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Abstract 13 

Hydrologic models are useful to understand the effects of climate and land-use changes on dry-14 

season flows. In practice, there is often a trade-off between simplicity and accuracy, especially 15 

when resources for catchment management are scarce. Here, we evaluated the performance of 16 

a monthly rainfall-runoff model (dynamic water balance model, DWBM) for dry-season flow 17 

prediction under climate and land-use change. Using different methods with decreasing 18 

amounts of catchment information to set the four model parameters, we predicted dry-season 19 

flow for 89 Australian catchments, and verified model performance with an independent dataset 20 

of 641 catchments in the United States. For the Australian catchments, model performance 21 

without catchment information (other than climate forcing) was fair; it increased significantly as 22 

the information to infer the four model parameters increased. Regressions to infer model 23 

parameters from catchment characteristics did not hold for catchments in the United States, 24 

meaning that a new calibration effort was needed to increase model performance there. 25 

Recognizing the interest in relative change for practical applications, we also examined how 26 

DWBM could be used to simulate a change in dry-season flow following land-use change. We 27 

compared results with and without calibration data, and showed that predictions of changes in 28 

dry-season flow were robust with respect to uncertainty in model parameters. Our analyses 29 

confirm that climate is a strong driver of dry-season flow and that parsimonious models such as 30 

DWBM have useful management applications: predicting seasonal flow under various climate 31 

forcings when calibration data are available, and providing estimates of the relative effect of 32 

land-use on seasonal flow for ungauged catchments.  33 

Keywords: baseflow; land-use change; climate change; DWBM; prediction for ungauged basins 34 

 35 
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1 Introduction 36 

With increasing pressure on water resources globally, managers of water resources need to 37 

understand how streamflows – in particular, dry-season flows – respond to changes in land use 38 

and climate.  Applications vary broadly: at the global scale, hydrologists aim to better predict the 39 

effect of agricultural expansion on water resources to avoid additional pressure in water-scarce 40 

regions (Brauman et al., 2016). At the regional scale, water resources assessments are needed 41 

to explore and implement efficient water-allocation plans (Kirby et al., 2014). For example, the 42 

development of hydropower production facilities in Africa or South-East Asia requires the 43 

prediction of annual and monthly flows (Vogl et al., 2016). In Latin America, the development of 44 

investment in watershed services programs requires stakeholders to estimate the effect of land 45 

management on hydrological services (Bremer et al., 2016; Guswa et al. 2014). 46 

A number of knowledge gaps hinder the development of decision-aid tools for water resources 47 

management. First, the effects of environmental changes on baseflow remain uncertain 48 

(Andréassian, 2004; Brown et al., 2013, 2005; Price, 2011). Here, we define baseflow as 49 

“streamflow fed from deep subsurface and delayed shallow subsurface storage between 50 

precipitation and/or snowmelt events” (Price, 2011). Baseflow depends on many factors: climate 51 

(magnitude and seasonality of precipitation and evapotranspiration), topography, geology, and 52 

land use and land cover – with vegetation type and age as key subfactors (Brutsaert, 2008; Gao 53 

et al., 2015; Zhang et al., 2014). In addition, the relative importance of these factors vary in time, 54 

at the event and seasonal time scales (Devito et al., 2005; Jencso and McGlynn, 2011), making 55 

it difficult to characterize in a given location. Second, relatedly, hydrologic models are limited in 56 

their ability to estimate dry-season flow: lumped models tend to oversimplify the complexity of 57 

hydrological processes, which casts doubt on their capacity to predict the effect of land use or 58 

climate change. Complex models have high-data needs, require calibration, and often show 59 
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high uncertainty for predictions outside of the calibration conditions (in particular under land-use 60 

change) (McIntyre et al., 2014; Smith et al., 2004). 61 

Recognizing and seeking to fill these knowledge gaps is important, and taking stock of current 62 

knowledge and its usefulness for practical applications is of equal priority for management. By 63 

identifying questions that are of interest for water-resources management, hydrologists can 64 

better understand where research gaps need to be filled. Typically, answering landscape 65 

management questions requires an understanding of: i) the absolute magnitude of the change 66 

in dry-season flow following land-use or climate change; ii) the relative difference in dry-season 67 

flows among various land uses or management scenarios (e.g. afforestation, deforestation, 68 

water abstraction for domestic or agricultural use); and iii) the spatial distribution of contributions 69 

to baseflow (i.e. whether some part of the landscapes provide more baseflow than others) 70 

(Guswa et al., 2014). 71 

This paper explores the first two questions by analyzing how a simple monthly rainfall-runoff 72 

model can capture major drivers of dry-season flow. Our aim is to quantify predictive uncertainty 73 

in dry-season flow across a wide range of climate and catchment characteristics, and to assess 74 

how this uncertainty changes as catchment information is introduced. In an era of increasingly 75 

available data, in particular global daily precipitation data (Gehne et al., 2016), our work at the 76 

monthly time step is justified by the parsimony of models operating at this time scale (Mouehli et 77 

al., 2006). This characteristic facilitates regionalization and work in ungauged basins (Perrin et 78 

al., 2001), as well as any analysis that does not necessitate short time-scale representation of 79 

the flow regime: e.g., optimization approaches for reservoir operation or irrigation schemes 80 

(Hughes, 2004; Kirby et al., 2014), or drought assessment (Smakhtin and Hughes, 2007). In 81 

both circumstances, quantifying the uncertainty of uncalibrated models is important to produce 82 

credible information for management, potentially overcoming the need for more sophisticated 83 

models (Guswa et al., 2014). 84 
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Here, we used DWBM (dynamic water balance model) with a monthly time step (Zhang et al. 85 

2008). The model has four parameters with physical interpretation and was shown to explain 86 

flow variations for a large number of catchments in Australia (Zhang et al., 2016, 2008).  After 87 

describing the model and how climate influences its behavior, we examine the correlations 88 

between catchment characteristics and calibrated model parameters. We examine how model 89 

parameters are correlated with physical characteristics, and show that model performance for 90 

dry-season flow prediction decreases sharply when catchment information is reduced.  We also 91 

examine predicted change in dry-season flow following a simulated land-use change, showing 92 

that catchment information does not influence the general direction and magnitude of these 93 

predictions. We discuss the implications of this work in Section 5, with a focus on the 94 

importance of climate change relative to land-use change; we suggest that parsimonious 95 

monthly models have practical utility when calibration data are available and when the main 96 

objective of the study is to explore the relative effect of land use or climate change on seasonal 97 

flow.  98 

 99 

2 A simple monthly water balance model for environmental change 100 

2.1 Overview and comparison with other models 101 

The model used in this study, DWBM, is a four-parameter lumped catchment model that 102 

partitions monthly precipitation into evapotranspiration and runoff (see full description in section 103 

2.2).  DWBM was developed by Zhang et al. (2008) with the aim to extend the Budyko theory, or 104 

“limits” concept, to sub-annual timescales (Budyko, 1961; Hamel and Guswa, 2015). The model 105 

also has a five-parameter version (Wang et al., 2011) but for the purpose of this study, we 106 

employ the more parsimonious version, which has been verified on a subset of >200 107 

catchments in Australia (Zhang et al. 2008).  108 
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DWBM is similar to a number of parsimonious lumped models, including abcd and G2M 109 

(Mouelhi et al., 2006), which represent a catchment with one or two stores of water that 110 

influence the basin-scale partitioning of precipitation into evapotranspiration and runoff. These 111 

models continue to receive attention from the hydrologic community given the uncertainty 112 

associated with complex models: for example, in their study of 429 catchments around the 113 

world, Perrin et al. (2001) showed that models with a low number of parameters (<5) achieved a 114 

performance comparable to more complex models, and recommended their use due to the ease 115 

of assessing parameter uncertainty with such models.  As described later, DWBM has the 116 

advantage of using parameters with physical meaning, which facilitates interpretation of results 117 

and inferring the effects of landscape modification. In general, we note that the selection of 118 

DWBM does not impact the scope and ideas implemented in this study. Similar analyses could 119 

be conducted with alternative models, and we suggest that a number of findings would hold: the 120 

“equifinality of model structures”, as defined by Perrin et al. (2001), suggest that most 121 

parsimonious models would yield similar results. 122 

2.2 Model description 123 

• Model equations 124 

The DWBM model operates with two stores of water for a catchment – the vadose zone and 125 

groundwater.  Monthly precipitation is partitioned among direct runoff, evapotranspiration, 126 

storage in the vadose zone, and recharge to groundwater; monthly streamflow is a combination 127 

of direct runoff and baseflow supplied by the groundwater store. The following section describes 128 

the main equations but the reader is referred to the full description of model development for 129 

additional details (Zhang et al. 2008). 130 

For each month, the model first partitions precipitation into catchment wetting and direct runoff. 131 

Catchment wetting, X, for a month, m, is bounded by both a supply limit (Pm, the precipitation 132 
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arriving in that month) and a demand limit, X0. Mathematically, this “limit” concept is captured by 133 

a bi-asymptotic function (Figure 1), and catchment wetting is computed as: 134 

���� = ������ ��
���� , 
�� 

[1] 135 

Where F is the bi-asymptotic function, defined as: 136 

���, 
� = 1 + � − �1 + �
�

����
���

, 137 

[2] 138 


� is the retention efficiency, which determines how close X is to the supply and demand limits; 139 

the “demand limit” X0 is calculated as the sum of available storage capacity and 140 

evapotranspiration demand, (here called potential evapotranspiration, PET): 141 

����� = ���� − ��� − 1� + ������ 

[3] 142 

where Smax is the maximum catchment storage capacity and S the catchment storage value at a 143 

given time step. 144 

[FIGURE 1] 145 

 146 

For each month, X is used to compute an intermediate variable, available water, W: 147 

���� = 	����	+ 	��� − 1�	 

[4] 148 
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as well as the direct flow, Qd, i.e. water not retained in the catchment that quickly becomes 149 

streamflow: 150 

� ��� = ���� − ���� 

[5] 151 

The available water, W, is partitioned among evapotranspiration, storage and recharge. To do 152 

so, the model computes the evapotranspiration opportunity, Y, i.e. the proportion of available 153 

water that does not percolate below the root zone and become recharge. The supply limit for Y 154 

is the available water, while the demand limit is the sum of potential evapotranspiration and 155 

storage; therefore 156 

						!��� = 	���� × �������� + ����	�
���� , 
#� 

[6] 157 

where α2 is the evapotranspiration efficiency, which determines how close Y is to the supply and 158 

demand limits (Figure 1). 159 

Monthly evapotranspiration, ET, is bounded by the available water and energy demand (PET). It 160 

is assumed that ET follows the same function as Y, i.e. that the evapotranspiration efficiency α2 161 

also determines how close ET is to the evapotranspiration demand: 162 

						����� = ���� × ������������ , 
#� 

[7] 163 

Recharge can then be calculated as the difference between available water and 164 

evapotranspiration opportunity:  165 
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						$��� = 	����	− 	!��� 

[8] 166 

and storage is the difference between evapotranspiration opportunity and actual 167 

evapotranspiration: 168 

���� = 	!��� − 	����� 

[9] 169 

Finally, monthly baseflow is calculated as:        170 

�%��� = & ∙ (�� − 1� 

[10] 171 

where d is the groundwater store time constant, characterizing the groundwater drainage rate, 172 

and G is groundwater storage, updated monthly as: 173 

(��� = 	(�� − 1� − �%��� + 	$��� 

[11] 174 

Total streamflow is calculated as the sum of direct flow and baseflow. 175 

 176 

• Interpretation in terms of environmental change 177 

Given our focus on environmental change, we elaborate here on how climate and land-use 178 

changes can be represented by the model. Table 1 summarizes the expected relation between 179 

the four parameters and physical catchment characteristics. We suggest that changes in land-180 

use and land-cover will likely affect Smax, α1 and α2: changes to root depth and soil properties 181 
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may alter the partitioning between direct runoff and soil storage, along with the partitioning of 182 

soil water between groundwater recharge and evapotranspiration. The parameter d affects only 183 

the monthly timing of baseflow, and we suggest that d is primarily a function of geology and not 184 

significantly influenced by land use or climate changes. (At the daily time scale, the dynamic 185 

storage theory suggests that it also depends on antecedent conditions, i.e., on land use and 186 

climate features, cf. Kirchner, 2009). 187 

Seasonal changes in precipitation and potential evapotranspiration will be captured by the 188 

climate forcing variables. Changes in the intensity of individual precipitation events, a 189 

characteristic not described by the monthly total, will likely affect α1, since higher intensity events 190 

may result in more direct runoff. Indirect climate change effects may also affect soil and 191 

vegetation properties, suggesting that α2 and potentially Smax may be affected by climate change 192 

(Table 1).  193 

[TABLE 1] 194 

 195 
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3 Methods 196 

3.1 Overview 197 

Our aim is to quantify the uncertainty in minimum flow predictions across a wide range of 198 

climate and catchment characteristics, and to understand how this uncertainty evolves as 199 

catchment information is introduced. Our analyses rely on two metrics, minimum monthly flow 200 

(Qmin) and total flow (Qtot), computed as the minimum average monthly flow and average annual 201 

flow, respectively, across the period of record. Here, minimum monthly flow is used to represent 202 

dry-season flow, thereby using a flow-based definition of the dry season. 203 

We first conduct a brief sensitivity analysis to illustrate the model response to climate forcing. 204 

Building on previous work in Australia (Zhang et al. 2008), we compare observed minimum 205 

monthly flows for 89 catchments to predictions from four versions of DWBM: one with 206 

parameters obtained from calibration, two where parameters are determined via regression on 207 

catchment characteristics, and one with no variation in model parameters among catchments 208 

(i.e., the only variation in models among the basins is the climate forcing). We then use the 209 

DWBM to predict low flows in 641 catchments in the United States. To assess the universality of 210 

the regression models developed for the Australian catchments, we employ the same 211 

regression models to determine model parameters for the US basins. We also evaluate the 212 

performance of the DWBM with fixed parameters across the US catchments and with an 213 

independent calibration. Finally, we explore the use of DWBM to assess the potential effect of 214 

land-use change on dry-season flows for ungauged basins. In doing so, we evaluate whether 215 

the model can predict land-use change effects in relative terms, even if the absolute magnitude 216 

of minimum flows is not well predicted.  217 

 218 
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3.2 Sensitivity analysis: relative importance of catchment characteristics on annual and 219 

dry-season flow 220 

To demonstrate model behavior, we present the sensitivity of our two variables of interest, 221 

minimum monthly flow and total flow, to both climate forcing and model parameters (which are 222 

proxies for catchment characteristics). We present three distinct climates, subtropical-dry 223 

summer, tropical-dry winter, and humid continental. Details of the analyses and in-depth 224 

discussion of the hydrological processes driving the results are presented in Appendix 1. 225 

3.3 Parameter selection and model performance (Australian dataset) 226 

Given the physical interpretation of DWBM parameters (Section 2.2), we expect their values to 227 

be correlated with measurable characteristics of a catchment. We tested this hypothesis on a 228 

dataset of 89 catchments in Australia for which the DWBM model was calibrated using four 229 

objective functions related to low flows, high flows, time shift, and total mass balance (Zhang et 230 

al. 2008).  Catchment areas vary between 50 and 2000 km2 and are located across a large 231 

range of climate zones (Figure 2a). We examined twelve relevant and readily available 232 

catchment characteristics as explanatory variables for the regression, including information on 233 

climate, soil, topography, and land use (Table 2). Data sources for catchment streamflow time 234 

series and characteristics are described by Shao et al. (2012). Each catchment had at least 10 235 

years of climate and streamflow data, which we used to run the model and obtain a time series 236 

of monthly modeled streamflow. For both observed and modeled time series, we computed the 237 

average monthly flows and extracted the minimum and total annual flow to obtain the values of 238 

Qmin and Qtot for each catchment. After conducting a simple backward stepwise linear regression 239 

model that had low predictive power (see Table 1), we developed two regression approaches 240 

described below. 241 

 242 
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[FIGURE 2] 243 

[TABLE 2] 244 

 245 

• Regression with the full set of variables (regression trees) 246 

We built regression trees to explore how much variability in parameter values could be 247 

explained by the complete set of catchment characteristics given in Table 2. Regression trees 248 

were selected for their high explanatory power, when compared with multiple linear regressions 249 

and a multivariate adaptive regression spline (MARS) model (Shao et al., 2012). The analyses 250 

were performed with the ‘rpart’1 package in the R environment. We tested simple and pruned 251 

trees and finally selected a random forest method, using the ‘randomForest’2 package in R, 252 

which gave the best performance. This method consists in creating thousands of unique 253 

regression trees for the same dataset, using a random sampling of variables to create each tree 254 

(Breiman, 2001). Each of these trees is used to predict the dependent variable, and the mean 255 

prediction from the entire forest is the output.  After “growing” a forest for each parameter, we 256 

perform a ‘leave-one-out’ cross-validation, i.e. building a random forest using every observation 257 

(the parameter values) except one, then using the model to predict the observation that was left 258 

out. The process is repeated until the model has predicted every observation in the dataset, 259 

after which the average prediction error is calculated. 260 

• Multiple linear regression on a reduced set of variables  261 

To assess the model performance in a situation with reduced data availability, we test a simple 262 

linear regression model that relies on direct physical interpretation of parameters. Specifically, 263 

we tested the correlation between each parameter and the catchment characteristics 264 

                                                
1
 https://cran.r-project.org/web/packages/rpart/index.html 

2
 https://cran.r-project.org/web/packages/randomForest/index.html 
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considered as the best proxies for the parameter. The following paragraphs explain the rationale 265 

behind the selection of catchment characteristics for this simplified approach. 266 

α1 , the retention capacity, is closely related to the curve number (CN) used in the SCS-method 267 

(NRCS-USDA, 2004). This empirical value captures the ability of a catchment to retain water in 268 

the soil layer instead of producing direct runoff. Therefore, we tested the correlation between α1 269 

and CN values for each catchment. CN values were calculated as the weighted average of CN 270 

for forest and grass land covers. Soil hydrologic groups were estimated from the HiHydroSoil 271 

dataset (Boer, 2015) 272 

α2 is related to soil drainage and rain event frequency. Therefore, we used the subsoil hydraulic 273 

conductivity and average storm depth as explanatory variables for α2. 274 

Smax is related to the product of soil depth and saturated water content. Because the soil dataset 275 

we used did not show any variability in soil depths (all depths>2400mm), we only used 276 

saturated water content in the regression. 277 

d is related to hydraulic conductivity of deep layers. We used the subsoil hydraulic conductivity 278 

as the only explanatory variable. 279 

• Mean parameters 280 

We also tested a case for which no catchment-specific information is used to estimate the 281 

parameters.  For this, we used the mean values of the calibrated parameters across all 282 

Australian catchments.  For these analyses, only climate forcing varies among the models from 283 

one catchment to the next. 284 

• Model performance 285 
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We ran the DWBM model three times for each Australian catchment with the parameter sets 286 

described above, i.e. determined by the full regression model, the reduced regression model, 287 

and the mean value. We compared the minimum flow and total flow predicted with each 288 

parameterization, including the parameter set obtained by calibration, with the minimum flow 289 

and total flow obtained from observed time series. 290 

3.4 Model verification (US dataset) 291 

We tested the performance of the modified DWBM, i.e. applied with the regressed set of 292 

parameters, outside Australia. To compare the model performance when calibration data are 293 

available, we also calibrated the model for the verification dataset. For this calibration, we used 294 

a single objective function, the Nash-Sutcliffe efficiency for log-transformed flow, consistent with 295 

our focus on low flows. 296 

Our dataset of US catchments was developed by Newman et al. (2015), comprising 671 297 

catchments (although we discarded 30 catchments for quality assurance reasons, see Appendix 298 

B). Similar to the Australian dataset, the catchments range in size (1 to 25,800 km2) and 299 

hydroclimatic conditions (Figure 2b). To run DWBM on the US dataset, we summed 300 

precipitation data at the monthly time step and computed monthly potential evapotranspiration 301 

from monthly temperature data, using the modified Hargreaves method (Eq. 5 from Droogers et 302 

al., 2002). Qmin and Qtot and model performance metrics for the US dataset were calculated with 303 

the method described above for the Australian dataset, i.e. we compared the Qmin and Qtot 304 

predictions based on the three alternative parameterizations with observations.  To further 305 

explore the variability in model performance, we grouped results by region, according to the 306 

USGS HUC 02 classification. 307 
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3.5 Variation of model performance with catchment characteristics 308 

We examined the correlation between model errors and catchment characteristics to identify the 309 

conditions under which the model performs best.  Specifically, we computed r2 and p-values 310 

between errors in Qmin and Qtot obtained from each model parameterization, on one hand, and 311 

all catchment characteristics listed in Table 2, on the other hand. 312 

3.6 Simulated effect of land-use change in ungauged basins 313 

The parameters for the DWBM each incorporate the effects of a host of climate, landscape, and 314 

geologic factors, some of which are measurable and others which are not.  Thus, detecting a 315 

land-use signal in the parameters when moving from one catchment to another may be 316 

challenging, as the effects of land-use alone may be lost amid the noise and other differences 317 

between the catchments.  Nonetheless, we were interested in assessing model predictions of 318 

land-use change, in relative terms, within a particular catchment.  319 

As noted in Table 1, land-use change presumably affects α1 and α2. Over the longer term, land-320 

use change may affect soil properties (i.e. Smax), but this effect is arguably weaker and ignored 321 

in these analyses. It is possible that the flow response to a change in α1 and α2, representing 322 

land-use change, may be a function of their original values.  To test this hypothesis, we 323 

investigated the effect of simultaneous 10% and 20% changes in α1 and α2 for each Australian 324 

catchment, for both the calibrated dataset (for which the α1 and α2 parameters vary among the 325 

basins) and the mean-value dataset (which all share the same parameter values).  If the 326 

changes in Qmin that result from changes in α1 and α2 are comparable between the two models 327 

(calibrated and mean value), we can conclude that the effects of afforestation/deforestation on 328 

minimum flows are independent of the original parameter values.  Thus, in an ungauged basin 329 

for which little information is available, the mean-value model could be used to predict the 330 

effects of land-use change. The values of relative change (10 and 20%) were based on the 331 
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maximum change in parameter values predicted by the random forest model: α1 and α2 332 

increased by a maximum of 6% and 13%, respectively, when forest cover was increased by 333 

66% (for catchments with a cover <34%). 334 

 335 

4 Results 336 

4.1 Sensitivity analysis 337 

In general, the model shows greater sensitivity to parameters for the subtropical and tropical 338 

climates (Figure 3). In the humid climate, catchment properties have a lower impact on 339 

minimum flows, since evapotranspiration is primarily energy-limited and changes in catchment 340 

water storage have little effect on hydrologic partitioning. In subtropical dry-summer and dry-341 

winter climates, a small decrease in α1 or α2 may lead to a sharp relative increase in Qmin, due to 342 

increases in the small amounts of surface runoff during dry months. Conversely, as α1 or α2 343 

increase, Qmin generally decreases as water retained in the soil store is more likely to be 344 

evapotranspired. 345 

Based on the above analyses, predictions of minimum flows will be minimally impacted by 346 

changes in parameter values when: climate is humid with low seasonality in precipitation, i.e. 347 

variability in evaporative demand is the main driver of minimum flows; and when catchment 348 

properties correspond to “insensitive” ranges for model parameters. For example, Figure 3 349 

shows that minimum flows are not sensitive to low values of α1 for the tropical dry-winter 350 

climate. In such climate, minimum flows in catchments with low retention capacity (e.g. with 351 

clayey or compacted soils) are unlikely to be affected by land use change. 352 

  353 

[FIGURE 3] 354 
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 355 

 356 

4.2 Regression models for DWBM’s parameters  357 

The results from the random forest model are summarized in Table 3, showing that r2 was high 358 

for all parameters. The mean predictive errors obtained with the random forest method for α1, 359 

α2, Smax, and d are reported in Table 3 and represent 45%, 39%, 40%, and 42% of their 360 

respective mean value (Table 3).  To gauge the impact of errors of this magnitude on model 361 

outputs, we plotted these error ranges on the sensitivity analyses graphs (Figure 3): the effect of 362 

parameter errors was relatively low for Qtot, but for the semi-arid and tropical climates, errors in 363 

α2 and d may affect Qmin significantly (>50% error). In addition, the reduced regression model 364 

showed much less explanatory power (Table 3): the reduced set of variables explaining less 365 

than 20% of the variance in the calibrated parameter set. 366 

Of the thirteen variables in Table 2, the curve number CN ranked as the most important variable 367 

for α1 and forest cover as the fourth most important variable. Here, importance is computed as 368 

follows (see details in footnote 2 above): the mean square error is calculated on the out-of-bag 369 

portion of the dataset, and again on the dataset with permuted variable; then, the average 370 

difference in mean square error over all trees is computed, and normalized by the standard 371 

deviation of the differences. For α2, the four most important variables were all climate-related 372 

(Peomonths, Aridity, Precipitation,CVP). 373 

 374 

[TABLE 3] 375 

 376 
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4.3 Model performance (Australian dataset) 377 

Figure 4 and Table 4 illustrate the model performance for Qmin for the Australian dataset. 378 

Comparison of results from the calibrated models to the observed minimum flows yielded a root-379 

mean-square error (RMSE) of 2.37 mm/mo (i.e. about 50% of the average minimum flow, 4.63 380 

mm/mo). The model with parameters obtained from the full regression (“full regression model” 381 

hereafter) yielded good results for Qmin, with a RMSE of 2.32 mm/mo (Table 4) – similar to the 382 

performance of the calibrated models. Model performance was lower when using the reduced 383 

regression or the mean values for parameters, although these models still explained a large 384 

proportion of the variance in Qmin (>53%). 385 

The four models predicted total flows well, with r2 values >0.87 (Table 4). The lowest RMSE for 386 

total flows was obtained by the model with calibrated values (RMSE=42.4 mm/year), and the 387 

highest was obtained by the model with mean values. 388 

 389 

[FIGURE 4] 390 

[TABLE 4] 391 

 392 

4.4 Model verification (US dataset) 393 

With the parameters obtained from the full regression, the performance of DWBM for minimum 394 

flows was lower in the US (Table 4). The model explained 92% of the variance in Qtot, but only 395 

between 51 and 55% of the variance in Qmin (Table 4, Figure 5). As information was introduced 396 

by the full regression and reduced regression, there was no improvement in model performance 397 

over the mean-value model (RMSE in Qmin for the simplified regression was lower than the full 398 

regression but the difference was not statistically significant, based on a Kolmogorov-Smirnov 399 
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test). However, calibration of the models based on log-transformed Nash-Sutcliffe efficiency 400 

resulted in much higher performance –with 88% of the variance in Qmin explained, similar to the 401 

Australian dataset. The calibrated value ranges were slightly broader than those of the 402 

Australian dataset, [0.36;0.99], [0.16; 0.94], [0.10; 1], and [32; 500], respectively, for α1, α2, 403 

Smax, and d (Australian ranges are reported in Table 3). 404 

 405 

[FIGURE 5] 406 

 407 

4.5 Correlation between errors in Qmin and catchment characteristics 408 

When using the calibrated parameters for the Australian catchments, we found significant 409 

correlations (p<0.01) between the relative error in minimum flow and three catchment 410 

characteristics: aridity, precipitation, and PAWHC (all negative correlations). Errors in total flow 411 

also showed strong correlations with catchment characteristics, in particular with climate 412 

variables, and soil properties.  413 

When using model predictions from the full regression model, errors in minimum flow showed 414 

significant correlation only with the aridity index, and errors in total flow with precipitation and 415 

the aridity index. No correlation was found for any catchment characteristics for predictions 416 

obtained with the reduced regression or mean models. 417 

We found no significant correlation between catchment characteristics and relative errors in 418 

minimum flows for the US catchments, for any parameter set. However, relative errors in total 419 

flows were correlated with a number of catchment characteristics (all variables in Table 2 except 420 

CN and the relief ratio), and with two parameters (positive correlation, for both α2, and d).  421 
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To explore the regional variation in model performance in the US, we separated the catchments 422 

by region, using the USGS HUC 2 classification (Figure 2).  Across these more homogenous 423 

units, the calibrated model performance varied without significant pattern.  However, the 424 

improvement upon regression and mean-value models is more appreciable for HUCs with 425 

higher values, which comprise more arid regions, a finding that seems consistent with the higher 426 

performance of the model in arid catchments in Australia.  427 

 428 

4.6 Simulated effect of land-use change in ungauged basins 429 

Figure 6a represents the relative change in Qmin following 10% and 20% changes (both positive 430 

and negative) in α1 and α2. All values in the bottom-left quadrant represent an increase in α1 and 431 

α2, while all values in the top-right quadrant represent a decrease in the two parameters. The 432 

direction of the change is consistent between the calibrated and mean datasets. The difference 433 

in Qmin predicted by the models was small for the 10% change in parameter (RMSE of 0.36). For 434 

the 20% change, the high RMSE (1.2) was largely driven by the negative change in parameter 435 

values (i.e. circles in the top-right quadrant in Figure 6a). Of note, these high relative changes 436 

correspond to low absolute changes: the RMSE for the absolute change in Qmin resulting from a 437 

20% change (both positive and negative) in parameters is 1.5mm. 438 

The results for total flow (Figure 6b) showed even smaller differences between the two models, 439 

indicating that medium to high flows were less affected, in relative terms, by the change in 440 

parameter values. RMSE were 0.15 and 0.37, respectively, for the 10% and 20% change in 441 

parameter values. 442 

 443 

[FIGURE 6] 444 
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 445 

5 Discussion and implications for predicting the effects of environmental 446 

change 447 

The main objective of this paper is to assess the utility of a monthly, lumped hydrologic model 448 

for predicting dry-season flows with varying degrees of information availability. As a rainfall-449 

runoff model governed by four parameters with physical meaning, DWBM has the potential to 450 

be used for climate and land-use change scenarios analyses and inform landscape 451 

management. The sensitivity analyses indicated that the importance of each parameter 452 

depends on climate: for example, a larger storage capacity Smax will generally be needed in 453 

highly seasonal climate to sustain baseflow during the dry season. The moderate sensitivity in a 454 

number of environmental contexts (i.e. parameter sets) suggests that climate is the main driver 455 

of seasonal flow, a fact that has been observed by many others (Devito et al., 2005; Jencso and 456 

McGlynn, 2011). In practice, this means that a rough estimate of these parameters may be 457 

sufficient to predict monthly flows with acceptable levels of certainty, as suggested by our 458 

analyses on Australian and US catchments.  459 

5.1 Model performance for absolute predictions of dry-season flow  460 

The model performance, measured by r2, in Australia was relatively high for both Qmin and Qtot 461 

predictions (Figure 4). RMSE for Qmin ranged from 2.4 mm/mo to 4.0 mm/mo, depending on the 462 

model parameterization. Adding catchment information, i.e. moving from uniform parameters for 463 

all catchments, to regressed parameter values, to streamflow time series for calibration, 464 

generally improved model performance (measured by RMSE). The performance of the full 465 

regression model was actually as good as the calibrated model, probably due to the large 466 

number of explanatory variables and the high explanatory power of the regression (Table 3). 467 

The poorer performance of the reduced regression could be due to two factors: poor selection of 468 
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model variables and over-fitting of the random forest full regression model. The stepwise 469 

backward regression conducted in preliminary analyses confirmed that our selected variables 470 

are among the best predictors, but that no single variable explained the variance significantly. 471 

This suggests that the full regression model was probably over-fitted (12 variables for 89 472 

observations), and therefore less likely to transfer outside the initial sample, for the US 473 

catchments. 474 

For the verification dataset with US catchments, the performance of DWBM with parameters 475 

derived from the full regression was much lower: only 55% of the variance in Qmin was 476 

explained. This suggests that although model parameters were strongly correlated with physical 477 

characteristics in Australia, these relationships did not transfer to the US dataset. A number of 478 

reasons could explain this negative result, in particular the consideration of snowmelt (see 479 

below), and extrapolations of the regression outside the range of Australian values for a number 480 

of physical characteristics (in particular soil variables and, to a lesser extent, climate variables). 481 

However, after calibration, DWBM’s performance was good for both total and minimum flows, 482 

confirming the possibility to use the model with regional parameterization.  483 

Because errors in Qmin were only weakly correlated with catchment characteristics, it is difficult 484 

to predict where the model will perform best outside the set of catchments in Australia or the 485 

US. However, the model seemed to perform better when the aridity index was lower (i.e. drier, 486 

and thus minimum flows were lower), likely reflecting water-balance constraints in a water-487 

limited environment. Additionally, it is likely that snowmelt effects, ignored in this work, 488 

contribute to errors in minimum flows. To test this hypothesis, we evaluated model performance 489 

for the 97 US basins that were not influenced by snow precipitation (Guswa et al., 2017), and 490 

found that r2 increased to 0.70 (from 0.55) and 0.68 (from 0.51), respectively, for the “full 491 

regression” and mean-value parameterizations (RMSE were 4.4 mm and 4.5 mm, respectively). 492 

These results confirm that the relationships did not transfer to the US dataset. We also 493 
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hypothesized that performance would be higher where high values of α1 and α2 are predicted by 494 

the regression, based on the sensitivity analyses, although the US dataset did not confirm this 495 

hypothesis. 496 

We conclude this section with methodological points that help interpret model performance, both 497 

for absolute values or theoretical land-use change. First, we note that many catchments in our 498 

datasets had low observed minimum flow (<3mm/mo), especially for the Australian dataset 499 

dominated by the “humid temperate warm summer” climate zone. In absolute values, these 500 

errors remain small as illustrated by Figure 4. In addition, the datasets included only “natural” 501 

catchments, with the land use being mainly grassland or forest. This means that the effect of 502 

different land uses is likely difficult to detect in these datasets, as suggested by the regressions 503 

on catchment characteristics (forest cover was not significantly correlated with α1 or α2). This 504 

could also explain the poor performance of the reduced regression model: variations in α1 and 505 

α2 based on the simple regression models were small (for example, CN values only varied from 506 

70 to 80, a narrower range compared to possible land use changes involving agricultural land).  507 

We also note that further analyses could improve model performance in both regions. First, the 508 

model calibration could be focused on low flows. The calibration for the Australian dataset was 509 

performed using a combination of four objective functions, with only one focused on low flows 510 

(Zhang et al., 2008). Second, the parameter values could be corrected for the bias in Qmin for 511 

the US dataset. This bias may be related to the calibration function, but our analyses do not 512 

provide evidence of this. 513 

5.2 Predicting the effect of environmental change for ungauged catchments 514 

• Climate change 515 

Both the US and Australian dataset comprise catchments that range in climate, geology, and 516 

land use. The fair performance of the model in both locations suggests that the model is able to 517 
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represent the variability of hydrological behavior induced by these factors. This gives confidence 518 

that the effect of future climate forcing would be correctly represented: because the model uses 519 

monthly climate time series as forcing variables, such analysis can be performed by substituting 520 

current climate time series with future forecasts. Given the highest performance of the calibrated 521 

model, climate change analyses are best performed with gauged catchments (calibrating the 522 

model). However, they may be conducted on ungauged catchments too when information on a 523 

relative change, rather than absolute, is sought. For example, Monte-Carlo-type analysis can be 524 

performed by assuming parameter sets for the catchment of interest, and then running the 525 

model for each set to provide upper and lower bounds of the expected change following climate 526 

change. 527 

• Land use change 528 

The high performance of the full regression model in Australia was not found in the US. 529 

Therefore, using model regression to infer parameter values is not a feasible option for 530 

ungauged catchments globally. For the Australian dataset, CN and forest cover were found to 531 

be important variables in the full regression on α1 (Section 4.2), confirming the relationship 532 

between this parameter and land-use variables. For both regions, calibrated parameter values 533 

showed low or no correlation with land-use variables, which suggest that additional work is 534 

needed to derive empirical relationships between the parameter values and land use 535 

characteristics. Nonetheless, the land-use change analyses in Section 4.6 suggest that one can 536 

use the baseline provided by the model to compute the relative change in Qmin following land-537 

use change. The motivation for this simple analysis was to understand, theoretically, the effect 538 

of landscape interventions on dry-season flows. For example, such information can be used to 539 

assess the potential for the “sponge effect” to occur in a given climate (i.e. that afforestation 540 

would increase dry-season flow): specifically, the catchments with a relative change close to 541 
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zero in Figure 6a are unlikely to demonstrate an increase in dry-season flow with afforestation, 542 

since the change in α parameter values only minimally affected Qmin.   543 

We note that the absolute change in parameter values can be constrained by the calibrated 544 

parameter set, if regional data are available (e.g. the US and Australian datasets used in this 545 

study). As suggested above, Monte-Carlo runs can be performed to provide confidence intervals 546 

around the change in Qmin. Additional work on the relationships between catchment 547 

characteristics and parameter is in progress with catchments that have pre- and post-548 

afforestation streamflow data (Zhang et al., 2016). Preliminary results suggest that the 549 

relationships hypothesized in Table 1 hold and that regional relationships can be used to predict 550 

land-use change. The results also confirm that the land-use change signal (i.e. the increase in 551 

forest cover, with all other variables held constant) may be confounded by other environmental 552 

factors.   553 

 554 

6 Conclusion 555 

We have investigated how a simple rainfall-runoff model run at the monthly time step could 556 

represent and predict the influence of climate and land-use change on dry-season flow. We 557 

used the DWBM model, which assumes that streamflow, in particular during the dry season, is 558 

driven by four main catchment characteristics: the retention efficiency of a catchment (ability to 559 

store water for future release by discharge or evapotranspiration), evapotranspiration efficiency 560 

(ability to use soil water for evapotranspiration rather than discharge), total soil storage, and 561 

drainage rate.  Our analyses confirmed that climate is a major driver of seasonal flows and that 562 

the simple model DWBM, with default values obtained from the mean of calibrated catchments, 563 

could provide a reasonable estimate of monthly flows. Model performance increases 564 

significantly when calibration data are available, although in this work we found that regional 565 
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relationships to infer model parameters could not transfer to other regions (the regression on 566 

catchment properties obtained in Australian did not result in high performance in the US). Our 567 

analyses also suggest that DWBM can be used to estimate a change in annual and minimum 568 

monthly flow following environmental change. Even without calibration data, the effects of land 569 

use change (e.g. reduction in retention efficiency or in evapotranspiration efficiency) can be 570 

explored and quantitatively estimated. The effect of climate change can also be assessed, 571 

preferably with a calibrated model if absolute values are sought. The broad range of 572 

environmental conditions used in that study confirmed that the simple structure is able to 573 

capture the main hydrological processes driving runoff response. The model has low data 574 

requirements, and all climate data and catchment information used in this study are available 575 

globally. 576 
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Appendix 681 

A. Sensitivity analysis 682 

We performed the sensitivity analyses with actual data from three climatically distinct locations: 683 

(1) Nairobi, Kenya, (2) San Jose, Costa Rica, and (3) Cleveland, USA.  Under the Köppen-684 

Geiger climate classification, Nairobi has a subtropical highland climate with dry summers and 685 

an annual aridity index of 0.47; San Jose has a tropical climate, with dry winter and an aridity 686 

index of 1.6; Cleveland has a humid continental climate with an aridity index of 2.4. Although we 687 

could have used synthetic climate series to control climate variability, our objective here is to 688 

illustrate model behaviors under different climate forcing, which is achieved by actual data from 689 

different climate zones. 690 

• Methods 691 

Monthly precipitation and temperature data were acquired for each of these locations from the 692 

National Oceanic and Atmospheric Administration’s (NOAA) Global Historical Climatology 693 

Network-Monthly (GHCN-M) dataset.  From this dataset, we computed monthly averages.  The 694 

precipitation averages were used directly as model input, while the temperature averages were 695 

used to calculate monthly potential evapotranspiration (PET) values using the modified 696 

Hargreaves method (equation (5) from Droogers, et al., 2002).  The precipitation and potential 697 

evapotranspiration time series for each location are shown in Figure A1. 698 

For each climate type, we first performed a one-at-a-time sensitivity analysis, using five levels at 699 

equal intervals for each parameter. The range for each parameter was initially based on the 700 

values obtained from the model calibration by Zhang et al. (2008), described in further details in 701 

Section 3, and summarized in Table A1. Initial conditions affected flows for only the first few 702 
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years: to remove this ‘warm-up’ effect, the model was run for 10 years, repeating the same 703 

climate forcing, and only the final year was used to compute the statistics.  704 

Next, to quantify interaction effects among parameters, the model was run 24 additional times 705 

for each climate type, varying every possible pair of parameters with all possible combinations 706 

of upper and lower bounds for each parameter. 707 

After computing the regression analyses (cf. Section 3.1), we also re-ran the one-at-a-time 708 

sensitivity analyses varying mean values of each parameter by the average error in the random 709 

forest model: the new range (twice the average parameter error around the mean value) gives a 710 

more realistic assessment of sensitivity for the Australian dataset, and is plotted on Figure 3. 711 

[TABLE A1 and FIGURE A1] 712 

• Results 713 

In general, for the humid continental climate (Cleveland), total flow and minimum flow (Qmin) 714 

were not very sensitive to model parameters (Figure 3). The highest change in Qmin was 42%, 715 

obtained for the minimum value of α2. We note that in absolute value, effects of parameter 716 

change were more significant than for other climates: for example, the 42% change in Qmin 717 

represented 23 mm/mo. Larger variations in the relative sensitivity were observed for the two 718 

other climate types. 719 

α1 In the tropical dry winter (San Jose) and subtropical dry summer (Nairobi) climates, Qmin was 720 

sensitive to increases in α1 (with a maximum change of 53%) due to less direct flow during and 721 

slightly after each precipitation event. In Nairobi, Qmin was more sensitive to low values of α1: 722 

decreasing α1 lowers the baseflow contribution to streamflow significantly by reducing the 723 

amount of water that is retained in soil storage, and thus in groundwater storage.   724 
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α2. In the tropical and subtropical climates, Qmin decreased as α2 increased (-83% and -96%, 725 

respectively), due to a larger portion of water being evapotranspired. Qmin was sensitive to lower 726 

values of α2 in Nairobi (subtropical dry-summer), since evapotranspiration demand is high when 727 

flows are low. 728 

Smax. In all three climates, Qmin showed little sensitivity to Smax. Lower values tended to increase 729 

Qmin in Nairobi, since they increased evapotranspiration opportunity (i.e. evapotranspiration and 730 

recharge) in an arid environment. Conversely, lower values tended to decrease Qmin in San 731 

Jose (tropical dry-winter) where water availability is higher, and low soil storage increased the 732 

ratio of direct runoff over recharge. 733 

d. As expected, Qmin was highly sensitive to d in seasonal climates (subtropical and tropical). In 734 

particular, lower values of d resulted in sharp increases in Qmin, since the slow groundwater 735 

release sustained a high baseflow throughout the year. 736 

Interaction effects showed mostly subadditive effects. Only low values of d tended to exacerbate 737 

sensitivity to Smax or α2, while low values of Smax tended to exacerbate sensitivity to α1 or α2. 738 

 739 

B. Quality assurance of Newman’s dataset (2015) 740 

[TABLE B1]  741 
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TABLES 742 

Table 1. Parameters and physical interpretation of DWBM. + and ++ indicate the strength of the likely 743 

effect of land use change (LUC) and climate change (CC) on the parameters. Numbers in brackets are 744 

coefficients obtained from a stepwise backward linear regression between calibrated parameter values 745 

and forest cover (for LUC), or number of wet days (for CC) (* indicates significance at the 0.1 level, ** 746 

significance at the 0.01 level). See text and Table 2 for a definition of these variables. 747 

Parameter Description Affected by 

LUC 

Affected by 

CC 

Smax  

[5; 500]mm 

Maximum catchment storage capacity.  

Depends on: soil depth and available water content 

(measurable soil characteristics) 

+  

[0.71]* 

 

+ 

[-309]* 

 

α1 [0;1] Catchment retention; affects the partitioning of 

precipitation into direct runoff and water that is available 

in the soil-moisture store (S) for evapotranspiration and 

groundwater recharge. 

Depends on: the soil infiltration capacity and the rainfall 

intensity (more intense, less frequent events means more 

direct runoff). 

++  

[1.8e
-4

] 

 

++ 

[-0.15] 

 

α2 [0;1] Evapotranspiration efficiency; affects the partitioning of 

soil water into storage, recharge, and actual 

evapotranspiration.  

Depends on: the rainfall frequency, plant water-stress 

response, root depth, and soil properties such as 

hydraulic conductivity and critical moisture content (at 

which actual evapotranspiration is reduced for water 

++ 

[4.1e
-4

] 

 

+ 

[-0.30]** 
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stress). Note that α2 does not depend on the crop 

coefficient, which is already included in PET 

d [0;1] 

month
-1

 

Groundwater store time constant; characterizes the 

groundwater drainage rate, ie the release of groundwater 

storage to baseflow. Note that d does not affect 

partitioning, only timing of baseflow. 

Depends on: aquifer characteristics (size, hydraulic 

conductivity, connectivity with the stream) 

n.a. n.a. 

 748 

Table 2. Catchment characteristics assessed in this study 749 

 Abbreviation Name Description 

Climate P Precipitation 

(mm/month) 

Monthly rainfall 

Aridity Aridity (-) Precipitation divided by 

Potential Evapotranspiration 

Peomonths Difference in peak 

potential 

evapotranspiration and 

precipitation (month) 

The number of months that 

peak precipitation follows 

peak potential 

evapotranspiration 

ASD Average Storm Depth 

(mm/day) 

Depth of the average storm 

WetDays Proportion of Wet Days 

(-) 

Proportion of days per year 

with some precipitation 

CVP Coefficient of Variation 

of Precipitation (-) 

The standard deviation (of 

interannual precipitation) 

divided by the average 
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annual rainfall 

Vegetation forest Forest Cover (%) Percent of catchment area 

covered by forest 

CN Curve Number Curve Number from the SCS 

method (also a function of 

soil group) 

Topography Rr Relief Ratio (m/m) Total catchment relief divided 

by the longest flow path 

Soil soil_ksat_top Hydraulic Conductivity 

for topsoil (m/s) 

Saturated hydraulic 

conductivity from 0-30cm 

depth 

soil_ksat_sub Hydraulic Conductivity, 

subsoil (m/s) 

Saturated hydraulic 

conductivity from 30-200cm 

depth 

soil_sat_wc Saturated Water 

Content (m
3
/m

3
) 

Maximum fraction of soil 

volume that can be occupied 

by water 

PAWHC Plant Available Water 

Holding Capacity (mm) 

Maximum depth of soil water 

that is available for removal 

by vegetation 

 750 

Table 3. Calibrated parameter values and strength of the correlation (r
2
 and mean absolute error, MAE) 751 

between calibrated parameters and their estimates from the full regression and reduced regression 752 

methods, for the Australian dataset.  753 

  α1 α2 Smax (mm) d (month-1) 

Mean and range (calibrated 0.62 0.74 258 0.66 
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values) [0.40; 0.74] [0.42; 0.80] [36.5; 500] [0.10; 1] 

Full 

regression 
r2 0.95 0.96 0.95 0.96 

 MAE 0.017 0.022 34 0.10 

Reduced 

regression 
r2 

0.20 0.09 0.17 0.06 

 MAE 0.038 0.057 86 0.24 

 754 

Table 4. Performance statistics, r
2
 and root mean square error (RMSE), for the four model 755 

parameterizations for the Australian and US catchments 756 

 Australia US  

Qtot 

 

Qmin 

 

Qtot  Qmin   

r
2
 RMSE r

2
 RMSE r

2
 RMSE r

2
 RMSE  

Calibration 0.98 42.4 0.90 2.4 0.96 108.9 0.88 9.29  

Full regression 0.96 47.8 0.84 2.3 0.92 167.5 0.55 9.92  

Reduced regression 0.87 88.6 0.53 3.9 0.92 159.3 0.53 9.37  

Mean 0.87 89.5 0.55 4.0 0.92 173.2 0.51 9.34  

 757 

Table A1. Parameter levels used in the sensitivity analyses, corresponding to the minimum, 25
th
, 50

th
, and 758 

75
th
 percentiles, and maximum parameter values. 759 

Parameter  Min 25th 50th 75th Max 
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Smax (mm) 133 200 266 333 399 

α1 0.30 0.45 0.60 0.75 0.90 

α2 0.30 0.45 0.60 0.75 0.90 

d 0.33 0.5 0.66 0.83 1.0 

 760 

Table B1. List of basins removed from Newman’s dataset (Newman et al., 2015), due to issues with the 761 

time series. Other basins showed short gaps in the time series but the effect on the long-term average 762 

was deemed minor. R is the reported average daily runoff in 763 

basin_annual_hydrometeorology_characteristics_daymet.txt (from Newman et al.’s dataset); P is the 764 

reported average daily precipitation in basin_annual_hydrometeorology_characteristics_daymet.txt; <q> 765 

is the calculated average runoff from daily discharge and basin area; <p> is the calculated average 766 

precipitation from daily precipitation 767 

Basin Issue 

03 02108000 

NE Cape Fear, NC 

Area and elevation in basin_characteristics file do 

not match USGS website or information in gage 

information file 

03 02310947 

Withlacoochee River near Cumpressco, FL 

Multiple, long, discontinuous gaps in the 

streamflow record 

03 02381600 

Fausett Creek near Talking Rock, GA 

Calculated average runoff from daily values, <q> 

is >1.5*reported average daily runoff, R 

05 03357350 

Plum Creek near Bainbridge, IN 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

09 05062500 Calculated average runoff from daily values, <q> 
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Wild Rice River at Twin Valley, MN is >1.5*reported average daily runoff, R 

09 05087500 

Middle River at Argyle, MN 

Calculated average runoff from daily values, <q> 

is >1.5*reported average daily runoff, R 

09 05120500 

Wintering River near Karlsruhe, ND 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

10 06468250 

James River near Kensal, ND 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

10 06441500 

Bad River near Fort Pierre, SD 

Multiple long gaps in streamflow record 

11 07067000 

Current River at Van Buren, MO 

Area and elevation in basin_characteristics file do 

not match USGS website or information in gage 

information file 

12 08079600 

Brazos River at Justiceburg, TX 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

15 09484000 

Sabino Creek near Tucson, AZ 

Multiple extended gaps in streamflow record 

throughout  

15 09492400 

East Fork White River near Apache, AZ 

Calculated average runoff from daily values, <q> 

is >1.5*reported average daily runoff, R 

16 10166430 

West Canyon Creek near Cedar Fort, UT 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

16 10172700 

Vernon Creek near Vernon, UT 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

16 10172800 

South Willow Creek near Grantsville, UT 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

16 10242000 Calculated runoff from daily values, <q>, is less 
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Coal Creek near Cedar City, UT than 50% of reported average daily runoff, R 

16 10249300 

South Twin River nr Round Mountain, NV 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

18 10259200 

Deep Creek near Palm Desert, CA 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

18 10263500 

Big Rock Creek near Valyermo, CA 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

18 11253310 

Cantua Creek near Cantua Creek, CA 

Calculated runoff from daily values, <q>, is less 

than 50% of reported average daily runoff, R 

17 12040500 

Queets River nr Clearwater, WA 

Runoff ratio is greater than 1; <q> is greater than 

<p> 

17 12041200 

Hoh River nr Forks, WA 

Runoff ratio is greater than 1; <q> is greater than 

<p> 

17 12056500 

NF Skokomish River near Hoodsport, WA 

Runoff ratio is greater than 1; <q> is greater than 

<p> 

17 12147500 

NF Tolt River near Carnation, WA 

Runoff ratio is greater than 1; <q> is greater than 

<p> and R is greater than P 

17 12147600 

SF Tolt River near Index, WA 

Runoff ratio greater than 1; R is greater than P 

17 12167000 

NF Stillaguamish River near Arlington, WA 

Runoff ratio greater than 1; <q> is greater than 

<p> and R is greater than P 

17 12186000 

Sauk River near Darrington, WA 

Runoff ratio greater than 1; <q> is greater than 

<p> and R is greater than P 

17 14158500 

McKenzie River near Clear Lake, OR 

Runoff ratio greater than 1; <q> is greater than 

<p> 
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17 14400000 

Brookings, OR 

Runoff ratio greater than 1; <q> is greater than 

<p> and R is greater than P 

 768 

 769 

  770 
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FIGURES 771 

Figure 1. “Limits” concept used for water partitioning in DWBM. The concept is used to partition both the 772 

precipitation (P) between wetting (W) and direct runoff, and the wetting between evapotranspiration (ET) 773 

and storage. The α parameters determine how close the variables are from their limits (dashed lines). 774 

 775 

Figure 2. Distribution of the 89 Australian (left) and 641 US (right) catchments used in this study, with 776 

associated aridity index values. Grey-scale background on the US map delineate the HUC2 regions 777 

(darker colors represent higher HUC number). 778 

 779 

Figure 3. Sensitivity of minimum flow (Qmin) to each model parameter. Grey lines represent the relative 780 

error in parameter values from the regression model (Section 3.1) 781 

   782 

Figure 4. Comparison of observed minimum flow Qmin, with predictions from the calibrated and mean-783 

value parameterizations for Australian catchments. Note that the plot window excludes between 12 and 784 

16 catchments with high values of Qmin. rmse=root mean square error in mm/mo  785 

 786 

Figure 5. Comparison of observed minimum flow Qmin, with predictions from the calibrated and mean-787 

value parameterizations for US catchments. Note that the plot window excludes between 12 and 16 788 

catchments with high values of Qmin. rmse=root mean square error in mm/mo 789 

 790 

 791 
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Figure 6. Predictions for Qmin (a) and Qtot (b) resulting from a hypothetical land use change – i.e. a change 792 

in α1 and α2 values – for both the calibrated and the mean-value models.  Each point represents one 793 

catchment under either 10% (black) or 20% (grey) relative increase or decrease in α1 and α2. All values in 794 

the bottom-left quadrant represent an increase in α1 and α2, while all values in the top-right quadrant 795 

represent a decrease in the two parameters. Dashed lines represent a 50% difference between the 796 

calibrate and mean-value predictions. RMSE for Qmin is 0.36 for the “10% change” and 1.2 for “20% 797 

change”. For the increase in α1 and α2 (bottom-left quadrant), representing afforestation, RMSE for “20% 798 

change” is 0.13. 799 

 800 

Figure A1. Climate types used in this study: humid continental (Cleveland), subtropical with dry-summer 801 

(Nairobi), tropical with dry-winter (San Jose) 802 

 803 
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Figure 1. “Limits” concept used for water partitioning in DWBM. The concept is used to partition both the 

precipitation (P) between wetting (W) and direct runoff, and the wetting between evapotranspiration (ET) 

and storage. The α parameters determine how close the variables are from their limits (dashed lines). 
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Figure 2. Distribution of the 89 Australian (left) and 641 US (right) catchments used in this study, with 

associated aridity index values. Grey-scale background on the US map delineate the HUC2 regions 

(darker colors represent higher HUC number). 
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Figure 3. Sensitivity of minimum flow (Qmin) to each model parameter. Grey lines represent the relative 

error in parameter values from the regression model (Section 3.1) 
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Figure 4. Comparison of observed minimum flow Qmin, with predictions from the calibrated and mean-

value parameterizations for Australian catchments. Note that the plot window excludes between 12 and 

16 catchments with high values of Qmin. rmse=root mean square error in mm/mo   
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Figure 5. Comparison of observed minimum flow Qmin, with predictions from the calibrated and mean-

value parameterizations for US catchments. Note that the plot window excludes between 12 and 16 

catchments with high values of Qmin. rmse=root mean square error in mm/mo 
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Figure 6. Predictions for Qmin (a) and Qtot (b) resulting from a hypothetical land use change – i.e. a change 

in α1 and α2 values – for both the calibrated and the mean-value models.  Each point represents one 

catchment under either 10% (black) or 20% (grey) relative increase or decrease in α1 and α2. All values in 

the bottom-left quadrant represent an increase in α1 and α2, while all values in the top-right quadrant 

represent a decrease in the two parameters. Dashed lines represent a 50% difference between the 

calibrate and mean-value predictions. RMSE for Qmin is 0.36 for the “10% change” and 1.2 for “20% 

change”. For the increase in α1 and α2 (bottom-left quadrant), representing afforestation, RMSE for “20% 

change” is 0.13. 
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Figure A1. Climate types used in this study: humid continental (Cleveland), subtropical with dry-summer 

(Nairobi), tropical with dry-winter (San Jose) 
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