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DIFFERENTIAL GRADED CONTACT GEOMETRY AND

JACOBI STRUCTURES

RAJAN AMIT MEHTA

Abstract. We study contact structures on nonnegatively-graded manifolds
equipped with homological contact vector fields. In the degree 1 case, we
show that there is a one-to-one correspondence between such structures (with
fixed contact form) and Jacobi manifolds. This correspondence allows us to
reinterpret the Poissonization procedure, taking Jacobi manifolds to Poisson
manifolds, as a supergeometric version of symplectization.

1. Introduction

A manifold whose algebra of functions is equipped with a local Lie algebra struc-
ture, in the sense of Kirillov [Kir76], is called a Jacobi manifold. Equivalently, a
Jacobi manifold is a manifold equipped with a bivector field Λ and a vector field R,
satisfying the equations (16). The definition of Jacobi manifolds in these terms is
due to Lichnerowicz [Lic77, Lic78], who viewed it as a “contravariant generalization
of the notion of contact manifold.” Since Poisson manifolds form the contravariant
generalization of the notion of symplectic manifolds, Lichnerowicz’ claim may be
concisely described by the following analogy:

(1) Jacobi : contact :: Poisson : symplectic

The following known results provide ways of formalizing this analogy:

• There is a Poissonization process, taking Jacobi manifolds to Poisson man-
ifolds [Lic78]. This parallels the symplectization process that takes contact
manifolds (with contact 1-form) to symplectic manifolds.

• Jacobi manifolds “integrate” to contact groupoids [KSB93, CZ07]. This
parallels the fact that Poisson manifolds integrate to symplectic groupoids
[CDW87].

Note that these two approaches are “orthogonal” to each other, in terms of the
analogy (1).

Although the latter approach is very interesting and potentially useful in many
ways, it also has complications. In correspondence with the right side of analogy
(1), not every Jacobi manifold is integrable. For those that are integrable, one
may not have a simpler description of the integration than as a quotient of an
infinite-dimensional path space.

The purpose of this paper is to describe another way of connecting Jacobi and
contact structures, allowing us to formalize the analogy (1) without the difficul-
ties of integration. Namely, we show that there is a one-to-one correspondence
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between Jacobi manifolds and degree 1 contact NQ-manifolds with fixed contact
form. This result parallels the well-known correspondence between Poisson man-
ifolds and degree 1 symplectic NQ-manifolds. We furthermore show that, in this
“supergeometric” point of view, Poissonization is the same thing as symplectization
in the NQ category. In other words, the following diagram commutes:

(2) Jacobi manifolds oo //

Poissonization
��

Deg. 1 contact NQ-manifolds

Symplectization
��

Poisson manifolds oo // Deg. 1 symplectic NQ-manifolds

The correspondence between Poisson manifolds and degree 1 symplectic NQ-
manifolds has led to interesting results relating to Poisson reduction [CZ09, Meh11].
It also clarifies the relation between integration and quantization [CF01], via the
AKSZ formalism [ASZK97]. We believe that the correspondence between Jacobi
manifolds and degree 1 contact NQ-manifolds should lead to analogous results. We
plan to explore these ideas elsewhere.

Although the emphasis of this paper is on the degree 1 case, we develop much
of the general theory of contact NQ-manifolds in arbitary degree. We remark that
the degree 2 case should provide a natural generalization of Courant algebroids,
together with a “Courantization” process. This approach may be useful in studying
Jacobi-Dirac and generalized contact structures [Wad00, IPW05, PW10].

The existence of a correspondence between Jacobi manifolds and degree 1 contact
NQ-manifolds was known by Ševera, who mentioned it in a footnote of [Šev05], but
did not provide any details. More recently, Antunes and Laurent-Gengoux [ALG11]
studied Jacobi bialgebroid structures from the supergeometric point of view. There
are certainly relations between their results and ours, but neither is a special case
of the other. Additionally, contact structures on supermanifolds were considered
by Bruce [Bru11a, Bru11b]. His papers played a role in inspiring the author to
consider contact NQ-manifolds.

Shortly after a preprint version of this paper appeared on the arXiv, a preprint
by Grabowski [Gra11] appeared, covering similar material, but with emphasis on
the degree 2 case. His work partially fulfills the above suggestion of a natural
generalization of Courant algebroids. However, we should emphasize that there is an
important distinction between his approach and ours. He identifies a graded contact
manifold with its symplectization (which is larger but carries an R

×-action), and he
develops the theory completely in terms of this identification. On the other hand,
we show (Corollary 2.10) that a contact N-manifold of degree n > 0 (with fixed
contact form) can be associated to a symplectic N-manifold that is one dimension
smaller in degree n, and our results are stated in terms of this correspondence.
The processes of reduction (by the R

×-action) and symplectization will allow one
to translate between Grabowski’s framework and ours.

1.1. Conventions. There are now many good introductions to the theory of Z-
and N-graded manifolds, including [Meh06, Vor02, Roy02b, CS11] (although, in
contrast to [Vor02], we adopt a definition for which a function’s parity agrees with
its weight or degree). Roytenberg’s paper [Roy02b] is particularly relevant, since it
contains the details of the correspondence between Poisson manifolds and degree 1
symplectic NQ-manifolds, which plays an important role in motivating this paper.



DIFFERENTIAL GRADED CONTACT GEOMETRY AND JACOBI STRUCTURES 3

We will freely use his results on symplectic N-manifolds without making explicit
reference.

There are many possible sign conventions for the calculus of differential forms
on a graded manifold. We will use the conventions of [Meh06, Meh09], where the
algebra Ω(M) of differential forms on a graded manifold M consists, by definition,
of polynomial functions on T [1]M. Thus, the algebra Ω(M) is graded-commutative
with respect to the total grading (i.e. the sum of the “form” grading and the internal
“manifold” grading). When we say that a p-form is of degree k, we mean that the
manifold grading is k.

With this choice of sign convention, the Cartan commutation relations include
the following identities for any homogeneous vector fields X,Y on M:

LX = [ιX , d] = ιXd+ (−1)|X|dιX ,

ι[X,Y ] = [LX , ιY ] = LXιY − (−1)|X|(|Y |−1)ιY LX ,

ιXιY = (−1)(|X|−1)(|Y |−1)ιY ιX .

On graded symplectic manifolds, we take Hamiltonian vector fields to be defined
by the equation df = (−1)|X|−1ιXω. Note that, if the degree of the symplectic
form ω is n, then |X | = |f | − n. Poisson brackets are given by {f, g} = X(g) =
(−1)|Y |−1ιX ιY ω, where X and Y are the Hamiltonian vector fields assocated to f
and g, respectively. The reader may verify that this convention gives the correct
skew-commutativity rule for a degree −n Lie bracket.

Acknowledgements. The author would like to thank Benôıt Jubin for carefully
reading a draft of the paper and for many interesting discussions on related topics.
He would also like to thank the anonymous referees for suggestions that greatly
improved both the mathematical content and the readability of the paper.

2. Contact N-manifolds

In this section, we give the definition and some basic properties of degree n
contact N-manifolds. Most of the results are straightforward extensions of well-
known results from ordinary contact geometry. There are two features that are
unique to the graded case. The first is the appearance of the Euler vector field,
which automatically preserves the contact structure. The second is the fact (see
Theorem 2.9) that, when n > 0, a degree n contact N-manifold with contact form
naturally splits as the product of R[n] and a degree n symplectic N-manifold. This
splitting gives a one-to-one correspondence between contact N-manifolds with fixed
contact form and symplectic N-manifolds of degree n > 0. At the end of the section,
we discuss the noncoorientable case.

2.1. Definition. Let M be an N-graded manifold (or N-manifold, for short), and
let α be a nowhere-vanishing 1-form of degree n on M. The assignment X 7→ ιXα
is (left) C∞(M)-linear and so defines a degree −n bundle map

ι·α : TM → M× R.

The kernel D := ker ι·α is a distribution of corank 1 concentrated in degree n, so
L := TM/D is a line bundle concentrated in degree n. Thus we have the dual (up
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to grading shift) short exact sequences

D −→ TM −→ L,(3)

〈α〉 −→ T ∗M −→ D∗.(4)

The assignmentX 7→ ιXdα is also C∞(M)-linear and so defines a degree−n bundle
map

(dα)♭ : TM → T ∗M.

We say that α is a contact 1-form if (dα)♭ induces a bijection from D to D∗, giving
a nondegenerate pairing on D.

The following statements are direct consequences of the definition.

Lemma 2.1. Let α be a contact 1-form. Then

(1) The cotangent bundle of M splits as T ∗M = im(dα)♭ ⊕ 〈α〉, and
(2) the degree n map

X(M) → Γ(im(dα)♭)⊕ C∞(M)

X 7→ (ιXdα, ιXα)

is an isomorphism of left C∞(M)-modules.

Remark 2.2. The nondegeneracy requirement imposes the same restrictions on the
rank of D that one sees on the dimensions of degree n symplectic N-manifolds;
namely, the rank of D in dimension i equals the rank of D in dimension n−i. Letting
dimi denote the dimension of M in degree i, we deduce that dimn M = dim0 M+1
and dimi M = dimn−i M for i > 0. In particular, if an N-manifold M admits a
degree 1 contact 1-form, then M is necessarily concentrated in degrees 0 and 1,
with dim1 M = dim0 M+ 1.

Definition 2.3. A contact N-manifold of degree n is an N-manifold M equipped
with a distribution D ⊆ TM that is locally the kernel of a contact 1-form.

In general, a contact 1-form associated to D may only exist locally and is only
well-defined up to multiplication by a nonvanishing degree 0 function. If a contact
1-form exists globally, then the contact structure D is called coorientable. From
the short exact sequences (3)–(4), we can see that D is coorientable if and only if
the degree n line bundle L is trivializable, and a choice of (local) contact 1-form is
equivalent to a choice of (local) trivialization of L.

2.2. Contact vector fields. Let (M,D) be a degree n contact N-manifold. A
vector field X ∈ X(M) is contact if [X,Γ(D)] ⊆ Γ(D). In terms of a contact 1-
form α, contact vector fields are characterized by the property that there exists an
f ∈ C∞(M) such that

(5) LXα = (−1)|X|fα.

The sign in (5) is only there to simplify the signs in later formulae.
In the remainder of §2.2, we will assume that (M,D) is coorientable (or that we

are working locally), and that we have fixed a choice of contact 1-form α.
We will now describe the contact analogue of Hamiltonian vector fields. Let h

be a (homogeneous) function on M. Then, by Lemma 2.1, we may uniquely write

(6) dh = β + fα,
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where β ∈ im(dα)♭ and f ∈ C∞(M). Again by Lemma 2.1, there exists a unique
vector field Xh such that

ιXh
dα = (−1)|h|−n+1β, ιXh

α = h.(7)

In this case, we have that |Xh| = |h| − n. Then

LXh
α = ιXh

dα+ (−1)|Xh|dιXα

= (−1)|Xh|+1β + (−1)|Xh|dh

= (−1)|Xh|fα,

so Xh is contact.
The process of taking functions to contact vector fields is invertible; given a

contact vector field X , one can recover a function h via (7), and the contact vector
field associated to h is again X . In summary, we have the following:

Proposition 2.4. There is a one-to-one correspondence between functions and

contact vector fields on M. Functions of degree k correspond to contact vector

fields of degree k − n.

Example 2.5. The Reeb vector field ρ is the degree −n vector field defined by the
equations ιρdα = 0 and ιρα = 1. Under the correspondence of Proposition 2.4, the
Reeb vector field correponds to the constant function 1.

The Reeb vector field allows us to explicitly perform the decomposition (6). Note
that, if β ∈ im(dα)♭, then ιρβ = 0. Thus, for any h ∈ C∞(M), with β and f given
by (6), we have that

(8) ρ(h) = ιρdh = ιρfα = (−1)(n−1)|f |f.

This allows us to solve for β:

(9) β = dh− (−1)(n−1)|h|ρ(h)α.

Example 2.6. The Euler vector field ε is the degree 0 vector field given by ε(f) =
|f |f for any homogeneous function f . Since α is of degree n, we have that Lεα = nα,
so the Euler vector field is contact. Let θ := ιεα be called the Euler function of
(M, α). The degree of θ is n.

Lemma 2.7. The Reeb vector field and the Euler function satisfy the equation

ρ(θ) = n.

Proof. Using the definition of θ, we have that

ρ(θ) = Lριεα

= ιρLεα+ ιριεdα.

The latter term vanishes because ιρdα = 0, and the first term is nιρα = n. �

Remark 2.8. It should be emphasized that the correspondence of Proposition 2.4
depends on the choice of α. In particular, the Euler function θ and the Reeb vector
field ρ both depend on α. If α′ = fα for a nonvanishing degree 0 function f , then
the corresponding Reeb vector field ρ′ is equal to the contact vector field X1/f . The
corresponding Euler function θ′ is fθ.
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2.3. The structure of contact N-manifolds. Let (M,D) be a degree n contact
N-manifold where n > 0. We first consider the coorientable case. In this case,
fix a contact 1-form α, let ρ be the associated Reeb vector field, and let θ be the
associated Euler function.

Although odd vector fields aren’t automatically integrable, we see that [ρ, ρ]
vanishes for any n, since there are no nontrivial degree −2n vector fields on M.
Thus ρ is integrable, and since it is nonvanishing (it satisfies ιρα = 1), it induces a
free R[n]-action on M. An important feature that distinguishes the n > 0 case from
ordinary contact geometry is that the Reeb orbits cannot contain any topological
complexities, such as being dense or incomplete. The reason is simply that R[n] is
not really a line; rather, it is a sheaf over a single point.

Let λ := α− 1
ndθ and ω := dλ = dα.

Theorem 2.9. Let (M, α) be an N-manifold equipped with a degree n contact 1-
form for n > 0. Then M is the total space of a principal R[n]-bundle with a

canonical trivialization. The 1-form λ is basic, and ω passes to a degree n symplectic

form on the quotient.

Proof. Let N be the quotient ofM by the action of the Reeb vector field (which is a
free R[n] action). The graded algebra of functions on N consists of those functions
f on M for which ρ(f) = 0. On the other hand, the function θ determines a
projection map M → R[n] that trivializes the principal R[n]-bundle M → N .

Using Lemma 2.7, we see that ιρλ = 0 and Lρλ = 0, so λ is basic. Nondegeneracy
of the push-forward of ω to N follows from the fact that ρ spans the characteristic
distribution for the presymplectic form dα. �

In Theorem 2.9, the contact form on M can be recovered from the symplectic
form ω on N , since

λ =
1

n
ιεω and α = λ+

1

n
dθ.(10)

Furthermore, given any degree n symplectic N-manifold (N , ω) for n > 0, equations
(10) define a degree n contact form on N × R[n]. We therefore have the following
result:

Corollary 2.10. When n > 0, there is a one-to-one correspondence between degree

n symplectic N-manifolds and degree n contact N-manifolds with fixed contact form.

Example 2.11. Since every degree 1 symplectic N-manifold is canonically symplec-
tomorphic to T ∗[1]M for some manifold M , we have that every degree 1 contact
N-manifold with fixed contact form is canonically of the form T ∗[1]M × R[1] with
the standard contact form α = λ+ dθ, where λ is the Liouville 1-form on T ∗[1]M ,
and θ is the coordinate function on R[1]. The Reeb vector field is ρ = ∂

∂θ .

In Theorem 2.9, the bundle structure itself depends on ρ (which, in turn, depends
on α), so it isn’t possible to use Theorem 2.9 locally and patch the results to obtain
a global result. However, we may take a different approach in the non-coorientable
case. It is clear from the way θ transforms (see Remark 2.8) that the ideal generated
by θ is independent of the choice of α. The resulting sheaf of ideals may be viewed
as a canonical submanifold Z of codimension 1 concentrated in degree n. Any
choice of local contact form on M corresponds to a choice of local symplectic form
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on Z, since Z is the zero section of the bundle in Theorem 2.9. Under a change of
contact form α′ = fα, the corresponding symplectic form on Z transforms as

ω′ = fω +
1

n
df ∧ (ιεω).

3. Contact NQ-manifolds

Recall that a homological vector field on a graded manifold M is a degree 1
vector field Q such that Q2 = 0. If M has a contact structure, then we may
consider vector fields that are both contact and homological.

Definition 3.1. A degree n contact NQ-manifold is a degree n contact N-manifold
M, equipped with a vector field Q that is contact and homological.

3.1. The case n = 1. In this section, we describe the correspondence between
degree 1 contact NQ-manifolds and Jacobi manifolds.

Recall from Example 2.11 that every degree 1 contact N-manifold with fixed
contact form is canonically of the form M = T ∗[1]M × R[1] for some ordinary
manifold M . We remind the reader that functions on T ∗[1]M can be identified
with multivector fields on M .

Let us first describe degree 1 contact vector fields on M. By Proposition 2.4,
every degree 1 contact vector field arises from a degree 2 function h on M. Any
such function is of the form

h = Λ+ θR,

where Λ is a bivector field and R is a vector field on M . Following (6), (8), and
(9), we write

(11) dh = dΛ− θdR +Rdθ = dΛ − θdR−Rλ+Rα,

where β := dΛ − θdR − Rλ is in im(dα)♭. The corresponding contact vector field
Q is defined by the equations (7), which in this case become

ιQα = Λ+ θR,(12)

ιQdα = dΛ− θdR −Rλ.(13)

The unique solution is

(14) Q = XΛ + θXR −Rε− (Λ + θR)
∂

∂θ
,

where XΛ and XR are the Hamiltonian vector fields on T ∗[1]M associated to Λ and
R, respectively. The Hamiltonian vector fields annihilate θ and act on multivector
fields via the Schouten bracket.

The verification of (14) is a straightforward exercise, using the definition of
Hamiltonian vector fields and (10). Applying Proposition 2.4, we have the following
result:

Proposition 3.2. Every degree 1 contact vector field Q on M is of the form (14)
for some Λ ∈ X

2(M) and R ∈ X
1(M).

Comparing (11) with the construction of §2.2, we have that

(15) LQα = −Rα.

Next, we consider the conditions on Λ and R that arise from the requirement
Q2 = 0.
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Proposition 3.3. Let Q be a contact vector field of the form (14). Then Q2 = 0
if and only if

[Λ,Λ] = 2RΛ and [R,Λ] = 0.(16)

Proof. Contact vector fields are closed under the Lie bracket, so Q2 = 1
2 [Q,Q] is

contact. By the correspondence of Proposition 2.4, we have that Q2 = 0 if and only
if ι[Q,Q]α = 2ιQ2α = 0. Using (12), (14), and (15), we then compute

ι[Q,Q]α = LQιQα− ιQLQα

= LQ(Λ + θR) + ιQ(Rα)

= [Λ,Λ]− 2RΛ + 2θ[R,Λ],

which vanishes if and only if the equations (16) hold. �

The equations (16) are exactly those that define a Jacobi structure on M . Thus,
we have shown the following:

Theorem 3.4. There is a one-to-one correspondence between Jacobi manifolds and

degree 1 contact NQ-manifolds with fixed contact form.

Remark 3.5. It is well-known [KSB93, Vai00] that one can associate to a Jacobi
manifold M a Lie algebroid structure on T ∗M×R. The search for a converse result,
characterizing those Lie algebroid structures on T ∗M × R that arise from Jacobi
structures, led Iglesias and Marrero [IM01] and Grabowski and Marmo [GM01] to
define the notion of Jacobi bialgebroids.

We can interpret Theorem 3.4 as giving a more direct answer to the same ques-
tion. Namely, the Lie algebroid structures on T ∗M × R that arise from Jacobi
structures are exactly those for which the Lie algebroid differential is a contact
vector field.

Remark 3.6. A key point that is implicit in Theorem 3.4 is that, once a contact form
is fixed, then the identification of M with T ∗[1]M × R[1] is canonical. However,
this identification does depend on the choice of contact form, and a different choice
will lead to a different (but conformally equivalent) Jacobi structure. This gives a
one-to-one correspondence between Jacobi structures up to conformal equivalence
and coorientable degree 1 contact NQ-manifolds. Going farther, we may obtain a
correspondence between local Lie algebras and degree 1 contact NQ-manifolds.

4. Symplectization

Let M be a degree n contact N-manifold with fixed contact form α. On M×R,
one defines a 2-form ω̃ = d(etα) = et(dt · α + dα). Since the coordinate t on R is
of degree 0, we have that ω̃ is of degree n. The assumptions on α imply that ω̃ is
nondegenerate, so M × R is a degree n symplectic manifold. The process taking
(M, α) to (M× R, ω̃) is called symplectization.

The following lemmas describe the relationship between symplectization and the
respective symmetries of the contact and symplectic structures.

Lemma 4.1. Let X ∈ X(M) be a contact vector field, and let f be the corresponding

function in (5). Then X − f ∂
∂t is a Hamiltonian vector field on M × R, with

Hamiltonian function HX := et(ιXα).
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Proof. On the one hand, we have that

dHX = d(etιXα) = et(dt · ιXα+ dιxα).

On the other hand, we have that

ιX−f ∂

∂t

ω̃ = et
(

(−1)|X|−1dt · ιXα+ ιXdα − fα
)

.

The conclusion follows from (5) and the identity LX = ιXd+ (−1)|X|dιX . �

Lemma 4.2. Let Q ∈ X(M) be a homological contact vector field, and let ϕ be

the degree 1 function such that LQα = −ϕα. Then the Hamiltonian vector field

Q− ϕ ∂
∂t on M× R is also homological.

Proof. On the one hand, (LQ)
2α = LQ(−ϕα) = −(Q(ϕ))α. In the last step, we

have used the fact that ϕ2 = 0. On the other hand, (LQ)
2α = LQ2α = 0, since Q

is homological. It follows that Q(ϕ) = 0.
Now, we can directly see that (Q − ϕ ∂

∂t )
2 = Q2 −Q(ϕ) ∂

∂t = 0. �

Together, Lemmas 4.1 and 4.2 give the following result.

Theorem 4.3. The symplectization process takes contact NQ-manifolds with fixed

contact form to symplectic NQ-manifolds.

4.1. Poissonization. We now return to the case n = 1, whereM = T ∗[1]M×R[1],
with the standard contact form λ+ dθ, where λ is the Liouville 1-form on T ∗[1]M .
The symplectization process gives T ∗[1]M × R[1] × R, with the symplectic form
ω̃ = et(dt(dθ + λ) + ω), where ω is the canonical symplectic form on T ∗[1]M .

Given a Jacobi structure (Λ, R) on M , we have a homological contact vector
field Q, given by (14). Lemmas 4.1 and 4.2 tell us that Q induces a homological
Hamiltonian vector field on the symplectization T ∗[1]M×R[1]×R, with Hamiltonian
function HQ = et(ιQα) = et(Λ + θR); here, we have used (12).

In order to realize HQ as a bivector field on M ×R, we need to transform ω̃ into
the canonical symplectic form ω + dtdθ, arising from the obvious identification of
T ∗[1]M × R[1]× R with T ∗[1](M × R).

Consider the diffeomorphism ξ of T ∗[1]M × R[1]× R, given by

ξ∗f = exp(tε)(f) = e|f |tf

for any homogeneous function f . Using the power series expansion of the exponen-
tial, we can see that, for any homogeneous differential form β,

ξ∗β = exp(Ltε)(β) = e|β|t (β + dtιεβ) .

In particular, ξ∗ω = et(ω + dt · λ), and ξ∗(dtdθ) = etdtdθ. Thus, ξ∗(ω + dtdθ) = ω̃.
In other words:

Proposition 4.4. The diffeomorphism ξ relates the symplectic form ω̃ with the

canonical symplectic form on T ∗[1](M × R).

Since HQ is of degree 2, its push-forward by ξ is

ξ∗HQ = e−t(Λ + θR),

which exactly correponds to the bivector field for the Poissonization of the Jacobi
structure (Λ, R) (since θ is the conjugate variable that plays the role of ∂

∂t ). Thus
we have shown the following.

Theorem 4.5. The diagram (2) commutes.
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