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Abstract 8 

This paper establishes a novel approach to estimate monthly and annual direct runoff by 9 

combining the curve number method of the Natural Resources Conservation Service with an 10 

exponential distribution of rainfall depths.  The approach was tested against observed rainfall and 11 

runoff for 544 watersheds throughout the contiguous United States.  For more than half of the 12 

watersheds, the performance of the new approach is indistinguishable from the application of the 13 

method to daily rainfall when curve numbers are determined via calibration.  For all watersheds, 14 

the uncertainty introduced by the approximation of the distribution of rainfall depths is far less 15 

than the uncertainty associated with the use of tabulated curve numbers based on soil and land-16 

cover characteristics.  The new approach does not appreciably increase the overall uncertainty 17 

associated with the application of the curve number method in ungaged watersheds.  The 18 

approach provides reasonable estimates of monthly and annual direct runoff that can inform 19 

land-management decisions when daily rainfall records are unavailable. 20 

21 
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Introduction 22 

Changes to the landscape affect many hydrologic processes and ecosystem services (Daily 1997; 23 

National Research Council 2004; Martin-Ortega et al. 2015).  Estimates of those effects, even 24 

when uncertain, benefit land-management decisions.  With respect to water resources, effects of 25 

interest include changes to total streamflow, to flooding potential, and to the availability of 26 

baseflow at monthly to annual and multi-annual timescales (Brauman et al. 2007; Guswa et al. 27 

2014; Bremer et al. 2016; Ouyang et al. 2016).  Some decisions may require a precise and 28 

detailed analysis.  Other contexts may tolerate greater uncertainty in order to reduce the time and 29 

resources required; these include land-management decisions in ungaged and data-poor locales, 30 

or rapid assessments across many ecologic and hydrologic processes that may be followed up by 31 

more detailed studies. 32 

The Natural Resources Conservation Service (NRCS) curve number method estimates the 33 

direct runoff that results from an individual rainfall event as a function of land cover and soil 34 

characteristics (Natural Resources Conservation Service 2004a,b).  The concepts have been 35 

incorporated into many popular hydrologic models, such as HEC-HMS (U.S. Army Corps of 36 

Engineers 2000), SWMM (Rossman 2007), HydroCAD (HydroCAD Software Solutions LLC 37 

2011), SWAT (Neitsch et al. 2011), WinTR-20 (Natural Resources Conservation Service 2015), 38 

and the InVEST seasonal water yield model (Sharp et al. 2016).  The method also has a number 39 

of known challenges (Ponce and Hawkins 1996; Hawkins et al. 2009).  Specifically, not all 40 

watersheds exhibit the asymptotic approach to a constant curve number (Hawkins 1993), curve 41 

numbers determined from rainfall-runoff data show significant variability (Hjelmfelt 1991; Shaw 42 

and Walter 2009; Hawkins et al. 2009), use of tabulated curve numbers in ungaged watersheds is 43 

highly uncertain (Titmarsh et al. 1995; Hawkins et al. 2009; Tedela et al. 2012), and the method 44 
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is misused and misapplied (Walter and Shaw 2005; Ogden and Stallard 2013).  Despite these 45 

challenges, Hawkins et al. (2009) recognize the potential for the curve number method to inform 46 

land-management decisions. 47 

This study extends the application of the curve number method for land-management 48 

decisions when the uncertainty of the event-based method is tolerable but rainfall event data are 49 

unavailable.  This investigation tests whether direct runoff accumulated over a month or year can 50 

be estimated, without an appreciable increase in the uncertainty, by approximating the 51 

distribution of actual rainfall depths with an exponential distribution.  Rather than requiring a full 52 

description of event-by-event precipitation, this new approach requires only total rainfall and an 53 

estimate of the number of events over the defined period of interest.  The sections that follow 54 

explain this new approach and present results from tests on 544 U.S. watersheds. 55 

Curve number method applied to event rainfall 56 

The curve number method estimates the depth of direct runoff from a specified rainfall event 57 

(NRCS 2004b).  Direct runoff refers to the water that reaches a stream quickly without 58 

specification of the pathway or origin of that water (Hawkins et al. 2009).  For a given rainfall 59 

depth, Pi, the depth of direct runoff, Qi, is calculated as 60 

!" = $(&"; ()) = +
(&" − -.)/

(&" + (1 − -).)
&" > -.

0 &" ≤ -.
 (1) 

where the subscript i refers to an individual event, S is maximum potential retention with 61 

dimensions of depth, and lS is the rainfall depth needed to initiate runoff, also called the initial 62 

abstraction.  The maximum potential retention, S, is related to the curve number, CN, an 63 

empirical quantity that depends on land use and soil characteristics (NRCS 2004a,b): 64 
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In application, curve numbers are either calibrated to rainfall-runoff data or estimated 65 

from land-use and soil characteristics when streamflow data are unavailable (NRCS 2004a,b; 66 

Hawkins et al. 2009).  Both cases require a choice for l.  The National Engineering Handbook 67 

indicates a value of 0.2 for l, and tabulated values of curve numbers for different hydrologic soil 68 

groups and land covers are based on this value (NRCS 2004a,b).  Recent results, however, 69 

indicate a smaller value of l, closer to 0.05 (Jiang 2001; Hawkins et al. 2009; Shaw and Walter 70 

2009; Dahlke et al. 2012).  This study uses l = 0.05.  Using that value requires a modification of 71 

the curve numbers given in the handbook tables, and Jiang (2001) provides the following 72 

relationship: 73 

()9.9; = 0.0054 ∙ (()9./)/ + 0.46 ∙ ()9./ (4) 

where CN0.2 represents a tabulated curve number developed under the presumption that l = 0.2 74 

and CN0.05 represents the curve number for use with l = 0.05. 75 

While the curve number method and tabulated values were developed to estimate runoff 76 

from large events, the method has been applied to a wide range of event magnitudes (Hawkins et 77 

al. 2009).  Hawkins (1993), however, showed that estimates of curve numbers derived from 78 

rainfall and runoff data vary with event depth; curve numbers are typically larger for smaller 79 

events and approach constant values for larger events, though there are exceptions (e.g., Tedela 80 

et al. 2012).  Thus, an estimate of runoff for a single, small event could have a large relative 81 

error.  Runoff accumulations over multiple events, however, are dominated by large events, and 82 

the non-linearity of Eq. (1) represents this phenomenon.  For example, the MacLeish Field 83 
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Station in West Whately, MA experienced seven rain events between 3 June and 27 June 2009 84 

with magnitudes of 3.6, 4.0, 8.4, 11.2, 22.9, 38.6, and 58.7 mm (Guswa and Spence 2011).  85 

Applying Eq. (1) to each event, with a curve number appropriate for pasture (CN0.05 = 59), gives 86 

runoff estimates of 0.0, 0.0, 0.0, 0.0, 1.0, 4.3, and 11.0 mm, respectively.  Over 93% of the total 87 

16.4 mm of runoff is generated by the two largest events, and the contribution of the small events 88 

to the total error in accumulated runoff is small.  Consequently, when event data are available, 89 

accumulated runoff over a longer time period (QN) can be estimated by direct application of the 90 

curve number method to n events over a period of N days, 91 

!> =?!"

@

"AB

 (5) 

Curve number approach for monthly and annual runoff 92 

This study presents an approach to estimate monthly and annual direct runoff when rainfall data 93 

are not available.  This approach requires a tabulated curve number based on landscape 94 

characteristics (NRCS 2004a), total rainfall (PN) over the period of interest (N days), and an 95 

estimate or measurement of either the mean event depth (a) or the frequency (h) of rainfall 96 

events (events per day).  This new approach approximates the actual distribution of rainfall 97 

depths with an exponential distribution, 98 

C(D) =
1
E
FGD H−

D
E
I (6) 

where p is rainfall depth and a is the mean event depth, which can be estimated as 99 

E =
&>
J)

 (7) 
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The exponential distribution is a recognized model of rainfall depths (e.g., Eagleson 1978; 100 

Richardson 1981; Rodriguez-Iturbe et al. 1999; Laio et al. 2001).  Additionally, the exponential 101 

distribution is fully characterized by a single parameter, mean rain depth, making it useful in 102 

applications with limited data. 103 

Combining event-based runoff (Eq. 1) with an exponential distribution of rainfall depths 104 

gives an expression for the mean runoff per event from the new approach, 105 

〈!@LM(E; ())〉 = O $(D; ()) ∙ C(D; E)PD

Q

RQ

 (8) 

where angle brackets indicate expected value.  Substituting Eqs. (1) and (6) into (8) gives 106 

〈!@LM〉 = O
(D − -.)/

(D + (1 − -).)
∙
1
E
FGD H−

D
E
I PD

Q

ST

 (9) 

Solving Eq. (9) results in the following expression for the mean runoff: 107 

〈!@LM〉 = (E − .)FGD U−
-.
E
V +

./

E
FGDW

(1 − -).
E

XYB U
.
E
V (10) 

where E1(x) is the exponential integral (Abramowitz and Stegun 1972), 108 

YB(G) = O
FGD(−Z)

Z

Q

[

PZ (11) 

Cumulative runoff over the period of interest is 109 

!>
@LM = 〈!@LM〉J) (12) 

The strength of this new approach lies in its approximation of the distribution of large events.  110 

For the earlier example of seven rainfall events (3.6, 4.0, 8.4, 11.2, 22.9, 38.6, and 58.7 mm), 111 

event-by-event application of Eq. (1) results in an estimate of 16.4 mm of total runoff (CN0.05 = 112 

59).  If Eq. (1) were applied directly to the mean rainfall depth of 21.1 mm, the estimate of 113 
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cumulative runoff from seven such events would be just 5.6 mm; if Eq. (1) were applied directly 114 

to the total 147.4 mm of rainfall, estimated runoff would be 61.0 mm.  Application of the new 115 

approach with an exponential distribution of depths results in an estimate of cumulative runoff of 116 

17.4 mm, very close to the 16.4 mm estimated by application of the curve number method to 117 

each event individually. 118 

Evaluation of new approach 119 

Rainfall and runoff for U.S. watersheds 120 

To test the new approach, this work used a dataset of daily meteorology and streamflow for 671 121 

watersheds throughout the contiguous United States (Newman et al. 2014; Newman et al. 2015).  122 

Watersheds range in size from 1 to 25 000 km2, with a median size of 335 km2 and two-thirds of 123 

the watersheds between 100 and 1000 km2 (Newman et al. 2015).  Streamflow data are from the 124 

U.S. Geological Survey and the Daymet dataset is the source of meteorological data (Newman et 125 

al. 2015).  The dataset includes precipitation and streamflow records from 1/1/1980 through 126 

12/31/2010.  Some of the records were eliminated or modified for this analysis after quality 127 

assurance checks; Appendix A includes details. 128 

Runoff and baseflow were computed for two time scales of analysis: monthly and annual.  129 

Because the curve number method is not appropriate for snowmelt, analyses were limited to 130 

snow-free months and years.  For the monthly analysis of each watershed, this study eliminated 131 

all months for which the snow-water equivalent was non-zero for some time during the month.  132 

Similarly, for the annual analysis, all years that were influenced by snow were removed.  To 133 

ensure an adequate sample size of monthly runoff values for each watershed, monthly analyses 134 

were restricted to watersheds with more than ten months (total, not per year) of snow-free 135 
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observations, and annual analyses were limited to watersheds with more than ten years of snow-136 

free observations.  Figure 1 presents a map of the watersheds used to test the approaches.  Open 137 

circles represent watersheds included in the monthly analysis; filled circles represent watersheds 138 

included in both monthly and annual analyses. 139 

Daily streamflow was separated into baseflow and direct runoff with a one-parameter 140 

recursive digital filter (Nathan and McMahon 1990) with a filter parameter of 0.925.  This 141 

automated method of baseflow separation is objective, repeatable, and gives results similar to the 142 

smoothed minima method (Nathan and McMahon 1990).  Summing direct runoff over each 143 

month and year produced records of observed monthly (Qmobs) and annual (Qaobs) direct runoff 144 

for each watershed. 145 

Curve numbers determined from daily records 146 

The objective of this investigation is to test whether the accumulated runoff estimated by using 147 

an exponential distribution of rainfall depths is equivalent to that determined by applying the 148 

curve number method directly to a record of daily rainfall depths.  To separate the uncertainty 149 

introduced by the use of tabulated curve numbers from the uncertainty due to the approximation 150 

of the rainfall distribution, a curve number for each watershed was determined through 151 

calibration.  Consistent with the intent of estimating accumulated runoff, the curve number for 152 

each watershed was determined by matching the cumulative direct runoff, estimated by applying 153 

the curve number to daily rainfall, to the cumulative observed runoff over the entire period of 154 

record.  This calibration ensures that the average bias in the daily application of the curve 155 

number method is zero, i.e., the mean error between observed (monthly or annual) runoff and the 156 

runoff estimated by application of the curve number method to daily rainfall is zero.  157 
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Accumulated runoff is dominated by large events, and the largest events of the period of record 158 

strongly influence the calibration of the curve number. 159 

With a calibrated curve number for each watershed, this study applied Eq. (1) to daily 160 

rainfall to compute daily runoff, which was then summed to create records of monthly and 161 

annual direct runoff.  Monthly and annual errors were quantified by taking the difference 162 

between the monthly and annual estimates and observations: 163 

\]
^_"`a = b!]

^_"`a − !]cdef (13) 

\_
^_"`a = b!_

^_"`a − !_cdef (14) 

where Qmdaily and Qadaily represent the monthly and annual direct runoff, respectively, estimated 164 

by applying the curve number method to daily rainfall.  By design, the mean values of emdaily and 165 

eadaily are zero for each watershed, as noted previously. 166 

Application of the new approach 167 

In the new approach, the actual, empirical distribution of daily rainfall depths is replaced with an 168 

exponential distribution, defined by a mean event depth, a, for each month or year.  This average 169 

depth was calculated in two ways.  One variation computed the mean rainfall depth by dividing 170 

the cumulative rainfall by the actual number of days with rain in each month or year.  A second 171 

variation evaluated the utility of the new approach when information on number of events is 172 

approximate.  In the monthly application, mean rainfall depth was computed with the average 173 

number of events for that month over all years in the dataset for that watershed (for example, the 174 

average number of events for all Septembers).  Similarly, the average number of events per year 175 

was used in the annual application.  The resulting two variations of the exponential distributions 176 

were used with calibrated curve numbers in Eqs. (10-12) to estimate monthly and annual runoff 177 
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for each watershed.   Thus, each watershed is associated with four records of monthly (and 178 

annual) runoff: observed runoff, runoff estimated by application of the curve number method to 179 

daily rainfall, runoff estimated from an exponential distribution of rain depths with mean rainfall 180 

depth determined by the actual number of events in each month (and year), runoff estimated 181 

from an exponential distribution of rain depths with mean rainfall depth determined by the 182 

average number of events. 183 

Tests of the new approach 184 

Both across watersheds and for each individual watershed, this study evaluated the performance 185 

of the new monthly and annual approaches by assessing 1) the mean error in monthly and annual 186 

runoff relative to observations, 2) the difference in squared errors of monthly and annual runoff 187 

between the new approach and the application of the curve number method to daily rainfall, and 188 

3) the error in runoff relative to the uncertainty attributed to the use of tabulated curve numbers 189 

in ungaged watersheds. The descriptions that follow refer to monthly runoff, and the same tests 190 

apply to annual estimates as well.  All tests were restricted to months (and years) with non-zero 191 

observed direct runoff. 192 

The first tests assessed the mean error between observations and estimates from the new 193 

approach.  A non-parametric bootstrap technique (Efron and Tibshirani 1993) was used to test 194 

the null hypothesis that the mean error in monthly runoff is indistinguishable from zero. 195 

Sampling (with replacement) the m monthly errors m times for all months and all watersheds 196 

generated a bootstrap estimate of the mean error.  This process was repeated to generate 10 000 197 

estimates of the mean error.  A 95%-confidence interval for the mean error in monthly runoff 198 

was created from the 2.5% and 97.5% quantiles of the bootstrap estimates.  The null hypothesis 199 
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that the mean error is indistinguishable from zero was accepted if the confidence interval 200 

contained zero.  Estimates of the mean monthly runoff were also regressed against the observed 201 

means for all watersheds.  To assess the mean error for each individual watershed, 10 000 202 

bootstrap estimates of the mean error were generated by sampling (with replacement) the M 203 

months of errors M times for each watershed.  A 95%-confidence interval for the mean error was 204 

created from the 2.5% and 97.5% quantiles of the bootstrap estimates. 205 

Even when Eq. (1) is applied to daily data and curve numbers are calibrated to ensure no 206 

bias in the mean monthly runoff, model structural error leads to uncertainty in estimated runoff 207 

for any given month.  Approximating the rainfall depths with an exponential distribution further 208 

increases this uncertainty.  While it is desirable for monthly errors in the new approach to be 209 

small, more important for this study is to test whether the errors from the new approach are 210 

comparable to those from the application of the curve number method to daily rainfall, i.e., to 211 

test whether the additional error due to the exponential approximation is small relative to the 212 

structural error of the curve number method.  For each watershed, the square of the error between 213 

estimated and observed monthly runoff was determined, and the difference in squared-error 214 

between the daily method and the new approach computed: 215 

Δ]eL = (!]@LM − !]cde)/ − b!]
^_"`a − !]cdef

/
 (15) 

This statistic is positive when the squared error in monthly runoff is larger for the new approach 216 

and negative when the error is larger for the daily application.  To test whether the mean of 217 

squared errors from the new approach are significantly larger than those from the daily 218 

application of the curve number, 10 000 bootstrap samples of the mean difference in squared-219 

error were generated.  The null hypothesis that the error of the new approach is no larger than the 220 

error in the daily method (one-sided test) was rejected if the 5%-quantile of the mean difference 221 
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in squared error was greater than zero.  A linear regression of the square root of the mean-222 

squared error (RMSE) from the new approach to the RMSE from the daily application of the 223 

method quantified the difference in uncertainty between the approaches. 224 

A third test compared the mean error in runoff estimates with the uncertainty due to the 225 

use of tabulated curve numbers for ungaged basins.  Tabulated curve numbers are a function of 226 

land-cover and soil characteristics and are reported for average antecedent runoff conditions, 227 

ARC II (NRCS 2004a).  Titmarsh (1995) and Hawkins and Ward (1998, reproduced and cited in 228 

Hawkins et al. 2009) showed that the uncertainty in using tabulated curve numbers is large and 229 

comparable to the envelope of uncertainty created by using curve numbers that correspond to 230 

antecedent runoff conditions ARC I and ARC III (NRCS 2004b).  Hjelmfelt (1991) showed that 231 

this envelope created by ARC I and ARC III represents the 10% and 90% exceedance 232 

probabilities for runoff.  Runoff estimates from the new approach were tested against this 233 

envelope of uncertainty that resulted from the application of Eq. (1) to daily rainfall with curve 234 

numbers corresponding to ARC I and III for the calibrated curve numbers. 235 

Results 236 

Removing months and years with snow from the analyses left 544 watersheds with more than ten 237 

months of monthly runoff observations and 97 watersheds with more than ten years of annual 238 

data (Fig. 1).  The total number of observations of monthly runoff across all watersheds and all 239 

months is 127 927; the number of total observations of annual runoff is 2270.  Estimates of mean 240 

monthly runoff from the new approach show good agreement with the observed runoff (Fig. 2).  241 

Though the mean errors are statistically different from zero (95% confidence), they are small: 1.2 242 

mm/month and 2.9 mm/month for use of the actual and average number of events, respectively 243 

(Table 1).  The regression slopes of 1.11 to 1.20 indicate that the estimated mean monthly runoff 244 
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is approximately 10-20% greater than observed (Table 1 and Fig. 2).  Considering each 245 

watershed separately, the error in mean monthly runoff is indistinguishable from zero (95%-246 

confidence interval) for 65% of the 544 watersheds when the actual number of rain events is 247 

used in the new approach (Table 2).  When the average number of events per month is used, the 248 

error in mean monthly runoff is indistinguishable from zero (95%-confidence interval) for 26% 249 

of the 544 watersheds. For both monthly approaches, estimates of mean monthly runoff for all 250 

(100%) of the 544 watersheds fall within the envelope of uncertainty associated with using 251 

tabulated curve numbers (x’s in Figure 2). 252 

The RMSE of monthly runoff for the application of the calibrated curve number method 253 

to daily rainfall quantifies the structural error of the method.  Fig. 3 indicates that this structural 254 

error is increased only slightly by the introduction of the exponential approximation.  Regression 255 

slopes of 1.02-1.10 indicate that the RMSE of monthly runoff determined via the new approach 256 

is approximately 5-10% larger than the RMSE for monthly runoff determined via application of 257 

the curve number method to daily data (Table 1 and Figure 3).  Mean monthly errors from the 258 

approach using the average number of events per month are larger than those from the approach 259 

that uses the actual number of events.  The paired test of differences in monthly squared errors 260 

(Eq. 15) found that monthly squared errors from the new approach are not significantly larger 261 

than the errors from the daily application of the curve number method for 80% and 65% of the 262 

watersheds (actual and average number of events, respectively, 95%-confidence, 1-sided test, 263 

Table 2). 264 

Tables 1 and 2 and Figs. 4 and 5 present results for the annual approaches.  Fig. 4 265 

indicates a good match in annual runoff between the new approach and observations.  The mean 266 

errors in annual runoff are statistically different from zero (95% confidence, Table 1), and they 267 
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are small: 10 mm/year and 8 mm/year for use of the actual and average number of events, 268 

respectively.  Across the watersheds, mean annual runoff estimated via the new method is 269 

approximately 7% less than observed, as evidenced by a regression slope of 0.93 (Table 1).  270 

Mean error in annual runoff is indistinguishable from zero for 64% (actual number of events) 271 

and 65% (average number of events) of watersheds.  Errors in annual estimates of direct runoff 272 

with the new approach are comparable to the errors associated with employing the curve number 273 

method to daily data (Fig. 5).  The RMSE of annual runoff determined via the new approach is 274 

approximately 4 mm larger than the RMSE of annual runoff determined via application of the 275 

curve number method to daily data, indicated by regression slopes of 1.0 and intercepts of 4 mm 276 

(Table 1 and Fig. 5).  The paired tests indicate that squared errors from the new approach are not 277 

significantly larger than the errors from the daily application of the curve number method for 278 

74% and 88% of the watersheds (actual and average number of events, respectively, 95%-279 

confidence, 1-sided test).  Estimates of mean annual runoff for all (100%) of the 97 watersheds 280 

fall within the uncertainty envelope associated with use of tabulated curve numbers (x’s in Fig. 281 

4). 282 

Discussion 283 

Figs. 2-5 indicate that the new approach presented in this work estimates monthly and annual 284 

direct runoff with a similar degree of certainty as the application of the curve number method to 285 

daily data for ungaged watersheds.  The overestimation of runoff in the monthly results (Fig. 2 286 

and Table 1) may indicate a deviation from the simplification of an exponential distribution of 287 

rainfall events.  If actual rain events within a month are more similar to each other, i.e., if the 288 

empirical distribution has a smaller variance than the exponential, then the approach based on the 289 

exponential distribution would overestimate runoff, consistent with what is seen in Fig. 2.  290 
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Month-to-month and year-to-year errors in estimates from the new approach are similar to errors 291 

from the application of the curve-number method to daily rainfall (Tables 1 and 2 and Figs. 3 and 292 

5).  Most importantly, mean monthly and annual estimates of direct runoff lie well within the 293 

confidence interval attributed to uncertainty in the curve number (Figs. 2 and 4).  This is 294 

consistent with earlier findings that estimated runoff is more sensitive to the selection of the 295 

curve number than to the precipitation depth (Hawkins 1975) and indicates that the 296 

approximation of an exponential distribution of rainfall depths does not appreciably increase the 297 

uncertainty associated with the application of the curve number method in ungaged watersheds.  298 

The large uncertainty in estimates of monthly and annual runoff for ungaged watersheds suggests 299 

that runoff estimates should be used with care. 300 

While the new approach does not require daily rainfall data, it does require an estimate of 301 

the number of rain events within a given period of interest.  Tables 1 and 2 and Figs. 2-5 indicate 302 

that estimates based on an average number of events are almost as good as those that use the 303 

actual number of events.  Local estimates of the number of rain events could be obtained from 304 

traditional knowledge, global precipitation datasets (e.g., Gehne et al. 2016; The World Bank 305 

Group 2016), or historical records. 306 

Many monthly (and annual) water-balance models have as a first step the partitioning of 307 

precipitation into direct runoff and retention (e.g., Ponce and Shetty 1995; Zhang et al. 2008; 308 

Sivapalan et al. 2011; Kirby et al. 2013; Chen and Wang 2015).  These incorporate a relationship 309 

between monthly rainfall and direct runoff as a function of landscape characteristics (such as 310 

slope, soil type, land use) and state variables of the system (such as soil moisture and 311 

streamflow).  The approach presented here provides a means for estimating or eliminating model 312 

parameters in these models.  For example, the Dynamic Water Balance Model (DWBM; Zhang 313 
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et al. 2008), relies on a parameter, a1, to partition monthly precipitation into direct runoff and 314 

retention.  This parameter must generally be determined via calibration, as attempts to relate the 315 

parameter to measurable watershed characteristics have proved challenging (Zhang et al. 2017).  316 

The approach presented here, with knowledge of the curve number and typical number of 317 

precipitation events, is another way to determine the amount of direct runoff from monthly 318 

precipitation. 319 

Estimates of annual runoff from this new approach enable the partitioning of annual 320 

streamflow into direct runoff and baseflow.  For example, a Budyko-type approach can estimate 321 

average annual streamflow based on average annual precipitation and potential 322 

evapotranspiration (e.g., Budyko 1974; Porporato et al. 2004; Szilagyi and Jozsa 2009; Hamel 323 

and Guswa 2015).  Based on rainfall data from Monteverde, Costa Rica (Guswa et al. 2007), the 324 

Budyko curve predicts an increase in annual streamflow of 160 mm/yr following the conversion 325 

of forest to pasture (Table 3).  The new approach presented in this study complements this result 326 

by estimating changes to direct runoff and, by subtraction, baseflow.  For two soil groups (B and 327 

D), the new approach indicates a decrease in baseflow (40 mm/yr or 210 mm/yr for soil groups B 328 

and D, respectively), despite the increase in total streamflow.  The large uncertainty associated 329 

with using a tabulated curve number (characterized by ARC I and III), however, prevents a 330 

definitive statement, as the confidence intervals for the change in baseflow include zero (Table 331 

3).  Nonetheless, the interpretation that baseflow is more likely than not to decrease when forest 332 

is converted to pasture may be sufficient to inform land-management decisions. 333 

Conclusions 334 

This study developed a new approach to estimate monthly and annual direct runoff by combining 335 

the NRCS curve number method with an exponential distribution of rainfall depths.  Evaluation 336 
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of the approach with daily rainfall and runoff data from 544 U.S. watersheds indicates that the 337 

error introduced by the exponential approximation is small and lies well within the uncertainty 338 

associated with application of the curve number method in ungaged watersheds.  The simplicity 339 

and robust performance of the approach indicate that it can inform planning and land-340 

management decisions in data-poor contexts. 341 

 342 

Appendix A 343 

Inspection of the dataset provided by Newman et al. (2014) revealed some questionable data. 344 
The authors either removed these basins from further analysis or modified the data as indicated 345 
in Tables A1-A2 below.  In tables A1-A2, Q and P are the average daily streamflow and 346 
precipitation as reported in the file basin_annual_hydrometeorology_characteristics_daymet.txt 347 
(Newman et al. 2014).  The variables, q and p, are the average daily streamflow and precipitation 348 
calculated from daily values of discharge (U.S. Geological Survey) and precipitation (Daymet), 349 
respectively, for each watershed over the entire period of record.  For internal consistency, Q 350 
should be equal to q, and P should be equal to p; significant discrepancies were cause for 351 
removal of those watersheds from further analysis.” 352 
 353 
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Tables 
 
Table 1: Assessment of mean error and root-mean-squared error of monthly and annual runoff across watersheds. 
 
   Regression of estimated mean 

runoff from new approach against 
observed (Figs. 2 and 4) 

Regression of RMSE from new 
approach against RMSE from daily 

method (Figs. 3 and 5)  
Temporal 
Resolution 

Number 
of events 

Mean error 
(observed-
estimated) 
and [95%-
confidence 
interval] 

Slope  
[95% confidence 
interval] 

Intercept 
[95% confidence 
interval] 

Slope  
[95% confidence 
interval] 

Intercept 
[95% confidence 
interval] 

Monthly Actual -1.24 mm  
[-1.32, -1.16] 

1.13 
[1.11, 1.14] 

-0.3 mm 
[-0.5, -0.2] 

1.03 
[1.02, 1.04] 

0.04 mm 
[-0.08, 0.16] 

Monthly Average -2.87 mm  
[-2.95, -2.78] 

1.19 
[1.17, 1.20] 

0.4 mm 
[0.2, 0.6] 

1.07 
[1.05, 1.10] 

0.5 mm 
[0.13, 0.78] 

Annual Actual 10 mm 
[8, 13] 

0.93 
[0.89, 0.97] 

-1 mm 
[-8, 6] 

1.06 
[0.98, 1.13] 

4 mm 
[0, 8] 

Annual Average 8 mm 
[6, 11] 

0.93 
[0.89, 0.97] 

1 mm 
[-5, 8] 

1.00 
[0.92, 1.08] 

4 mm 
[-1, 8] 

 
 
  



Table 2: Mean error, magnitude of squared error, and mean error versus the uncertainty in curve number for each watershed. 
 
  Percent of watersheds for which 
Temporal 
Resolution 

Number of 
events 

Mean error in runoff is 
indistinguishable from 
zero (95%-confidence 
interval) 

Squared error from new 
method is less than or 
equal to squared error 
from daily method 
(95%-confidence 
interval, 1-sided) 

Mean runoff is within 
confidence interval 
defined by uncertainty 
in CN (ARC I and III) 

Monthly Actual 65% 80% 100% 
Monthly Average 26% 65% 100% 
Annual Actual 64% 74% 100% 
Annual Average 65% 88% 100% 
 
 
  



Table 3: Example of conversion of forest to degraded pasture.  Rainfall data are representative of Monteverde, Costa Rica: 2700 
mm/yr and 280 events/year (Guswa et al. 2007); potential evapotranspiration is representative of tropical forest and pasture (Wang and 
Georgakakos 2007; Ogden et al. 2013).  Streamflow is estimated from the Budyko curve (Budyko 1974).  Values of CN0.2 are taken 
from Table 9-1 in NRCS (2004a); values of CN0.05 are computed via Equation (4). 
	

Land 
Cover 

Hydrol. 
Soil 
Group 

CN0.2 
[ARC I, 
ARC III] 

CN0.05 
[ARC I, 
ARC III] 

Potential 
evapo-
transpiration 
(mm/yr) 

Streamflow 
(mm/yr) 

Direct runoff 
(mm/yr) 
[confidence 
interval from 
ARC I, III] 

Change in 
baseflow, 
woods to pasture 
(mm/year) 
[confidence 
interval from ARC 
I, III] 

Woods, 
good 
quality 

B 55 
[35,74] 

42 [23,64] 1100 1710 20 [0,150] -40 [-360,120] 

Pasture, 
poor 
quality 

B 79 
[62,91] 

70 [49,87] 900 1870 220 [40,670]  

Woods, 
good 
quality 

D 77 
[59,89] 

67 [46,84] 1100 1710 180 [30, 550] -210 [-490,20] 

Pasture, 
poor 
quality 

D 89 
[76,96] 

84 [66,94] 900 1870 550 [170, 
1200] 
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Figure	captions	
	
	
Figure	1	
U.S.	watersheds	used	in	testing	of	the	curve	number	approach.		Gages	indicated	by	
an	open	circle	represent	the	544	watersheds	used	in	the	monthly	analysis.		Gages	
indicated	by	a	closed	circle	represent	the	97	watersheds	used	in	both	monthly	and	
annual	analyses.	
	
Figure	2	
Mean	monthly	direct	runoff	estimated	by	new	approach	versus	observed	mean	
monthly	direct	runoff	for	544	U.S.	watersheds.		Circles	represent	estimates	for	
which	the	actual	number	of	rain	events	per	month	were	used;	pluses	represent	
estimates	that	use	the	average	number	of	events	per	month.	The	uncertainty	
envelope	associated	with	tabulated	curve	numbers	is	given	by	the	x’s.	
	
Figure	3	
Comparison	of	root-mean-squared	error	(RMSE)	for	estimates	of	monthly	direct	
runoff	from	the	application	of	the	curve	number	method	to	daily	rainfall	data	to	
RMSE	from	the	new	approach	for	544	U.S.	watersheds.		Circles	represent	estimates	
using	the	actual	number	of	rain	events	per	month;	pluses	represent	estimates	that	
use	the	average	number	of	events	per	month.	
	
Figure	4	
Mean	annual	direct	runoff	estimated	by	new	approach	versus	observed	mean	
annual	direct	runoff	for	97	U.S.	watersheds.		Circles	represent	estimates	using	the	
actual	number	of	rain	events	per	year;	pluses	represent	estimates	that	use	the	
average	number	of	events	per	year.	The	uncertainty	envelope	associated	with	
tabulated	curve	numbers	is	given	by	the	x’s.	
	
Figure	5	
Comparison	of	root-mean-squared	error	(RMSE)	in	estimates	of	annual	direct	runoff	
from	the	application	of	the	curve	number	method	to	daily	rainfall	data	to	RMSE	from	
the	new	approach	for	97	U.S.	watersheds.		Circles	represent	estimates	using	the	
actual	number	of	rain	events	per	year;	pluses	represent	estimates	that	use	the	
average	number	of	events	per	year.	
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Table A1.  Watersheds removed from analyses. 
 

Gaging station Reason for removal 
03 02108000 
NE Cape Fear, NC 

Area and elevation in basin_characteristics file do 
not match U.S. Geolgoical Survey website or 
information in gage information file 

03 02310947 
Withlacoochee River near Cumpressco, FL 

Multiple, long, discontinuous gaps in the 
streamflow record 

03 02381600 
Fausett Creek near Talking Rock, GA 

Average streamflow from daily values, q is greater 
than 150% of reported average streamflow, Q 

05 03357350 
Plum Creek near Bainbridge, IN 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

09 05062500 
Wild Rice River at Twin Valley, MN 

Average streamflow from daily values, q is greater 
than 150% of reported average streamflow, Q 

09 05087500 
Middle River at Argyle, MN 

Average streamflow from daily values, q is greater 
than 150% of reported average streamflow, Q 

09 05120500 
Wintering River near Karlsruhe, ND 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

10 06468250 
James River near Kensal, ND 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

10 06441500 
Bad River near Fort Pierre, SD 

Multiple long gaps in streamflow record 

11 07067000 
Current River at Van Buren, MO 

Area and elevation in basin_characteristics file do 
not match U.S. Geological Survey website or 
information in gage information file 

12 08079600 
Brazos River at Justiceburg, TX 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

15 09484000 
Sabino Creek near Tucson, AZ 

Multiple extended gaps in streamflow record 
throughout  

15 09492400 
East Fork White River near Apache, AZ 

Average streamflow from daily values, q is greater 
than 150% of reported average streamflow, Q 

16 10166430 
West Canyon Creek near Cedar Fort, UT 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

16 10172700 
Vernon Creek near Vernon, UT 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

16 10172800 
South Willow Creek near Grantsville, UT 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

16 10242000 
Coal Creek near Cedar City, UT 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

16 10249300 
South Twin River nr Round Mountain, NV 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

18 10259200 
Deep Creek near Palm Desert, CA 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

18 10263500 
Big Rock Creek near Valyermo, CA 

Average streamflow from daily values, q, is less 
than 50% of reported average streamflow, Q 

18 11253310 Average streamflow from daily values, q, is less 



Cantua Creek near Cantua Creek, CA than 50% of reported average streamflow, Q 
17 12040500 
Queets River nr Clearwater, WA 

Runoff ratio is greater than 1; q is greater than p 

17 12041200 
Hoh River nr Forks, WA 

Runoff ratio is greater than 1; q is greater than p 

17 12056500 
NF Skokomish River near Hoodsport, WA 

Runoff ratio is greater than 1; q is greater than p 

17 12147500 
NF Tolt River near Carnation, WA 

Runoff ratio is greater than 1; q is greater than p 
and Q is greater than P 

17 12147600 
SF Tolt River near Index, WA 

Runoff ratio greater than 1; Q is greater than P 

17 12167000 
NF Stillaguamish River near Arlington, 
WA 

Runoff ratio greater than 1; q is greater than p and 
Q is greater than P 

17 12186000 
Sauk River near Darrington, WA 

Runoff ratio greater than 1; q is greater than p and 
Q is greater than P 

17 14158500 
McKenzie River near Clear Lake, OR 

Runoff ratio greater than 1; q is greater than p 

17 14400000 
Brookings, OR 

Runoff ratio greater than 1; q is greater than p and 
Q is greater than P 

 
 
 
Table A2.  Modified streamflow records. 
 

Gaging station Issue Resolution 
03 02051000 
North Meherrin River 
near Lunenburg, VA 

Gap in streamflow record from 
10/1/1980 through 9/30/1981 

Use streamflow from 10/1/1981 
through 12/31/2010 

03 02235200 
Blackwater Creek near 
Cassia, FL 

Large gaps in streamflow record 
from 12/1/1980 through 6/9/1985 

Use streamflow from 7/1/1985 
through 12/31/2010 

03 02408540 
Hatchet Creek below 
Rockford, AL 

Gap in streamflow record from 
9/25/1980 through 9/30/1980 

Use streamflow from 10/1/1980 
through 12/31/2010 

03 02464146 
Turkey Creek near 
Tuscaloosa, AL 

Gap in streamflow record from 
10/1/1984 through 9/30/1986; 
recorded as zeroes 

Use streamflow from 10/1/1986 
through 12/31/2010 only 

05 03066000 
Blackwater River at 
Davis, WV 

Gap in streamflow record from 
10/1/1991 through 9/30/1992 

Use streamflow from 10/1/1992 
through 12/31/2010 only 

05 03159540 
Shade River near 
Chester, OH 

Some estimated streamflow; no 
significant gaps found  

Use data as are 

05 03161000 
South Fork New River 

Some estimated streamflow; no 
significant gaps found 

Use data as are 



near Jefferson, NC 
05 03187500 
Cranberry Creek near 
Richmond, WV 

Gap in streamflow record from 
10/1/1982 through 2/29/1984 

Use streamflow from 3/1/1984 
through 12/31/2010 only 

05 03281100 
Goose Creek at 
Manchester, KY 

Gap in streamflow record from 
10/1/2000 through 9/30/2001 and 
10/1/2003 through 9/30/2006 

Use streamflow from 1/1/980 
through 9/30/2000 only 

05 03300400 
Beech Fork at Maud, 
KY 

Gap in streamflow record from 
5/3/2010 through 6/13/2010 

Use streamflow from 1/1/1980 
through 4/30/2010 only 

06 03450000 
Beetree Creek near 
Swannanoa, NC 

Gap in streamflow record from 
10/1/1981 through 8/28/1985 

Use streamflow from 9/1/1985 
through 12/31/2010 

09 05062500 
Wild Rice River at 
Twin Valley, MN 

Gap in streamflow record from 
10/21/1983 through 9/13/1989 

Use streamflow from 10/1/1989 
through 12/31/2010 

10 06037500 
Madison River near 
West Yellowstone, MT 

Gap in streamflow record from 
10/1/1986 through 9/30/1988 

Use streamflow from 10/1/1988 
through 12/31/2010 only 

10 06043500 
Gallatin River near 
Gallatin Gateway, MT 

Gap in streamflow record from 
10/1/1981 through 9/30/1984 

Use streamflow from 10/1/1984 
through 12/31/2010 only 

10 06188000 
Lamar River near 
Tower Falls Ranger 
Station, Yellowstone 
National Park 

Gap in streamflow record from 
10/1/1985 through 4/30/1986 and 
from 10/1/1986 through 8/31/1988 

Use streamflow from 9/1/1988 
through 12/31/2010 only 

08 07290650 
Bayou Pierre near 
Willows, MS 

Extended gaps in record between 
10/1/2009 and 12/31/2010 

Use streamflow from 1/1/1980 
through 9/30/2009 

08 07295000 
Buffalo River near 
Woodville, MS 

Extended gaps in record between 
10/1/2009 through 12/31/2010 

Use streamflow from 1/1/1980 
through 9/30/2009 

08 07376000 
Tickfaw River at 
Holden, LA 

Gap in streamflow record from 
10/1/1988 through 9/30/1989 

Use streamflow from 10/1/1989 
through 12/31/2010 only 

12 08025500 
Bayou Toro near Toro, 
LA 

Gap in streamflow record from 
10/1/1986 through 9/30/1988 

Use streamflow from 10/1/1988 
through 12/31/2010 only 

12 08155200 
Barton Creek near Oak 
Hill, TX 

Gap in streamflow record from 
10/15/1982 through 1/29/1989; also 
multiple periods of zero streamflow 

Use streamflow from 2/1/1989 
through 12/31/2010 

15 09497800 
Cibecue Creek near 
Chysotile, AZ 

Gap in streamflow record from 
10/1/2009 through 6/13/2010 

Use streamflow from 1/1/1980 
through 9/30/2009 only 

15 09505200 Gap in streamflow record from Use streamflow from 10/1/1988 



Wet Beaver Creek near 
Rimrock, AZ 

10/1/1982 through 9/30/1985 and 
10/1/1987 through 9/30/1988 

through 12/31/2010 only 

17 12025000 
Newaukum River near 
Chehalis, WA 

Gap in streamflow record from 
10/1/1981 through 9/30/1982 

Use streamflow from 10/1/1982 
through 12/31/2010 only 

17 12043000 
Calawah River near 
Forks, WA 

Gap in streamflow record from 
10/1/1980 through 2/29/1984 

Use streamflow from 3/1/1984 
through 12/31/2010 

17 12141300 
Middle Fork 
Snoqualmie River near 
Tanner, WA 

Gap in streamflow record from 
10/1/1991 through 9/30/1992 

Use streamflow from 10/1/1992 
through 12/31/2010 only 

17 12374250 
Mill Creek near 
Niarada, MT 

Gap in streamflow record from 
9/1/1982 through 9/30/1982 

Use streamflow from 10/1/1982 
through 12/31/2010 

17 13310700 
South Fork Salmon 
River near Krassel 
Ranger Station, ID 

Gap in streamflow record from 
10/1/1982 through 3/31/1985, 
10/1/1986 through 1/31/1989,  

Use streamflow from 2/1/1989 
through 12/31/2010 
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