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Circulating angiogenic cell population responses to 10 days of reduced
physical activity

Gayatri Guhanarayan, Julianne Jablonski, and Sarah Witkowski
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Guhanarayan G, Jablonski J, Witkowski S. Circulating angio-
genic cell population responses to 10 days of reduced physical
activity. J Appl Physiol 117: 500–506, 2014. First published July 10,
2014; doi:10.1152/japplphysiol.00087.2014.—Circulating angiogenic
cells (CACs) are a diverse group that have been identified as predic-
tors of cardiovascular health and are inversely proportional to cardio-
vascular disease (CVD) outcomes. Inactivity is a growing concern in
industrialized nations and is an independent risk factor for CVD.
There is limited evidence regarding the impact of reduced physical
activity (rPA) on different CAC populations. The purpose of this
study was to evaluate the effect of objectively monitored rPA with
maintained energy balance on two CAC populations (CFU and
CD34� cells), intracellular nitric oxide (NOi), and genes related to
NO production in active, healthy men. Participants (age 25 � 2.9 yr)
refrained from structured physical activity for 10 days, which was
reflected by a significant reduction in time in vigorous � very
vigorous intensity activity (P � 0.03). Sedentary time tended to
increase (P � 0.06) with rPA. CFU CACs have been characterized as
mainly monocytic and lymphocytic cells. We found significant reduc-
tions in both the number of CFU CACs (�35.69%, P � 0.01) and
CFU CAC NOi (�33.84%, P � 0.03). Neither NOi nor the number of
CD34� cells, which are hematopoietic and endothelial progenitors,
changed with rPA. We found no significant differences in NO-related
gene expression or oxidative stress-related gene expression with rPA
in either CAC type. Therefore, we conclude that although various
CAC populations have been related to vascular health, regular phys-
ical activity is necessary to maintain CAC NOi and the vulnerability
of CACs to short-term reductions in physical activity is population
specific.

endothelium; vascular repair; nitric oxide; cardiovascular regenera-
tion; exercise; sedentary behavior

FEWER THAN 5% OF ADULTS IN the United States meet the current
guidelines for physical activity (53). Physical inactivity is a
major independent risk factor for cardiovascular disease
(CVD) and is associated with diabetes mellitus, high choles-
terol, and obesity (1, 5, 7, 8, 52). Endothelial dysfunction
underlies the pathophysiology of cardiometabolic disease, and
recent studies show that endothelial dysfunction occurs with
physical inactivity (9, 10, 15, 24). Reduced nitric oxide (NO)
bioavailability is a significant determinant of endothelial dys-
function. A growing body of evidence suggests that circulating
cells with angiogenic potential (i.e., circulating angiogenic
cells, CACs) contribute to proper endothelial health and func-
tion, however, the role of NO within CACs and the influence
of lifestyle factors such as physical activity, are largely un-
known.

Since the discovery of CD34� endothelial progenitors with
vascular regenerative capacity (4), other cell types have been

identified that support blood vessel growth and repair. CACs
are a diverse group of cells from both endothelial and hema-
topoietic lineages (21, 60). Some CACs have the capacity to
differentiate into mature endothelial cells, incorporate into
preexisting vasculature, and form new blood vessels, whereas
other CACs support vascular repair via a paracrine mechanism
by which they secrete factors to assist repair of damaged
endothelium (21, 41, 59–61). Characterization of individual
CAC populations and discovery of the mechanisms by which
they specifically contribute to cardiovascular health can im-
prove the efficacy of cell-based treatment.

Evidence suggests that physical activity alters the number
and function of some CAC types. For example, fewer colony-
forming unit (CFU) CACs are found in sedentary compared
with active young men (34), and acute exercise increases the
number of CD34�/VEGFR2� CACs (38, 54). Only one study
has evaluated the influence of reduced physical activity on
CACs. Witkowski et al. showed that the number CD34�

hematopoietic CACs decreased with 10 days of short-term
reduced physical activity (rPA) in older, highly trained men,
and that the change in CD34�/VEGFR2� cells in peripheral
blood significantly predicted the change in the reactive hyper-
emic forearm blood flow response with reduced activity (57).
NO has been shown to be necessary for proper cell migration
and neovascularization in some CAC types (22, 27, 55) and is
deficient in cardiometabolic disease states (12, 58). CAC NO
production can be influenced by activity and expression of
endothelial nitric oxide synthase (eNOS), the enzyme that
catalyzes the production of NO. Other forms of eNOS regula-
tion include inhibition when it is bound to caveolin 1 (17), and
activation via the histone deacetylase sirtuin 1 (40). In addition,
superoxide production and the activity of the prooxidant en-
zyme NADPH oxidase can disrupt the beneficial physiological
effects of NO in CACs. (22) Cross-sectional studies have
shown that the detrimental effect of a low-active lifestyle on
CFU CACs may be related to decreased intracellular NO
(NOi), which is at least partially due to higher NADPH oxidase
and cellular oxidative stress (34). However, CD34� CAC NOi
was higher, and there was greater expression of nitro-oxidative
stress-related genes in cells from sedentary young men com-
pared with active young men (33). Therefore, the effect of
regular exercise and changes in activity on different CAC
populations, NO, and the role of oxidative stress is unclear.

Studies on inactivity and vascular function have used a
variety of experimental models, including spinal cord injury,
bed rest, and limb immobilization. These studies have revealed
drastic changes in cardiorespiratory capacity, vessel structure,
and endothelial function with severe inactivity (9, 14, 47, 48).
In many of these cases, the results are attributed to long-term
inactivity and may be influenced by confounding factors such
as inflammation, changes in energy balance, and body mass
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index (28, 50). Longitudinal designs that incorporate short-
term transitions from regular, cardioprotective activity patterns
to lower activity levels may illuminate early and modifiable
factors that are related to deteriorating cardiometabolic health.
This information could improve current physical activity pre-
scription and health recommendations. Therefore, the purpose
of this study was to use an objectively monitored model of 10
days of rPA in endurance-trained men to determine the effects
on two different CAC populations (CFU and CD34�), NOi,
NO-related CAC gene expression, and oxidative stress-related
CAC gene expression. Participants maintained energy balance
during rPA to evaluate the independent effect of rPA. We
hypothesized that CACs would be fewer in number and dem-
onstrate lower NOi following rPA. We evaluated the expres-
sion of genes related to eNOS activity and NADPH-related
oxidative stress to identify their potential role in inactivity-
induced CAC responses.

METHODS

Subjects. The University of Massachusetts Institutional Review
board approved all protocols. Written informed consent was obtained
from all participants. Participants were healthy, nonsmoking, physi-
cally active men aged 19–47 with a training history of at least 5 yr.
Medical and physical activity questionnaires were administered, and
resting blood pressure and lipid profile were assessed to verify that
participants engaged in moderate to intense endurance exercise at
least 3 days a week; were free of diabetes, cancer, and cardiovascular,
lung, and liver disease; and were not taking any medications that
could influence CAC number or function (46). Prior to testing,
participants were required to refrain from caffeine and alcohol for 24
h. Because dietary nitrate may influence blood pressure and endothe-
lial function (30), participants adhered to a low-nitrate diet for 72 h
prior to testing. Participants were instructed to engage in a typical
exercise session that was to be completed 24 h prior to their baseline
visit.

Physical activity and energy expenditure. Physical activity level
was assessed via an accelerometer (GT3X; ActiGraph, Pensacola, FL)
that was worn on the left hip for 7 days prior to baseline testing. To
assess steps/day independent of structured exercise, participants wore
an Omron pedometer during the baseline period, which was removed
during exercise sessions. Both devices were used to monitor the 10
days of rPA in which participants were instructed to cease structured
exercise and maintain their baseline nonexercise step count. Activity
logs completed by participants were used to supplement the physical
activity data. ActiGraph acceleration signal outputs were evaluated
using ActiLife software (version 5.9.1). Freedson cut points (23) were
used to evaluate baseline and rPA minutes/day spent in sedentary
[�1.5 metabolic equivalent (MET)], light (�2.99 MET), moderate
(3.0–5.99 MET), vigorous (6.0–8.99 MET), and very vigorous (�9.0
MET) activity. MET cut point values are widely used in physical
activity measurement to align activity monitor counts with absolute
activity intensity (3), however, they do not reflect relative intensity or
the exact energy cost of activity. To prescribe caloric intake during
10-day rPA, ActiGraph data from the baseline week were analyzed
with the nonlinear regression artificial neural network developed by
Staudenmayer et al. (49) to calculate the energy expenditure (kcal/
day) for all activities �3 MET.

Dietary monitoring and energy intake. Energy intake was assessed
via the Automated Self-Administered 24-h dietary recall (ASA24;
National Cancer Institute, Bethesda, MD) three times per week (2
weekdays and 1 weekend day) over the course of the baseline week.
The data from the dietary recalls were used to calculate each
participant’s average energy intake (kcal/day). Based on the base-
line energy expenditure (described above) and intake data, each

participant was given a goal for daily caloric intake for their 10
days in rPA to maintain energy balance during the reduction in
expenditure. Participants logged daily energy intake on myfitness-
pal (http://www.myfitnesspal.com) and were monitored by study
personnel to ensure participants attained their daily goals.

CFU CAC assay. Venous blood (60 ml) was collected into EDTA-
coated tubes following 30 min of quiet supine rest during the baseline
visit and following 10 days of rPA. CFU cells were cultured after the
baseline and final visits. The CFU assay (CFU-Hill; StemCell Tech-
nologies, Vancouver, BC, Canada) is a 5-day culture method devel-
oped by Hill et al. to assess CACs on the basis of CFU growth (29).
Briefly, peripheral blood mononuclear cells (PBMCs) were isolated
from the blood samples via density centrifugation with Ficoll-Paque
(GE Healthcare, Pittsburgh, PA). PBMCs were placed at a density of
5 � 106 cells per well in fibronectin-coated plates with growth
medium. Cells were cultured for 2 days (37°, 5% CO2, 95% humid-
ity). After 2 days, nonadherent cells were removed and counted.
Nonadherent cells (1 � 106) were replated on day 2 into wells of a
24-well fibronectin-coated plate with fresh CFU media. Cells were
cultured under the same conditions for 3 more days. On day 5, an
investigator blinded to the experimental condition counted the number
of CFUs. A CFU was characterized as a cluster of cells that form a
round center with outward radiating cells, and quantified as average
CFU/well.

CD34� cell isolation. PBMCs were isolated via density centrifu-
gation, then CD34� cells were isolated from the PBMC population
with magnetic beads (StemCell Technologies). Briefly, PBMCs were
suspended in phosphate-buffered saline (PBS) � 2% fetal bovine
serum (FBS) with EDTA at a density of 2 � 108 cells/ml. A CD34�

selection antibody cocktail was added at a concentration of 100 	l/ml
and incubated at room temperature for 15 min. CD34� magnetic
nanoparticles were added (100 	l/ml) and incubated for 10 min.
PBS � 2% FBS with EDTA was added to a volume of 2.5 ml, then
the tube was placed in the separation magnet for 10 min. Following
incubation, the supernatant was removed to eliminate non-CD34�

cells, and the procedure was repeated to further purify the CD34�

population. After the second incubation, the CD34� cells were col-
lected in a hemocytometer and counted. Flow cytometry analysis
revealed that this protocol enriched cells to 60% purity, which is
similar to the purity reported by Jenkins et al. (33) and greater than
CD34� enrichment reported in studies by Asahara et al. (4) and
Schatteman et al. (26, 43, 44), which ranged from 16% to 50%.

Intracellular NO. NOi was measured in freshly isolated CD34�

cells and CFU cultured cells using 4-amino-5-methylamino-2=,7=-
difluorofluorescein (DAF-FM) diacetate fluorescent dye (Invitrogen,
Carlsbad, CA). DAF-FM diacetate emits fluorescence when reacting
with an intermediate of NO as NO is oxidized to NO2

�. DAF-FM in
PBS (10 	M) was added to 1.5 � 105 cells and incubated for 60 min
at 37°C. NOi was measured with a fluorescence plate reader
(PolarStar Optima, BMG Labtech) with excitation and emission
wave lengths of 485 and 520 nm, respectively. Each assay included
control wells with 1) unloaded cells to control for autofluores-
cence, 2) DAF-FM dye without cells, and 3) PBS alone. In
addition, SIN-1, a nitric oxide donor, was added in known con-
centrations to each plate as positive controls. Intra-assay and
interassay variabilities were 6.5% and 1.1%, respectively.

Extracellular nitric oxide. To evaluate whether rPA influenced NO
release by CFU-CAC into the media, nitrate/nitrite content in the
media was measured with the Griess Assay (Cayman, Ann Arbor, MI)
via the manufacturer’s specifications. Briefly, this assay converts
nitrate to nitrite with the enzyme nitrate reductase then uses Griess
reagents to convert nitrite into the azo chromophore compound, which
can be evaluated through reading the absorbance at 540 nm. Media
collected from cultured CFU CACs (day 5) at baseline and following rPA
was thawed on ice and assayed in triplicate along with standards on a
single plate. The intra-assay coefficient of variation was 7.93 � 4.45%.
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RNA isolation and gene expression. Gene expression was assessed
via real-time PCR (RT-PCR). RNA was isolated from freshly isolated
CD34� cells and CFU CACs with TRIzol reagent (Invitrogen, Carls-
bad, CA) according to the manufacturer’s specifications. RNA was
quantified on a spectrophotometer (NanoDrop; Thermo Scientific,
Agawam, MA) via 260/280 nm, and reverse transcribed with iScript
reverse transcriptase and a CFX96 RT-PCR machine (BioRad, Her-
cules, CA). Primer pairs (Integrated DNA Technologies, Coralville,
IA) for each gene were designed and optimized to determine the
optimal temperature and concentration for an efficiency of �90%
using EvaSsofast PCR mastermix (BioRad). All gene expression
analyses were run in triplicate and GAPDH was used as a control gene
for each sample. We analyzed genes known to contribute to the
production of NO (eNOS, iNOS, Sirt1, and Cav1), and genes related
to NADPH oxidase and the production of oxidative stress (Nox2,
Nox4, p47phox, and SOD1), which can reduce NO production. For-
ward and reverse primer sequences are found in Table 3. Messenger
RNA expression of the target gene was calculated as 2�
CT, where

CT is the CT of the target gene minus GAPDH control for each
condition. Fold change in gene expression is calculated relative to the
baseline condition.

Statistical analyses. Paired Student’s t-tests were used to determine
differences from before to after 10 days of rPA in the number of CFU
CACs, CFU NOi, CFU extracellular NO (NOe), number of CD34�

CACs, CD34� NOi, and gene expression from each CAC type. Statistical
significance was accepted at � � 0.05. Data are presented as means � SE.

RESULTS

Participant characteristics. Ten participants were recruited
and completed this study. One participant was excluded
from all analyses because he did not adhere to the caffeine
and alcohol restrictions during the 24 h required prior to
testing. Adherence to the 10-day rPA protocol was verified
with the ActiGraph monitor data. One participant was ex-
cluded from all analyses because the ActiGraph data re-
vealed increased moderate to vigorous physical activity
(MVPA, 21%) with rPA.

Blood pressure, heart rate, and lipid profile did not change
with rPA compared with baseline (Table 1). Subjects had a
history of 11.5 � 1.9 yr of regular physical activity, exercised
5.4 � 0.3 days/wk, and ran 21.3 � 3.7 miles/wk. ActiGraph
data from their baseline week verified that participants engaged
in regular high-intensity physical activity. Neural network
analysis revealed that the average energy expenditure for
activities �3 MET was 361 � 77 kcal/day. The average
baseline energy intake from dietary recalls was 1,980 � 343

kcal/day. There was no weight change with rPA (P � 0.98;
Table 1), indicating that the prescribed decrease in energy
intake during rPA successfully maintained energy balance in
participants.

Physical activity. Table 2 includes data on monitored phys-
ical activity separated by category. The data file from one
participant was corrupted and could not be evaluated. Acti-
Graph physical activity data verified that with rPA, participants
significantly decreased high-intensity structured exercise (vig-
orous and very vigorous) by 45 � 22% (P � 0.03). There were
slight but nonsignificant decreases in moderate, lifestyle, and
light activities. Sedentary time tended to increase (P � 0.06)
with rPA. Pedometer data indicated that average steps/day did
not significantly decrease between baseline and rPA.

CAC number, NOi, and NOe. Reduced physical activity was
associated with a 35.69% reduction in CFU CACs from base-
line (16 vs. 10 colonies, P � 0.01; Fig. 1). The average number
of CD34� CACs did not change with rPA (P � 0.68; Fig. 1).
CFU-Hill NOi decreased by 33.84% with rPA (P � 0.03).
CD34� CAC NOi was not significantly decreased with rPA
(P � 0.56; Fig. 2). NOe was not different between baseline and
rPA (18.6 � 1.44 vs. 17.85 � 1.68, P � 0.33).

CAC gene expression. In both CAC types, we evaluated
genes that contribute to the production of NO (eNOS, iNOS,
Sirt1, and Cav1) and oxidative stress (Nox2, Nox4, p47phox, and
SOD1). Reduced physical activity did not significantly alter
expression of any gene that contributes to the production of NO
or those related to oxidative stress (all P � 0.05; Table 3). The
largest fold change in gene expression relative to baseline was
in CFU CAC eNOS and iNOS (4.7 � 2.2, P � 0.13 and 4.8 �
2.5, P � 0.19, respectively), however, due to individual vari-
ability in the response, these changes did not reach signifi-
cance.

DISCUSSION

The key finding of this study was that the two types of CACs
we evaluated—CD34�-enriched and CFU CACs—had differ-
ent responses to 10 days of rPA, with significant decreases in
CFU CACs and no change in CD34� CACs. Second, we
observed a decrease in intracellular NO only in CFU CACs
with rPA. We detected no difference in CAC NO-related gene
expression or oxidative stress-related gene expression, and no
change in extracellular NO with rPA in CFU CACs. Impor-
tantly, in this carefully controlled model of rPA, we objectively
measured the physical activity of our participants to quantify

Table 1. Subject characteristics

Baseline Reduced Physical Activity*

Characteristic Means � SE Means � SE P

Age, yr 25 � 2.9
Height, inches 70.8 � 1.0
Weight, kg 75.7 � 2.7 75.7 � 2.7 0.94
SBP, mmHg 122.4 � 5.4 121.6 � 6.3 0.93
DBP, mmHg 72.8 � 4.4 68.5 � 2.2 0.39
HR, bpm 78.6 � 4.0 86.25 � 4.8 0.24
TC, mg/dl 141.4 � 12.2 149.3 � 14.2 0.68
TG, mg/dl 54.7 � 6.5 54.6 � 9.5 0.99
HDL, mg/dl 50 � 4.7 48.4 � 5.7 0.84
LDL, mg/dl 80.5 � 9.4 89.9 � 9.7 0.50

SBP, systolic blood pressure; DBP, diastolic blood pressure, HR, heart rate;
bpm, beats per minute; TC, total cholesterol; TG, triglycerides; HDL, high-
density lipoprotein; LDL, low-density lipoprotein. *10 days, n � 8.

Table 2. Physical activity

Baseline rPA

Category Means � SE Means � SE P

Sedentary 654.76 � 29.18 731.12 � 35.73 0.06
Light 28.28 � 3.38 22.03 � 1.90 0.14
Lifestyle 24.66 � 2.52 19.50 � 1.47 0.10
Moderate 64.73 � 9.84 54.50 � 7.39 0.16
Vigorous 20.42 � 4.59 10.50 � 2.38 0.07
Very vigorous 9.32 � 3.12 2.10 � 1.43 0.09
MVPA 94.50 � 12.44 67.10 � 8.02 0.11
Vigorous � Very vigorous 29.74 � 5.02 12.60 � 3.14 0.03
Steps/day 6640 � 877.8 6447 � 1390.4 0.90

Physical activity (min/day) measured via Actigraph; cut points from Freed-
son et al. (23). n �7. MVPA, moderate to vigorous physical activity.
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the rPA and we used energy expenditure and caloric intake
measures to ensure that participants remained in energy bal-
ance during rPA.

Recent evaluations of CACs suggest that the different pop-
ulations may have varied functions in vascular health and
integrity (21). CFU CACs are a mixed population of cells that
consist of monocytes and T-lymphocytes, and a few endothe-
lial progenitors (16, 31, 41). Desai et al. characterized these
cells via microarray and flow cytometry as �75% CD3�/
CD45� T-cells (16). These immune cells support endothelial
growth and repair via the release of angiogenic cytokines and
growth factors because CFU CAC-conditioned media sup-
ported the vascular network formation in vitro (31, 41, 59).
There is increasing recognition that immune cell populations
have a provascular function (21). The inverse relationship
between the Framingham risk score for CVD and CFU CACs,
and correlations between CFU CACs and vascular function
(29) reveal that they have an association with cardiovascular
outcomes. Furthermore, Weil et al. recently described that
CD3�/CD31� angiogenic T-cell migratory capacity was re-

lated to the forearm blood flow response to acetylcholine and
Framingham risk score (56). The accumulating evidence sug-
gests that immune cells likely play a role in cardiovascular
homeostasis. Therefore, it will be important to continue to
evaluate the impact of changes in physical activity behavior on
these cells as potential modulators of endothelial function and
cardiovascular disease.

CD34� cells are hematopoietic and endothelial progenitors
shown to contribute to vessel formation and endothelial repair
(6). The number of circulating CD34� cells is an independent
predictor of cardiovascular events, and low CD34� number is
related to prediabetes and metabolic syndrome (18, 19).
CD34� CACs have also been used for their therapeutic poten-
tial in a number of CVD clinical trials (20, 45). Therefore,
CD34� CACs may be a functional biomarker for cardiometa-
bolic disease. According to our previous work (57) in which
we utilized the same 10-day rPA protocol as the current study
with highly active older male runners (mean age 62, with a
training history of 32 � 3 yr), we hypothesized that we would
observe a significant decline in CD34� in our younger active
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Fig. 1. Number of colony-forming unit (CFU) circulat-
ing angiogenic cells (CACs) (A) and CD34� cells (B) at
baseline and following reduced physical activity (rPA).
*Significantly different from baseline, P � 0.05, n � 8.
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Fig. 2. Intracellular nitric oxide (NOi) mea-
sured in relative fluorescence units (RFUs) for
CFU CACs (A) and CD34� CACs (B) at base-
line and following rPA. *Significantly different
from baseline, P � 0.05, n � 8.
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men as we observed in the older men. However, 10 days of
rPA was not related to lower CD34� number, NOi, or
changes in expression of NO stress-related genes or oxida-
tive stress-related genes. Therefore, we interpret these find-
ings that CD34� CACs may be more resistant to short-term
rPA compared with CFU CACs in young men, but that the
susceptibility to changes in CD34� CACs with rPA may be
increased with age; however, further investigations are nec-
essary to confirm this hypothesis.

NO has been shown to be essential for proper function of
angiogenic cell populations. NO is important for CAC motility
and may be a critical component of paracrine signaling to
promote vascular repair and growth (2, 36, 51). In endothelial
cells, several factors have been shown to regulate NO, includ-
ing eNOS expression, phosphorylation, and direct binding of
eNOS with cavelolin-1 (17). Also, Sirt1, an NADP�-depen-
dent molecule, indirectly increases NO via deacetylation (ac-
tivation) of eNOS (40). We found that decreases in CFU CAC
NOi were independent of changes in eNOS, Cav1, and Sirt1
gene expression. However, we assessed gene expression only
in CACs, and a complete evaluation of the involvement of
these NO regulatory mechanisms necessitates other molecular
approaches. Therefore, given the association between CAC
function and NO biology, further studies should be conducted
to confirm the role of these NO regulatory mechanisms in
various CAC populations.

In endothelial cells and CACs, oxidative stress from the
enzyme NADPH oxidase has been shown to decrease NO
production via eNOS uncoupling (32, 34, 37, 39). Jenkins et al.
(34) reported significantly higher CFU CAC NOi in high-
active compared with low-active men that was partially recov-
ered in the CFU CACs from low-active men upon NADPH
oxidase inhibition. Our data support the importance of regular
physical activity to maintain CFU CAC NOi; however, we did
not observe any significant changes in gene expression of any
measured NADPH subunits in CACs with rPA as observed in
other studies. Furthermore, iNOS, which is activated with
inflammation and oxidative stress (13, 22), has been reported to
be greater in CD34� CACs of sedentary (�20 min/day on �2
day/wk) men compared with active men (33). Although we

observed a greater than fourfold increase in CFU CAC iNOS
expression, the change was variable and not significant. There-
fore, overall, the reduction in CFU CAC NOi with rPA ob-
served in our study does not appear to be caused by oxidative
stress, which may be due to the relatively short nature of the
acute reduced physical activity.

The current study is novel in that it included objective
physical activity monitoring, which allowed evaluation of
changes in various components of physical activity and con-
firmation of whether or not all subjects met the inclusion
criteria and adhered to the protocol. The greatest changes in
physical activity in our participants were reduced time in vigorous
and very vigorous activity and increased sedentary time, indicat-
ing that as prescribed, they specifically reduced time in structured,
intense exercise, and as a result, spent more time being inactive.
Recent studies suggest that physical activity and sedentary behav-
ior may have independent and specific contributions to cardio-
metabolic disease (1, 5, 11, 35). Therefore, more studies are
necessary to explore the independent effects of increased seden-
tary time and decreased physical activity on cardiovascular out-
comes.

Limitations. The study has some limitations including a
small sample size, age and sex of participants, and may not be
generalizable to other populations. Our study provides a foun-
dation for future studies that may include pharmacologic ma-
nipulations of NADPH, NO, and oxidative stress to evaluate
the mechanisms related to changes in NOi. CFU CACs in the
current study are a mixed population of cells, and their role in
vascular function and cardiovascular disease remains unclear.
As mentioned previously, these CACs are largely monocytes
and T-lymphocytes (16, 41). Monocytes cultured under angio-
genic conditions have been shown to mimic the endothelial
progenitor phenotype and to express endothelial genes and
proteins (42). However, CFU-Hill colonies will not form when
monocytes or T-cells are depleted from the culture (41, 42).
These data indicate that although monocytes and T-cells in
combination possess an in vitro function that appears to be
vasculo-protective, the contribution and function of these cells
in vivo is largely unknown. We believe that their association
with CVD and CVD risk (29) and discovery of more cell types

Table 3. RT-PCR genes, primer sequences, and change in gene expression with rPA

CFU-CAC CD34� CAC

Symbol Gene name Primer sequence Fold 
 P Fold 
 P

eNOS Endothelial nitric oxide synthase F: GAGGGGAGCTGTTGTAGGG 4.7 � 2.2 0.13 1.0 � 0.2 0.93
R: GTGGTAACCAGCACATTTGG

Cav1 Caveolin 1 F: AATACTGGTTTTACCGCTTGCT 2.2 � 0.8 0.24 1.4 � 0.4 0.47
R: ATGCCGTCAAAACTGTGTGTC

Sirt1 Sirtuin 1 F: CAGTGGCTGGAACAGTGAGA 1.5 � 0.3 0.43 2.2 � 1.1 0.39
R: TCTGGCATGTCCCACTATCA

SOD1 Superoxide dismutase 1 F: ATGACTTGGGCAAAGGTGGAAATG 1.2 � 0.2 0.46 1.0 � 0.2 0.97
R: GTTAAGGGGCCTCAGACTACATCC

Nox2 (CYBB) NADPH oxidase 2; Cytochrome
b(�245) beta

F: AGGATTGCCTGAAGGGTTCT 1.1 � 0.2 0.71 1.2 � 0.2 0.56
R: AGGGCTAGCTGGAGAAGACC

Nox4 NADPH oxidase 4 F: CAGAAGGTTCCAAGCAGGAG 1.7 � 0.6 0.28 0.9 � 0.2 0.85
R: GTTGAGGGCATTCACCAGAT

P47-phox (NCF1) Neutrophil cytosolic factor 1 F: CACGGACAACCAGACAAAAA 1.1 � 0.2 0.80 0.9 � 0.1 0.84
R: AGAACCACCAACCGCTCTC

iNOS inducible NOS F: GGCCGCAGAGAACTCAGCCTCA 4.8 � 2.5 0.19 0.9 � 0.2 0.85
R: CTCAAAACAGCCGCTTCCCCAGAA

Fold 
, change in mRNA expression relative to the baseline condition, n � 8. F, forward; R, reverse.
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with cardiovascular potential such as angiogenic T-cells, indi-
cate that further studies on immune cells and vascular function
are necessary.

We identified CD34� cells with a single surface marker; this
population contains subpopulations (i.e., CD34�/VEGFR2�),
and differences in responses of these subpopulations may have
contributed to some variability in our data. CD34� cells are
found in small quantities in peripheral blood; therefore, acqui-
sition of enough cells for NOi and gene expression analysis
would have required collecting large amounts of blood from
participants. CD34� cell marker is ubiquitous to hematopoietic
and endothelial progenitor cells and was the original marker
that identified endothelial progenitor cells (4). Although it is
still currently used as the identifying marker for isolation and
use of cells in cardiovascular regenerative therapies (45),
isolation of specific CD34� populations may improve the
understanding of diversity in circulating angiogenic cells.

Conclusion. The present study used an acute reduction in
structured physical activity with maintenance of energy bal-
ance to evaluate initial cellular and molecular events related to
cardiovascular function. Our results indicate that two types of
cells that have both been characterized as circulating angio-
genic cells responded differently to our intervention, finding no
changes in CD34� CACs but significant reductions in CFU
CACs and CFU CAC NOi. These data highlight the diversity
of cells that may contribute to cardiovascular homeostasis and
that individual populations of CACs may be more vulnerable to
the effects of changes in physical activity and sedentary time.
Understanding disease-related physiological changes that oc-
cur independently with reduced physical activity and increased
sedentary behavior have the potential to identify novel targets
for the prevention of disease, improve current physical activity
and health recommendations, and change leisure time physical
activity behavior and workplace physical activity policies (25).
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