ends of e until there are ` + 1 of them. At this point, use an add edge move to
add e to H.

It is instructive to note that the pebble game invariants enforce the matroid
properties of the sparse graphs. The ` + 1 acceptance condition enforces the
constraints on k, ` and s, and the proof of Lemma 5.3 shows that the order
in which edges of a sparse graph are added does not matter in a pebble game
construction.

6 Pebble games for Components and Extraction

Until now we were concerned with characterizing sparse and tight graphs. In
this section we describe efficient algorithms based on pebble game constructions.

6.1 The basic pebble game

In this section we develop the basic (k, `)-pebble game for hypergraphs to solve
the decision and extraction problems. We first describe the algorithm.

Algorithm 6.1 (The (k, `)-pebble game).
Input: A hypergraph G = (V,E)
Output: ‘sparse’, ‘tight’ or ‘dependent.’
Method: Initialize a pebble game construction on n vertices.

For each edge e, try to collect ` + 1 pebbles on the ends of e. Pebbles can be
collected using depth-first search to find a path to a pebble and then a sequence
of pebble shift moves to move it.

If it is possible to collect ` + 1 pebbles, use an add edge move to add e to H.

If any edge was not added to H, output ‘dependent’. If every edge was added and
there are exactly ` pebbles left, then output ‘tight’. Otherwise output ‘sparse’.

22

Figure 12 shows an example of collecting a pebble and accepting an edge.

bce

abc
abc

cde

cde

a b

c

d

e

cde

abc

(a)

bce

cde

cde

abc
abc

a b

c

d

e

cde
abc

(b)

bce

abc

abc

cde

a b

e

d

e

cde

abc

cde

(c)

cde
cde

cde

cde

abc
abc

bce
a b

c

d

e

abc

(d)

Figure 12: Collecting a pebble and accepting an edge in a (2, 2)-pebble game on
a 3-uniform hypergraph H. H is shown via a 2-uniform representation. In (a),
the edge being tested, cde is shown with thick circles around the vertices. The
pebble game starts a search to bring a pebble to d. (This choice is arbitrary;
had e been chosen first, the edge would be immediately accepted.) In (b) a path
from d to e across the edge marked with a think line is found. In (c) the pebble
is moved and the path is reversed; the new tail of the edge marked with a think
line is e. In (d) the pebble is picked up, and the edge being checked is accepted.
The tail of the new edge, marked with a thick line, is d.

The correctness of the basic pebble game for the decision and extraction
problems follows immediately from Theorem 1.8. For the optimization prob-
lem, sort the edges in order of increasing weight before starting; the correctness
follows from Theorem A.1 and the characterization of matroids by the greedy
algorithm (discussed in, e.g., [17]).

The running time of the pebble game is dominated by the time needed to collect
pebbles. If the maximum edge size in the hypergraph is s∗, the time for one
depth-first search is O(s∗n+m), from which it follows that the time to find one
pebble in H is O(s∗n). To check an edge requires no more than s∗+`+1 pebble
searches, and m edges need to be checked. To summarize, we have proven the

23

following.

Lemma 6.2. Let G be a hypergraph with n vertices, m edges, and maximum
edge size s∗. The running time of the basic pebble game is O((s∗+ `)s∗nm); for
the decision problem, this is O((s∗ + `)s∗n2), since m = O(n).

All of the searching, marking, and pebble counting can be done with O(1) space
per vertex. Since H has O(n) edges, the space complexity of the basic pebble
game is dominated by the size of the input.

Lemma 6.3. The space complexity of the basic pebble game is O(m+n), where
m and n are, respectively, the number of edges and vertices in the input.

Together the preceding lemmas complete the complexity analysis. The running
time for the decision problem on a d-uniform hypergraph with n vertices and
kn− ` edges is O((s + `)sn2), and the space used O(n). For the optimization
problem, the running time increases to O((s + `)sn2 + n log n) because of the
sorting phase.

The extraction problem is solved in time O((s + `)snm) and space O(n + m).

6.2 Detecting components

In the next several sections we extend the basic pebble game to solve the com-
ponents problem. Along the way, we also improve the running time for the
extraction problem by developing a more efficient way of discarding dependent
edges. As the proof of Lemma 6.2 shows, the time spent trying to bring pebbles
to the ends of dependent edges can be Ω(n2) if the edges are very large. We
will reduce this to O(s), improving the running time.

We first present an algorithm to detect components.

Algorithm 6.4 (Component detection).
Input: An oriented hypergraph H and e, the most recently accepted edge.
Output: The component spanning e or ‘free.’
Method: When the algorithm starts, there are ` pebbles on the ends of e, and
a vertex w is the tail of e. If there are any other pebbles on reach w, stop and
output ‘free.’ Otherwise let C = reach w, and enqueue any vertex that is an end
of an edge pointing into C.

While there are more vertices in the queue, dequeue a vertex u. If the only
pebbles in reach u are the ` on e, add reach w to C and enqueue any newly
discovered vertex that is an end of an edge pointing into C.

Finally, output C.

In the rest of this section we analyze the correctness and running time of Al-
gorithm 6.4. We put off a discussion of the space required to maintain the

24

components until the next section.

We start with a technical lemma about blocks.

Lemma 6.5. Let G be tight and ` > 0. Then G is connected.

Proof. Consider a partition of V into two subsets. These span at most kn− 2`
edges by sparsity, but G has kn− ` edges.

Lemma 6.6. If Algorithm 6.4 outputs ‘free,’ then e is not spanned by any
component. Otherwise the output C of Algorithm 6.4 is the component spanning
e.

Proof. Algorithm 6.4 outputs ‘free’ only when it is possible to collect at least
` + 1 pebbles on the ends of e. Lemma 5.2 shows that in this case, e is not
spanned by any block in H and thus no component.

Now suppose that Algorithm 6.4 outputs a set of vertices C. By construction,
the number of free pebbles on C is `. Also, since C is the union of reachability
regions, it has no out edges. By Lemma 5.2, C spans a block in H. Since
Algorithm 6.4 does a breadth first search in H, C is a maximal connected
block.

There are now two cases to consider. When ` > 0, blocks are connected by
Lemma 6.5. If ` = 0, blocks may not be connected, but there is only one
component in H by Lemma 3.9; add C to the component being maintained.

For the running time of Algorithm 6.4 we observe that O(s∗) time is spent pro-
cessing the vertices of each edge pointing into C for enqueueing and dequeuing.
Vertices are explored by pebble searches only once; mark vertices accepted into
C and also those from which pebbles can be reached to cut off the searches.
Since H is (k, `)-sparse, it has O(n) edges. Summarizing, we have shown the
following.

Lemma 6.7. The running time of Algorithm 6.4 is O(s∗n).

6.3 The pebble game with components

We now present an extension of the basic pebble game that solves the compo-
nents problem.

Algorithm 6.8 (The (k, `)-pebble game with components).
Input: A hypergraph G = (V,E)
Output: ‘Strict’, ‘tight’ or ‘dependent.’
Method: Modify Algorithm 6.1 as follows. When processing an edge e first
check if it is spanned by a component. If it is, then reject it. Otherwise collect

25

` + 1 pebbles on e and accept it. After accepting e, run Algorithm 6.4 to find a
new component if once has been created.

Output the components discovered along with the output of the basic pebble game.

The correctness of Algorithm 6.8 follows from the fact that H + e is sparse if
and only if e is not in the span of any component and Theorem 1.8.

Lemma 6.9. Algorithm 6.8 solves the decision, extraction and components
problems.

6.4 Complexity of the pebble game with components

We analyze the running time of the pebble game with components in two parts:
component maintenance and edge processing.

For component maintenance, we easily generalize the union pair-find data struc-
tures described in [12]. If s∗ is the largest size of an edge in G, the complexity
of checking whether an edge is spanned by a component is O(s∗), and the total
time spent updating the components discovered is O(ns∗). The complexity is
dominated by maintaining a table with ns∗ entries that records with s∗-tuples
are spanned by some component.

The time spent processing dependent edges is O(s∗ns∗); they are exactly those
edges spanned by a component. For each accepted edge, we need to collect `+1
pebbles. The analysis is similar to that for the basic pebble game. Since there
are O(n) edges accepted, we have the following total running time.

Lemma 6.10. The running time of Algorithm 6.8 on a s-dimensional hyper-
graph with n vertices and m edges is O((s∗ + `)s∗ns∗ + m).

Since the data structure used to maintain the components uses a table of size
Θ(ns∗), the space complexity of the pebble game with components is the same
on any input.

Lemma 6.11. The pebble game with components uses O(ns) space.

Together the preceding lemmas complete the complexity analysis of the pebble
game with components. The running time on an s-graph with n vertices and
m edges is O((s + `)sns + m) and the space used is O(ns). For the optimiza-
tion problem, the sorting phase of the greedy algorithm takes an additional
O(m log m) time.

26

7 Critical representations

As an application of the pebble game, we investigate the circumstances under
which we may represent a sparse hypergraph with a lower dimensional sparse
hypergraph. The main result of this section is a complete characterization of
the critical sparse hypergraphs for any k and `.

Clearly, by Lemma 3.1, when ` ≥ (s − 1)k, every sparse s-uniform hypergraph
must be critical. In this section we show that these are the only s-uniform
critical sparse hypergraph and describe an algorithm for finding them.

We first present a modification of the pebble game to compute a representation.
Only the add edge and pebble shift moves need to change.

Represented add edge: When adding an edge e to H, create a set r(e) which
is the set of vertices with the `+1 pebbles used to certify that e was independent.

Represented pebble shift: When a pebble shift move makes an end v /∈ r(e)
the tail of e, add v to r(e) and remove any other element of r(e).

Let R be the oriented hypergraph with the edge set r(e) for e ∈ E(H).

We now consider the invariants of the represented pebble game.

Lemma 7.1. The invariants (I1), (I2), and (I3) hold in R throughout the
pebble game.

Also, the invariant:

1. (I4) spanR V ′ + outR V ′ + peb V ′ ≤ spanR V ′ + outH V ′ + peb V ′

holds for all V ′ ⊂ V .

Proof. The proof of (I1), (I2) and (I3) are similar to the proof of Lemma 5.1.

For (I4), we just need to observe that since EH(V ′) ⊂ ER(V ′), the out degree
in H it at least the out-degree in R.

From Lemma 7.1 we see that R must be sparse, and by construction R has
dimension at least (` + 1)/k. Since R is a pebble game graph, we see that G is
critical if and only if G = R for every represented pebble game construction.

Theorem 1.9 (Critical Representations). G is a critical sparse hypergraph
of dimension s if and only if the representation found by the pebble game con-
struction coincides with G. This implies that G is s-uniform and ` = sk − 1.

Proof. The theorem follows from the fact that we can always move pebbles
between the ends of an independent set of vertices unless there are exactly

27

sk pebbles on it already, which is exactly the acceptance condition for the
(k, sk − 1)-pebble game.

The observation that EH(V ′) ⊂ ER(V ′) also proves that any component in H
induces a block in R. It is instructive to note that blocks in R do not necessarily
correspond to blocks in H.

8 Conclusions and Open Questions

We have generalized most of the known results on sparse graphs to the domain
of hypergraphs. In particular, we have provided graph theoretic, algorithmic
and matroid characterizations of the entire family of sparse hypergraphs for
0 ≤ ` < ks.

We also provide an initial result on the meaning of dimension in sparse hyper-
graphs; in particular the representation theorem shows that the sparse hyper-
graphs for l ≥ 2k are somehow intrinsically not 2-dimensional.

The results in this paper suggest a number of open questions, which we consider
below.

Algorithms. The running time and space complexity of the pebble game
with components is the natural generalization of the O(n2) achieved by Lee
and Streinu in [11]. Improving our Ω(ns∗) running time to O(m + n2) may be
possible with a better data structure.

For the case where d = 2, the pebble games of Lee and Streinu are not the best
known algorithms for the maps-and-trees range of parameters. We do not know
if the algorithms of [4] and [5] generalize easily to hypergraphs.

Graph theory. Proving a partial converse of the lower-dimensional represen-
tation theorem Theorem 1.9 is of particular interest to a number of applications
in rigidity theory.

References

[1] A. R. Berg and T. Jordan. Algorithms for graph rigidity and scene analysis.
In G. D. Battista and U. Zwick, editors, ESA, volume 2832 of Lecture
Notes in Computer Science. Algorithms - ESA 2003, 11th Annual European
Symposium, Budapest,Hungary, Springer, 2003.

28

[2] J. Edmonds. Minimum partition of a matroid into independent sets. J.
Res. Nat. Bur. Standards Sect. B, 69B:67–72, 1965.

[3] A. Frank, T. Király, and A. Kriesell. On decomposing a hypergraph into k
connected subhypergraphs. Discrete Applied Mathematics, 131, 2003.

[4] H. Gabow and H. Westermann. Forests, frames, and games: algorithms for
matroid sums and applications. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 407–421. ACM Press, 1988.

[5] H. N. Gabow. A matroid approach to finding edge connectivity and packing
arborescences. J. Comput. System Sci., 50, 1995.

[6] R. Haas. Characterizations of arboricity of graphs. Ars Combinatorica,
63:129–137, 2002.

[7] R. Haas, A. Lee, I. Streinu, and L. Theran. Characterizing sparse graphs
by map decompositions. Submitted to the Journal of Combinatorial Math-
ematics and Combinatorial Computing, 2006.

[8] B. Hendrickson. The molecule problem: determining conformation from
pairwise distances. PhD thesis, Cornell University, 1991.

[9] D. J. Jacobs and B. Hendrickson. An algorithm for two dimensional rigidity
percolation: The pebble game. J. Comput. Phys., 137:346–365, 1997.

[10] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of
Engineering Mathematics (Historical Archive), 4(4):331–340, 1970.

[11] A. Lee and I. Streinu. Pebble game algorithms and sparse
graphs. To appear in Discrete Applied Mathematics, 2007.
http://arxiv.org/abs/math.CO/0702129.

[12] A. Lee, I. Streinu, and L. Theran. Finding and maintaining rigid compo-
nents. In Proceeding of the Canadian Conference of Computational Geom-
etry. Windsor, Ontario, 2005.

[13] M. Lorea. Hypergraphes et matroides. Technical report, Cahiers Centre
Etud. Rech. Oper., 1975.

[14] L. Lovász and Y. Yemini. On generic rigidity in the plane. SIAM J.
Algebraic and Discrete Methods, 3(1):91–98, 1982.

[15] L. Lovász. A generalization of König’s theorem. Acta Mathematica Hun-
garica, 21:443–446, 1970.

[16] C. S. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Jour-
nal London Math. Soc., 36:445–450, 1961.

[17] J. G. Oxley. Matroid theory. Oxford University Press, New York, 1992.

29

[18] J. S. Pym and H. Perfect. Submodular functions and independence struc-
tures. J. Math. Anal. Appl., 30:1–31, 1970.

[19] A. Recski. A network theory approach to the rigidity of skeletal structures
I. Modelling and interconnection. Discrete Applied Math, 7:313–324, 1984.

[20] A. Recski. A network theory approach to the rigidity of skeletal structures
II. Laman’s theorem and topological formulae. Discrete Applied Math,
8:63–68, 1984.

[21] L. Szegő. On constructive characterizations of (k, l)-sparse graphs. Tech-
nical Report TR 2003-10, Egerváry Research Group, Eötvös University,
Budapest, Hungary, 2003.

[22] T.-S. Tay. Rigidity problems in bar and joint frameworks. PhD thesis,
Department of Pure Mathematics,University of Waterloo, 1980.

[23] T.-S. Tay. Rigidity of multigraphs I: linking rigid bodies in n-space. Journal
of Combinatorial Theory Series, B 26:95–112, 1984.

[24] W. T. Tutte. On the problem of decomposing a graph into n connected
factors. Journal London Math. Soc., 142:221–230, 1961.

[25] W. Whiteley. The union of matroids and the rigidity of frameworks. SIAM
Journal Discrete Mathematics, 1(2):237–255, May 1988.

[26] W. Whiteley. Some matroids from discrete applied geometry. In J. O.
J. Bonin and B. Servatius, editors, Matroid Theory, volume 197 of Con-
temporary Mathematics, pages 171–311. American Mathematical Society,
1996.

Appendix

A The matroid of sparse hypergraphs

In this section we investigate matroidal properties of the sparse graphs. The
main result of this section is due to White and Whiteley [26] where it is proven
using the circuit axioms. For completeness, we include another proof using the
basis axioms.

Theorem A.1. Let B be the collection of all tight graphs on n vertices. Then
B is not empty when k, `, n and d meet the conditions of Theorem 1.1 and B is
class of bases of a matroid Mk,` which has the sparse graphs as its independent
sets and the circuits as described in Section 1.1 as its circuits.

Proof. We verify that B obeys the basis axioms. For completeness, we state
them here.

30

(B1) B 6= ∅

(B2) All bases are have the same cardinality.

(B3) For distinct bases B1 and B2 there are elements e1 ∈ B1 − B2 and e2 ∈
B2 −B1 such that B1 − e1 + e2 is a base.

(B1) Follows from Theorem 1.1.

(B2) All tight graphs have exactly kn− ` edges.

(B3) Let B1 and B2 be distinct bases. Then B1−B2 is not empty; let e2 be an
element of B1−B2 or dimension s. Let C be the subgraph induced by the vertex
intersection of every block in B1 spanning e2; C is well-defined since B1 is a
block, and by Theorem 1.2, C is a block. (In particular, C is the inclusion-wise
minimal block containing e2.) Moreover, C − e2 is not empty; by hypothesis C
cannot be sk − ` copies of e2.

A graph that contains a subgraph that is not sparse called dependent. Observe
that any dependent subgraph in B1 + e2 must contain C + e2. By construction,
no subgraph of C is tight, and thus e2 is independent of any subgraph of B1

not containing C.

Let e1 be an edge in C − e2. By the previous observation, C− e1 + e2, and thus
B1 − e1 + e2 is sparse.

31

	Smith ScholarWorks
	11-2009

	Sparse Hypergraphs and Pebble Game Algorithms
	Ileana Streinu
	Louis Theran
	Recommended Citation

	Introduction
	Preliminaries and related work
	Related work
	Our Results

	The pebble game
	Properties of sparse hypergraphs
	Hypergraph Decompositions
	Hypergraph arboricity
	Decompositions into maps

	Pebble game constructible graphs
	Pebble games for Components and Extraction
	The basic pebble game
	Detecting components
	The pebble game with components
	Complexity of the pebble game with components

	Critical representations
	Conclusions and Open Questions
	The matroid of sparse hypergraphs

