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The pilot-wave perspective on spin

Travis Norsena)

Smith College, Northampton, Massachusetts 01060

(Received 7 May 2013; accepted 22 November 2013)

The alternative pilot-wave theory of quantum phenomena—associated especially with Louis de
Broglie, David Bohm, and John Bell—reproduces the statistical predictions of ordinary quantum
mechanics but without recourse to special ad hoc axioms pertaining to measurement. That (and
how) it does so is relatively straightforward to understand in the case of position measurements
and, more generally, measurements, whose outcome is ultimately registered by the position of a
pointer. Despite a widespread belief to the contrary among physicists, the theory can also account
successfully for phenomena involving spin. The main goal of this paper is to explain how the pilot-
wave theory’s account of spin works. Along the way, we provide illuminating comparisons
between the orthodox and pilot-wave accounts of spin and address some puzzles about how the
pilot-wave theory relates to the important theorems of Kochen and Specker and Bell. VC 2014 American
Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4848217]

I. INTRODUCTION

In an earlier paper, which readers are encouraged to exam-
ine first and which I refer to hereafter as “the earlier paper,”
I attempted to give a physicists’ introduction to the alterna-
tive, de Broglie-Bohm pilot-wave theory of quantum
phenomena.1 As a so-called “hidden variable theory,” the
pilot-wave theory adds something to the state descriptions of
ordinary quantum mechanics: in addition to the usual wave
function W obeying the usual Schr€odinger equation

i"h
@W
@t
¼ ĤW; (1)

one also has definite positions for each particle in the system.
For example, for a system of N spinless nonrelativistic par-
ticles, the position ~Xn of the nth particle will evolve accord-
ing to

d~XnðtÞ
dt

¼
~jnð~x1;~x2;…;~xN ; tÞ
qð~x1;~x2;…;~xN; tÞ

!!!!
~xk¼~XkðtÞ8k

; (2)

where ~jn ¼ ð"h=2miÞðW$ ~rnW%W ~rnW$Þ is (what in ordi-
nary QM is termed) the probability current associated with
particle n and q ¼ W$W is (what in ordinary QM is termed)
the probability density.

As explained in the earlier paper, the pilot-wave theory
involves the quantum equilibrium hypothesis (QEH), accord-
ing to which the particle positions are assumed to be random,
with initial (t¼ 0) probability distribution

P½~X1 ¼~x1;…; ~XN ¼~xN' ¼ jWð~x1;…;~xN; 0Þj2: (3)

It is then a purely mathematical consequence of Eqs. (1) and
(2) that the probability distribution will remain jWj2-distributed
for all times. The family of possible particle trajectories thus
“flows along with” q, a property that has been dubbed the
“equivariance” of the jWj2 probability distribution.2

Critics of the theory often argue that the addition of these
definite particle positions is pointless (or “metaphysical”)
because at the end of the day the theory’s empirical predic-
tions match those of ordinary quantum mechanics, which
latter predictions are of course made using the wave function

alone. What the critics fail to appreciate, however, is that
adding the particle positions allows something to be sub-
tracted elsewhere in the system. In particular, the dynamical
laws sketched above—namely, Eqs. (1) and (2)—constitute
the entirety of the dynamical postulates of the theory. No
additional axioms or special exceptions to the usual rules—
such as the collapse postulate of ordinary QM—need to be
introduced in order to understand measurement or, more gen-
erally, the emergence of the familiar everyday classical
world.

In the earlier paper, this point was developed in the con-
text of some simple scattering experiments involving single
particles. In such situations, the fact that the scattered parti-
cle is found, whole, at some particular place at the end of the
experiment is explained in the simplest imaginable way:
there really is a particle following a definite trajectory and
hence possessing a perfectly definite position at all times.
The detector finds it at a particular place (even when its
wave function is spread out across several different places)
because it is already at a particular place before interacting
with the detector. And equivariance, in light of the QEH,
guarantees that the probability for the particle to be at a cer-
tain place at the end of the experiment perfectly matches
what ordinary QM would instead describe as the probability
that the measurement intervention triggers a collapse that
makes the particle suddenly materialize at that place. It is
thus clear, in pattern, how the pilot-wave theory reproduces
the statistical predictions of ordinary QM for experiments
that end with the measurement of the position of a particle.

That the pilot-wave theory makes the same predictions as
ordinary QM for other kinds of measurements as well can be
understood by including the particles constituting the meas-
uring device in the system under study. Consider for example
a simple schematic treatment of the measurement of, say, the
energy of a particle with initial wave function w0ðxÞ.

3 The
measurement apparatus is imagined to have a pointer with
spatial coordinate y and initial wave function /ðyÞ ¼ /0ðyÞ,
where /0 is a narrow packet centered at the origin, corre-
sponding to a “ready” state for the apparatus.

An interaction between the particle and the pointer is
regarded as a “measurement of the energy of the particle” if
the Schr€odinger equation (for the particleþpointer system)
produces the following sort of time-evolution in the case
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that the particle is initially in an “energy eigenstate” w0ðxÞ
¼ wiðxÞ with eigenvalue Ei:

wiðxÞ/0ðyÞ! wiðxÞ/oðy% kEiÞ: (4)

That is, at the end of the experiment, the wave function for
the pointer is now sharply peaked around some new point
y ¼ kEi proportional to the initial energy Ei of the particle.
The pointer, in short, indicates the energy of the particle.

But the linearity of the Schr€odinger equation then immedi-
ately implies that, in the general case in which the particle is
initially in an arbitrary superposition of energy eigenstates,
the evolution goes as follows:

X

i

ciwiðxÞ
" #

/0ðyÞ!
X

i

ciwiðxÞ/0ðy% kEiÞ: (5)

The resulting “Schr€odinger cat” type state is of course prob-
lematic from the point of view of ordinary QM: instead of
registering some one definite outcome for the experiment, the
pointer itself ends up in an entangled superposition. Enter the
collapse postulate to save us from the troubling implications
of universal Schr€odinger evolution! But this is no problem at
all in the pilot-wave theory, according to which the (directly
perceivable) final disposition of the pointer is not to be found
in the wave function, but instead in the actual position Y of
the pointer particle at the end of the experiment. It follows
from the equivariance property discussed earlier that, assum-
ing the initial particle positions are random in accordance
with the QEH, there will be a probability jcij2 that the actual
value of Y at the end of the experiment is (near) kEi. That is,
the pointer will point to a definite place, with probabilities
given by the usual quantum rules, but, here, by rigorously fol-
lowing the basic dynamical rules, rather than making up spe-
cial exceptions when they produce embarrassing results.

One can thus understand how the pilot-wave theory man-
ages to reproduce the statistical predictions of ordinary QM,
at least in cases where one measures position or measures
some other quantity but by means of the position of a
pointer. But … what about spin? Of all the phenomena sur-
veyed in undergraduate quantum mechanics courses, those
involving intrinsic spin and its measurement—which Pauli
famously described as indicating a mysterious, non-classical
Zweideutigkeit or “two-valuedness”4—seem perhaps the
least amenable to the pilot-wave type of analysis just
sketched. Indeed, it is sometimes reported that the pilot-
wave theory simply cannot deal with spin phenomena in a
plausible way.5 This view was expressed very eloquently by
one of the anonymous referees of the earlier paper:

“It has indeed been shown that Bohmian
mechanics is equivalent to non-relativistic quan-
tum mechanics with respect to its predictions con-
cerning particle positions. However, the scheme
encounters major problems: in spite of a half-
century of effort by its adherents, it has not been
possible to incorporate spin into the theory in a
convincing way …”

This type of view is perhaps motivated by the various “no
hidden variables” theorems, such as that due to Kochen and
Specker, which show quite clearly that it is mathematically
impossible to assign pre-existing values to all relevant spin
components of an ensemble of particles such that the quan-
tum mechanical predictions are reproduced.6,7 That is, it is

known to be impossible to do, for all of the non-commuting
components of spin, what the pilot-wave theory, as sketched
above, does for position.

And yet, in fact, it is entirely false that the pilot-wave
theory cannot deal with spin. Indeed, the truth is that the pilot-
wave theory deals with spin in an almost shockingly natural—
certainly a shockingly trivial—way. The goal of the rest of
this paper is to resolve this paradox and explain how.

The main ideas of the paper are not new. The pilot-wave
theory was applied to spin already in 1955 by Bohm et al.,8

and numerical simulations of the theory’s account of spin
measurements were carried out by Dewdney et al. in the
1980s.9 Our approach here, following Bell’s more elegant
treatment in Ref. 10, instead aims at simplicity and accessi-
bility. In particular, the proposed delta-function model of a
Stern-Gerlach experiment (the one genuine novelty in the pa-
per) allows one to solve the Schr€odinger equation and deter-
mine the pilot-wave particle trajectories (without any
recourse to numerical simulations) using the “plane-wave
packet” methods developed in the earlier paper.

The delta-function model is developed in the following
section; the associated pilot-wave particle trajectories are
then displayed and analyzed in Sec. III. Section IV explains
how the pilot-wave theory deals with cases of repeated spin
measurements, while Secs. V and VI develop examples to
illustrate the “contextuality” and “non-locality” exhibited by
the theory. Some concluding remarks about the relationship
between the pilot-wave and orthodox points of view are then
made in Sec. VII.

II. THE STERN-GERLACH EXPERIMENT

The Stern-Gerlach experiment, first and most famously
performed in 1922, involves subjecting a beam of particles
to an inhomogeneous magnetic field so the particles experi-
ence a force proportional to a certain component of their
intrinsic spin angular momenta.11 Since, empirically, the
incident beam gets split into two or more discrete sub-beams
(as opposed to a continuous distribution), the experiment is
usually understood as demonstrating the quantization of spin
angular momentum.

In a standard textbook treatment of the experiment, we
assume a magnetic field

~B ) bzẑ; (6)

as might be produced, for example, by the magnets indicated
in Fig. 1.12 For a neutral spin-1/2 particle (such as the silver
atoms used in the original S-G experiment) the interaction
Hamiltonian is

Ĥ ¼ %l~r * ~B ¼ %lbzrz; (7)

where l is the magnitude of the particle’s magnetic moment
and the components of~r are, in the usual representation, the
Pauli matrices. The eigenstates of this interaction
Hamiltonian will obviously be (proportional to) spinors

vþz ¼
1
0

" #
and v%z ¼

0
1

" #
, which satisfy

rzv6z ¼ 6v6z: (8)

Now let us consider the spatial degrees of freedom of the
particle’s wave function, focusing in particular on the
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dimension (here, z) parallel to the magnetic field gradient.
The beam is initially propagating, say, in the þy-direction,
so let us assume that, in the z-direction, the wave function is
initially constant (over the range where it is nonzero) and
that the particles are in eigenstates of rz:

Wðz; 0Þ ¼ Av6z: (9)

Now suppose the particles experience the magnetic field for
a finite period of time T during which the interaction
Hamiltonian above dominates all other terms. Then, the
Schr€odinger equation reads

i"h
@W
@t
¼ %lbzrzW; (10)

which, for the assumed initial condition, has solution

Wðz; TÞ ¼ Ae6ijzv6z; (11)

where "hj ¼ lbT is the magnitude of the (upward or down-
ward) momentum that the particle acquires as a result of tra-
versing the field. For a beam of particles initially propagating
in the y-direction, this impulse in the 6z-direction deflects the
beam either upward or downward depending on whether the
particle was initially in the spin state vþz or v%z. Of course, in
general, the initial spin might be an arbitrary linear combina-
tion of the two z-spin eigenstates:

v0 ¼ cþvþz þ c%v%z: (12)

But then, since Schr€odinger’s equation is linear, it follows
that the S-G device will split the incoming wave function
into two sub-beams—one with relative amplitude cþ that is
deflected up, and one with relative amplitude c% that is
deflected down. The net effect is pictured in Fig. 1.

For purposes of discussing the pilot-wave account of these
phenomena, it will be helpful to work with a simplified
model that captures all the physics we’ve just reviewed but
includes also an explicit treatment of the particle’s other spa-
tial degrees of freedom. This can be done, in the spirit of

Fig. 1, by imagining that the field ~B is very strong, but is
nonzero only in a vanishingly small region around y¼ 0.
That is, the interaction Hamiltonian of Eq. (7) is replaced
with Ĥ ¼ %lbzdðyÞrz, so that the total Hamiltonian govern-
ing the particle’s motion in the yz-plane is

Ĥ ¼ % "h2

2m

@2

@y2
% "h2

2m

@2

@z2
% lbzdðyÞrz: (13)

Now, the situation can be treated like an elementary 2D-
scattering problem in wave mechanics.

To begin with, we imagine a “plane-wave packet” like
those described in the earlier paper: the initial wave func-
tion should be a packet of length L along the y-direction
and width w along the z-direction, with constant amplitude
in the region where its amplitude doesn’t vanish, propagat-
ing initially in the þy-direction with (reasonably sharply
defined) energy E ¼ "h2k2=2m. Let us again start by assum-
ing that the incident particle’s spin degrees of freedom are
described by one of the eigenspinors v6z. Then, in the time
period during which the incident packet is interacting with
the field at y¼ 0, the wave function can be taken to be (up
to an overall time-dependent phase which we omit for
simplicity)

Wðy; zÞ ¼
A eiky v6z þ Bz e%iky v6z for y < 0;

C eik0ye6ijzv6z for y > 0;

(

(14)

in the appropriate regions of the yz-plane. (Note that the fac-
tor of z, in the term involving B that represents a reflected
wave, is put in for future convenience.) This expression is a
valid solution to the time-independent Schr€odinger equation
for y< 0 and y> 0 as long as

E ¼ "h2k2

2m
¼ "h2ðk02 þ j2Þ

2m
: (15)

In addition, the above expression should solve the
Schr€odinger equation at y¼ 0. This will be the case if the
wave function is continuous at y¼ 0, requiring

Aþ Bz ¼ Ce6ijz; (16)

and if the following condition on the y-derivatives of w
(arrived at by integrating the time-independent Schr€odinger
equation from y ¼ 0% to y ¼ 0þ) is satisfied:

@w
@y

!!!!
y¼0þ
% @w
@y

!!!!
y¼0%

 !
¼ 7

2mlb

"h2
zwð0; zÞ: (17)

Plugging in our explicit expression for wðy; zÞ converts Eq.
(17) into

ik0Ce6ijz % ikAþ ikBz ¼ 7
2mlb

"h2
zCe6ijz: (18)

These two conditions, Eqs. (16) and (18), cannot be satisfied
exactly for all z. However, they can be approximately satis-
fied over the narrow range of z where the (width-w) wave
packet has support. Thus, for example, Eq. (16) is valid to
first order in jw if A¼C and

Fig. 1. Neutral spin-1/2 particles with initial spin state cþvþz þ c%v%z move
in the y-direction toward a Stern-Gerlach apparatus with magnetic field gra-
dient along the z-direction. The field delivers an impulse in the 6z-direction
to the v6z components of the beam, so downstream there arise two spatially
non-overlapping sub-beams with amplitudes cþ and c%. In ordinary quantum
mechanics, a measurement of the position of the particle downstream from
the S-G device will find the particle in (or more accurately, cause it to mate-
rialize in) the upper/lower sub-beam with probability jc6j2.
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B ¼ 6ijC: (19)

Then Eq. (18) is satisfied to the same degree of approxima-
tion if k ) k0 (which implies, in light of Eq. (15), that j+ k)
and

j ¼ mlb

"h2k
: (20)

Notice that there are two distinct physical assumptions here.
First, the impulse (of magnitude "hj) imparted to the particles
by the Stern-Gerlach fields must be small compared to the ini-
tial momentum "hk of the particles, or equivalently j=k ¼
lb=2E should be small. (Notice that b has the same units as a
magnetic field even though it is not one!) That is, the magnetic
fields should be appropriately “gentle.” And second, the width
w of the incident packet should be small compared to 1=j.
Then Eq. (14) provides an acceptable description of the wave
function in the vicinity of the Stern-Gerlach apparatus while
the length- L packet interacts with it. Note that, in these limits,
the (z-dependent) amplitude of the reflected wave is (every-
where) small. Since it also plays no significant role in the
physics to be discussed, we therefore drop it. (Those interested
in the details should see Ref. 13 note.)

So far we have assumed that the spin degrees of freedom
are given by one of the (z-direction) eigenspinors v6z. But it
is now straightforward to appeal to the linearity of the
Schr€odinger equation in order to write a solution appropriate
for an arbitrary initial spinor like that of Eq. (12):

Wðy; zÞ ¼
A eiky cþvþz þ c%v%zð Þ y < 0;

A eik0y eþijzcþvþz þ e%ijzc%v%z

$ %
y > 0;

(

(21)

where, of course, the expression for y< 0 applies only within
the range %w=2 < z < w=2 where the plane-wave packet
has support, and the expression for y> 0 applies only within
the triangular “overlap region” (see Fig. 1) where the two
(separating) components of the wave coincide.

III. PARTICLE TRAJECTORIES IN THE
PILOT-WAVE THEORY

Following the methods introduced in the earlier paper we
can use the structure of the wave function in (especially) the
“overlap region” to analyze the motion of the particles in the
pilot-wave theory and to demonstrate explicitly that the
theory reproduces the usual quantum-mechanical predictions
for the outcome of a Stern-Gerlach spin measurement. The
first question that must be addressed, though, is this: what is
the analog of Eq. (2) when the wave function

W ¼ Wþ
W%

" #
(22)

is a multi-component spinor? The answer is simply that the
equation is exactly the same, except we must sum over the
spin index in both the numerator and denominator, or equiv-
alently, writing W† ¼ ðW$þW$%Þ, we say

d~XðtÞ
dt
¼ "h

2mi

W†ð ~rWÞ % ð ~rW†ÞW
W†W

!!!!
~x¼~XðtÞ

: (23)

Consider, for example, the wave function Wðy; zÞ in the y< 0
region from Eq. (21). We have that

Wðy; zÞ ¼ Aeiky cþ
c%

" #
(24)

so that

W†ðy; zÞ ¼ A$e%ikyðc$þ c$%Þ: (25)

Plugging into Eq. (23) then gives

d~X

dt
¼ "hk

m
ŷ: (26)

No matter its exact location within the wave, the particle will
simply drift in the positive y-direction with the group veloc-
ity of the incident packet.13

Eventually, of course, the particle will encounter the fields
at y¼ 0 and pass over into the overlap region on the y> 0
side. Here, because the þ and – components of W have dif-
ferent dependencies on z, we end up with

d~X

dt
¼ "hk0

m
ŷ þ "hj

m
jcþj2 % jc%j2
$ %

ẑ; (27)

which can be understood as a weighted average of the group
velocities associated with the two (now differently directed)
components of the wave.

The family of possible particle trajectories thus looks
something like that illustrated in Fig. 2 for the particular case
that jcþj is a little bigger than jc%j. It should be clear, for
example, that if cþ ¼ 1 and c% ¼ 0 then, while in the over-
lap region, the particles will just move with the group veloc-
ity of the þ component of the wave function and all
incoming particles (no matter their lateral position within the

Fig. 2. Representative sample of possible particle trajectories through a
z-oriented Stern-Gerlach apparatus for an initial wave function with spinor
components cþ ¼

ffiffiffiffiffiffiffiffi
2=3

p
and c% ¼

ffiffiffiffiffiffiffiffi
1=3

p
. The particle will move along

with the incident wave until crossing over into the overlap region where the
þ and – components of the wave are beginning to separate. In this region,
the particle velocity is the weighted average, given in Eq. (27), of the group
velocities associated with the two separating components of the wave.
Depending on its initial lateral position within the incoming wave packet,
the particle will either be shunted into the upper (þ) or lower (–) fork.
Subsequent detection of the particle in the upper/lower fork will result in its
being identified as “spin up/down along z.”
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wave) will be shunted into the upward sub-beam.
Alternatively, if cþ ¼ 0 and c% ¼ 1 the particles in the over-
lap region will move with the group velocity of the—compo-
nent and all incoming particles will be shunted downward.

The equivariance property mentioned in the introduction
implies that if the position of the particle within the wave is
random and jWj2-distributed at t¼ 0, it will remain jWj2-dis-
tributed for all subsequent times. This has the immediate
consequence that the probability for the particle to be located
(downstream of the Stern-Gerlach device) in the upper
(lower) sub-beam, and hence counted as “spin-up” (“spin-
down”) if its position there is detected, is jcþj2 ðjc%j2Þ. It is
thus clear that the pilot-wave theory reproduces the usual
quantum-mechanical predictions for the statistics of such
spin measurements.

One of the nice things about the way we have set things
up, though, is that this claim can be demonstrated explicitly
by considering the “critical trajectory,”14 which divides the
trajectories emerging into the upper and lower beams. By
definition, the critical trajectory arrives just at the vertex on
the right of the triangular overlap region behind the magnets,
as shown in Fig. 3. The slope of the critical trajectory is
given by the ratio of the z- and y-components of the velocity
in the overlap region, Eq. (27):

slope ¼ jcþj
2 % jc%j2

jcþj2 þ jc%j2
j
k0
: (28)

On the other hand, as explained in the figure caption, the crit-
ical trajectory traverses a distance Dy ¼ wk0=ð2jÞ in the y-
direction and a distance Dz ¼ wPþ % w=2 in the z-direction,
where Pþ is the fraction of the lateral width w of the beam
with the property that, should the particle begin there, it will

end up going into the upper sub-beam. In short, Pþ repre-
sents the probability that the S-G spin measurement will
yield the outcome “spin-up.” Setting

slope ¼ Dz

Dy
(29)

and solving for Pþ one indeed recovers that

Pþ ¼ jcþj2; (30)

confirming explicitly that, indeed, the pilot-wave dynamics
for the wave and particle are compatible in the way
expressed by the formal equivariance property: the particle
trajectories “bend just the right amount” to yield a final prob-
ability distribution for the particle position that is consistent
with the usual QM predictions and, more importantly, what
is seen in experiments.

IV. ADDITIONAL MEASUREMENTS

So far, we have concentrated on the measurement of the
z-component of the spin using a Stern-Gerlach device whose
magnetic field gradient is along the z-direction. By simply
rotating the device, however, we can also measure the com-
ponent of the spin along (say) an arbitrary direction n̂ in the
xz-plane:

n̂ ¼ cos h ẑ þ sin h x̂: (31)

The whole measurement procedure can be analyzed in
exactly the same way we’ve done above, mutatis mutandis:
the eigenspinors v6n will now be the eigenvectors of

rn ¼
cos h sin h
sin h %cos h

" #
; (32)

an arbitrary initial wave-packet (proportional to initial spinor
v0) can be written as a linear combination of these
eigenspinors

v0 ¼ cþnvþn þ c%nv%n; (33)

and the whole analysis of Secs. II and III goes through, with
z being everywhere replaced by n.15 Thus, it should be clear
that the pilot wave theory reproduces the usual quantum sta-
tistical predictions for spin measurements, whether it is the
z- or some other component of spin that is to be measured.

Perhaps the theory will fail, however, when we consider
the possibility of subsequent and/or repeated measurements?
The pilot-wave theory is, after all, a deterministic hidden
variable theory: for a given experimental setup, the outcome
of a spin measurement is determined by the initial state of
the “particle” (meaning here the particle þ wave combina-
tion). Standard textbook discussions might perhaps suggest
that there would be a problem.

For example, suppose that particles emerging from the
“spin-up” port of a z-oriented Stern-Gerlach device (SGz) are
subsequently sent through an SGx device; those particles
emerging as “spin-up” along x are then subjected to a further
measurement of their spin’s z-component (see Fig. 4). The
result, of course, is that fully half of the particles entering it
will emerge from the final SGz device as “spin-down.” The
usual interpretation is that spin-along-z and spin-along-x are

Fig. 3. Particles that begin above the critical trajectory will be shunted into
the upper (“spin-up”) wave packet downstream of the Stern-Gerlach mag-
nets, while those that begin below the critical trajectory will be shunted into
the lower (“spin-down”) packet. For initial particle positions that are (in ac-
cordance with the QEH) uniformly distributed across the lateral extent of
the incident packet, the probability for a particle to emerge with the “spin-
up” packet will be the fraction of the lateral width (w) of the packet that is
above the critical trajectory, i.e., the distance from the critical trajectory to
the top of the incident packet is wPþ. The vertical displacement Dz of the
critical trajectory as it traverses the triangular overlap region is then
wPþ % w=2. By considering the right triangle that is the lower half of the
overlap region (and whose hypotenuse is one edge of the “spin-up” packet),
one can see that the horizontal extent Dy of the overlap region is
ðw=2Þðj=k0Þ: the slope ðw=2Þ=Dy of the hypotenuse should match the ratio
j=k0 of the z- and y-components of the group velocity associated with the
“spin-up” part of the wave.

341 Am. J. Phys., Vol. 82, No. 4, April 2014 Travis Norsen 341

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
131.229.64.25 On: Fri, 05 Aug 2016 14:48:53



incompatible properties, corresponding to non-commuting
quantum mechanical operators, so the determination of a
definite value for spin-along-x completely erases the
previously-definite value for spin-along-z. Surely a
non-quantum, deterministic hidden-variable theory could not
reproduce this paradigmatically quantum result?

But a little thought reveals that, yes, the pilot-wave theory
reproduces this prediction quite easily. The crucial point is
that, although the particles entering the SGx device were

being guided by waves proportional to
1
0

" #
, the wave guid-

ing those particles that successfully emerge from the
“spin-up” port of the SGx device is proportional to

vþx ¼ 1ffiffi
2
p 1

1

" #
. The vþx and v%x components of the wave

get separated by the SGx device, whereas the particle goes
one way or the other. And, by definition, if the particle ends
up in the “spin-up-along-x” beam, downstream of the SGx

device, the component of the wave now surrounding and
guiding it is the “spin-up-along-x” part. So it is as if the par-
ticle’s quantum state has “collapsed,” as per the usual quan-
tum mechanical rules, even though, in fact, no collapse—no
violation of the usual Schr€odinger evolution of the wave—
has occurred. The other, “spin-down-along-x,” part of the
wave is still present—it’s just “over there,” far away from
the actual location of the particle, and hence dynamically
irrelevant to the present or future motion of the particle.16

This separation of the different spin components of the wave
packet of course happens in ordinary quantum mechanics as
well. But in ordinary QM there is nothing like the actual
position of the particle, in addition to the wave function, to
warrant talk of the particle actually being up there (i.e., talk
of the spin measurement having actually had the outcome
“spin-up”), and so additional dynamical postulates are
required. This is an illustration of the point made in the intro-
duction, that although the pilot-wave theory adds something
to the physical state descriptions, it is not really more (let
alone pointlessly more) complicated than ordinary QM
because this addition allows for the subtraction of the other-
wise rather dubious measurement axioms.

What is actually shown by this kind of example is not that
one cannot explain the observed statistics of spin measure-
ments with a non-quantum, deterministic, hidden-variable
theory, but rather only that the physical state of a particle
(known, say, to be “spin-up-along-z”) must be affected by a
measurement of (for example) its spin-along- x. Ordinary

quantum theory of course exhibits this behavior: in quantum
mechanics, the state of the particle, after a measurement, is
postulated to “collapse” to the eigenstate of the appropriate
operator corresponding to the actually-observed outcome. (It
is worth noting here that the “actually-observed outcome” is
yet another additional postulate of the theory—for Bohr, for
example, this was realized in some classical macroscopic
pointer somewhere, whose physical relationship to the parti-
cle in question is, at best, obscure.) The point here is that the
pilot-wave theory also exhibits this behavior: the physical
state of (in particular) the wave guiding the particle is differ-
ent before, and after, the intermediate SGx device. But in the
pilot-wave theory, this difference—the physical influence of
the measurement on the properties of the system in questio-
n—is a natural and straightforward consequence of the usual
dynamical laws.

V. CONTEXTUALITY

In the previous section I stressed that the pilot-wave
theory is not the “naive” sort of hidden-variable theory that
is sometimes discussed (and, when discussed, always refuted
with great pomp!) in textbooks. In these “naive” theories,
measurements simply passively reveal some pre-existing
value of the property being measured, without affecting the
state of the particle. In the pilot-wave theory, by contrast,
there is a natural mechanism (which, quite literally, is noth-
ing but Eqs. (1) and (2) that define the theory’s dynamics)
whereby the physical measurement intervention affects the
state of the measured system. There is thus a sense in which,
for the pilot-wave theory just as for ordinary QM, the mea-
surement cannot be thought of as passively revealing some
pre-existing quantity, but should instead be thought of as an
active intervention which brings about the new, final state of
the particle corresponding to the measurement outcome.

But there is an even deeper sense in which, for the pilot-
wave theory, the measurement cannot be thought of as pas-
sively revealing a pre-existing value. Let us discuss this in
terms of a concrete example. Recall the SGz device sketched
in Fig. 1: the magnets produce a magnetic field near the ori-
gin that can be approximated by the expression in Eq. (6).
The field is such that a classical particle, with magnetic
dipole moment in the þz direction, will feel a force in the þz
direction and hence be deflected up upon passing through the
SG device. Likewise, a classical particle with magnetic
dipole moment in the %z direction will feel a force in the %z
direction and will hence be deflected down. This is, in
essence, the basis for saying that, when a particle emerges
from the SG device having been deflected up, it is “spin-up
along z,” etc.

But other ways of measuring the z-component of a par-
ticle’s spin can also be contemplated. For example, imagine
a device—let us call it here an SG0z device—like that indi-
cated in Fig. 5. The structure is identical to the original SGz

device except that the polarity of the magnets has been
reversed and hence Eq. (6) is replaced with

~B
0 ) %bzẑ: (34)

This reversal of the magnetic field gradient reverses the
effect on particles passing through the device: now, a classi-
cal particle with a magnetic dipole moment in the þz direc-
tion will feel a force in the %z direction and hence be
deflected down upon passing through the device, while a

Fig. 4. Schematic representation of a series of Stern-Gerlach spin measure-
ments, in which the devices are replaced by “black boxes” with two output
ports, one for “spin-up” along the direction n indicated by the box’s label
“SGn,” and one for “spin-down.” Here, particles that emerge as “spin-up”
along the z-direction and then “spin-up” along the x-direction are subjected
to a further measurement of z-spin. Half of the particles exiting this final
SGz device are “spin-up,” with the other half being “spin-down.” As dis-
cussed in the text, both ordinary QM and the pilot-wave theory are able to
account for the observed statistics, because in both theories the state of a
particle is in general affected by subjecting it to a spin measurement. In par-
ticular, the state of a particle exiting the first SGz device is not the same as
the state of that same particle when it exits the intermediate SGx device.
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classical particle with magnetic dipole moment in the %z
direction will feel a force in the þz direction and will hence
be deflected up. The SG0z device is a perfectly valid one for
measuring the z-component of the spin of a particle; it
merely has a different “calibration” (one might say) than the
original device. Whereas, with the original device, particles
deflected up are declared to be “spin-up along z,” particles
deflected up by the modified device are instead declared to
be “spin-down along z,” and vice versa. And indeed, a full
quantum mechanical analysis, parallel to that undertaken for
the original SGz device in Sec. III, leads to the conclusion
that an incident wave packet proportional to cþvþz þ c%v%z
will be split, upon passage through the SG0z device, into two
sub-beams, one proportional to cþvþz that has been deflected
down and the other proportional to c%v%z that has been
deflected up.

The significance of these two distinct pieces of experimen-
tal apparatus—both equally qualified to “measure the z-com-
ponent of the spin of a particle”—becomes clear when we
consider what happens when, for example, a particle with ini-

tial wave function proportional to 1ffiffi
2
p 1

1

" #
is incident on the

two devices. For this case, the particle velocity in the overlap
region is proportional to ŷ, i.e., the particle trajectories simply
continue in a straight line all the way through the overlap
region until they finally emerge into one of the now spatially
separated sub-beams corresponding to their initial lateral posi-
tions within the incident packet. That part is identical whether
the original SGz or the alternative SG0z device is involved. But
there is a crucial difference between the two devices: if (say)
the particle happens to start in the upper half of the incident
packet, it is destined to eventually find itself in the upward-
deflected sub-beam and hence be counted as “spin-up along
z”—if the measurement is carried out using the original SGz

device. But if instead the measurement is carried out using the
alternative SG0z device, the exact same “particle”—that is, the
exact same wave function and the exact same particle location
in the upper half of the wave packet—is instead destined to
eventually find itself in the upward-deflected sub-beam and
hence be counted as “spin-down along z.”17

In short, for the (deterministic, hidden variable) pilot-wave
theory, the outcome of “measuring the z-component of the

spin of the particle” is not simply a function of the initial state
of the “particle” (i.e., the particleþ wave complex). The exact
same initial state can yield either of the two possible measure-
ment outcomes, depending on which of two possible experi-
mental devices is chosen for performing the experiment.

This is a concrete illustration of the fact that is usually put
as follows: for the pilot-wave theory, spin is “contextual.”
That is, the outcome of a measurement of a certain compo-
nent of a particle’s spin depends, in the pilot-wave theory,
not just on the initial state of the particle but also on the
overall experimental context, that is, on the particular “way”
that the measurement is implemented.

This “contextuality” should be contrasted to the “non-
contextual” type of hidden variable theory in which for each
(Hermitian) quantum mechanical operator (corresponding to
some “observable” property), each particle in an ensemble
possesses a definite value that is simply revealed by the appro-
priate kind of experiment, independent of which specific ex-
perimental implementation is used to measure the observable
in question. In particular, a non-contextual hidden-variable
theory would (by definition) assign a definite value to the z-
component of each particle’s spin, independent of whether the
spin is measured using an SGz or an SG0z device. More gener-
ally, non-contextuality can be understood as the requirement
that each observable should possess a particular definite value,
that will be revealed by a measurement of that observable, no
matter what compatible observables are perhaps being meas-
ured simultaneously. (The following section provides a con-
crete example of this more general sort of contextuality.)

That the “no hidden variables” theorems of von Neumann,
Jauch-Piron, and Gleason tacitly assume non-contextuality
(or an even stronger and less innocent requirement) was first
clearly pointed out in Bell’s landmark 1966 paper, “On the
Problem of Hidden Variables in Quantum Mechanics.”18

(This paper, incidentally, was written in 1964, prior to Bell’s
more famous 1964 paper proving what is now called “Bell’s
Theorem,” but remained unpublished until 1966 due to an
editorial accident.) The somewhat more famous Kochen-
Specker “no hidden variables” theorem, which appeared the
year after Bell’s paper, also assumes non-contextuality, as
discussed in the beautiful review paper by Mermin.6,7

As Bell explains, these proofs all rely on relating “in a
nontrivial way the results of experiments that cannot be per-
formed simultaneously.” (For example, they assume that the
results of an SGz-based and an SG0z-based measurement
should be the same.) Bell elaborates:

“It was tacitly assumed that measurement of an
observable must yield the same value independently
of what other measurements may be made
simultaneously. Thus as well as [some observable
with corresponding QM operator Â] say, one might
measure either [B̂] or [Ĉ], where [B̂ and Ĉ
commute with Â, but not necessarily with each
other]. These different possibilities require different
experimental arrangements; there is no a priori
reason to believe that the results for [Â] should be
the same. The result of an observation may
reasonably depend not only on the state of the
system (including hidden variables) but also on the
complete disposition of the apparatus.”18

Bell then references Bohr’s insistence on remembering
“the impossibility of any sharp distinction between the
behavior of atomic objects and the interaction with the

Fig. 5. An alternative way to “measure the z-component of the spin of a par-
ticle” is to pass the particle through the SG0z device shown here. This is the
same as an SGz device, but with the polarity of the magnets—and hence the
calibration of the device—reversed: particles that deflect up are now counted
as “spin-down along z,” while particles that deflect down are now counted as
“spin-up along z.”
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measuring instruments which serve to define the conditions
under which the phenomena appear.”19 Abner Shimony has
aptly described Bell’s invocation of Bohr (the arch-opponent
of hidden variables) in Bell’s defense of hidden variables
(against the theorems supposedly, but not actually, showing
them to be impossible) as a “judo-like manoeuvre.”20

For our purposes, the upshot of all this is the following. In
the literature on hidden variables one often finds the implica-
tion that the requirement of non-contextuality is quite reasona-
ble in the sense that contextuality would supposedly involve
putting in “by hand” an obviously implausible ad hoc kind of
apparatus-dependence. But as the simple example of the
contextuality of the pilot-wave theory (involving the distinct
outcomes for SGz- and SG0z-based measurements of z-spin)
makes clear, this is not the case at all. The “context-
dependence” arises in a perfectly straightforward and natural
way, again as a direct consequence of the fundamental
dynamical postulates of the theory given by Eqs. (1) and (2).

VI. NON-LOCALITY

Bell’s 1966 paper closes by noting that Bohm’s 1952
pilot-wave theory eludes the various “no hidden variables”
theorems by means of its contextuality—but that the
context-dependence implies a non-local action at a distance
in situations involving entangled but spatially-separated par-
ticles: “in this theory an explicit causal mechanism exists
whereby the disposition of one piece of apparatus affects the
results obtained with a distant piece.”18 Let us explore this
type of situation, in which the pilot-wave theory’s contex-
tuality implies a non-local dependence on a remote context.

Consider then a pair of spin-1/2 particles, propagating in
opposite directions along (and already widely separated
along) the y-axis. The initial spatial part of the 2-particle
wave function can be taken to be

wð~x1;~x2Þ ¼ Uð0;d;0Þk ð~x1ÞUð0;%d;0Þ
%k ð~x2Þ; (35)

where Uð0;d;0Þk ð~xÞ represents a plane-wave packet1 centered at
~x ¼ ð0; d; 0Þ with central wave vector ~k ¼ kŷ. Consider first
the case in which the spin part of the initial state also factor-
izes, so that the total state can be written

Wð~x1;~x2Þ ¼ Uð0;d;0Þk ð~x1Þv1
0

' (
Uð0;%d;0Þ

k ð~x2Þv2
0

' (
: (36)

We may introduce the so-called “conditional wave function”
(CWF) for particle 1 as follows:

W1ð~xÞ ¼ Wð~x;~x2Þj~x2¼~X2
; (37)

where ~X2 is, of course, the actual position of particle 2. The
CWF for particle 2 is defined in a parallel way.

These CWFs are convenient because the dynamical law
for the particle positions, Eq. (2), can be reformulated to
give, for each particle, an expression for the particle velocity
in terms of its own CWF:

d~Xn

dt
¼ "h

2mi

W†
nð ~rWnÞ % ð ~rW†

nÞWn

W†
nWn

!!!!
~x¼~Xn

: (38)

The CWFs can thus be thought of as “one-particle wave
functions,” each of which guides its corresponding particle,

in exactly the way we have discussed previously for the
pilot-wave theory of single particles.

The CWFs have, however, several perhaps-unexpected
properties that should be acknowledged. First, it should be
appreciated that, in general, the CWFs do not obey some sim-
ple one-particle Schr€odinger equation.22 Evaluating Eq. (36)
at ~x2 ¼ ~X2 gives an overall (time-dependent) multiplicative
factor, which means that (even in the case of non-entangled
particles) the overall phase and normalization of the CWF can
change erratically. This, however, is irrelevant to the motion
of the associated particle because any multiplicative factor
simply cancels out in Eq. (38). In addition, the CWF of each
particle carries spin indices for both particles. In the case
where the two-particle wave function is factorizable, as in Eq.
(36), the particle-2 spinor (v2

0) is irrelevant to the motion of
particle 1, and vice versa. The “extra” spinor thus acts just like
the overall multiplicative constant. It is thus clear that when
the two-particle wave function factorizes—when the two par-
ticles are not entangled—the motions of the two particles will
be fully independent: if the particles subsequently encounter
Stern-Gerlach devices, each will (independently and sepa-
rately) act exactly as described in the previous sections.

If, however, the spins of the two particles are initially
entangled, as for example in

Wð~x1;~x2Þ ¼ wð~x1;~x2Þ
1ffiffiffi
2
p v1

þzv
2
%z % v1

%zv
2
þz

' (
; (39)

then the non-locality appears. Suppose for example that both
particles are to be subjected to SGz-based measurements of
their z-spins. And suppose that particle 1 encounters its SGz

device first. A simple calculation shows that, in the overlap
region behind the magnets, the velocity of particle 1 will be
proportional to ŷ (i.e., it will simply continue in a straight hor-
izontal line through the overlap region). It will then exit the
overlap region into one or the other of the two downstream
sub-beams, depending on its initial z-coordinate: if the particle
happens to have started in the upper half of the packet it will
end up deflecting up and being counted as “spin-up,” whereas
if it happens to have started in the lower half of the packet it
will end up deflecting down and being counted as “spin-
down.” Supposing, for notational simplicity, that the two now
spatially-separated sub-beams are bent (say, by additional
appropriate SG type magnets) so that they again propagate in
the þy-direction but with displacements 6D in the z-direc-
tion,21 the two-particle wave function after particle 1 has
passed through its SGz device will take the form

W ¼ 1ffiffiffi
2
p Uð0;d

0;DÞ
k ð~x1ÞUð0;%d0;0Þ

%k ð~x2Þ v1
þzv

2
%z

h

%Uð0;d
0;%DÞ

k ð~x1ÞUð0;%d0;0Þ
%k ð~x2Þ v1

%zv
2
þz': (40)

That is, the overall wave function is a superposition of two
terms: one, proportional to v1

þzv
2
%z, in which the particle 1

wave packet has been displaced a distance D in the positive
z-direction, and the other, proportional to v1

%zv
2
þz, in which

the particle 1 wave packet has been displaced a distance D in
the negative z-direction.

The actual location ~X1 of particle 1 will be either near
z ¼ D or near z ¼ %D (again, depending on its random initial
position). It is thus meaningful already at this stage to speak
of the actual outcome of the SGz-based measurement of the
z-spin of particle 1. The crucial point is now that the CWF
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for particle 2—the thing that will determine how particle 2
behaves when it subsequently encounters its SGz device—
depends on where particle 1 ended up. If particle 1 went up
(that is, if ~X1 is now in the support of Uð0;d

0;DÞ
k ) then the CWF

of particle 2 is (proportional to)

W2ð~xÞ ¼ Uð0;%d0;0Þ
%k ð~xÞ v%z (41)

and its subsequent interaction with an SGz device will, inde-

pendent of the exact position ~X2, result in its being deflected
down. Whereas if instead particle 1 ended up going down

(that is, if ~X2 is now in the support of Uð0;d
0;%DÞ

k ) then the
CWF of particle 2 is instead (proportional to)

W2ð~xÞ ¼ Uð0;%d0;0Þ
%k ð~xÞ vþz (42)

and its subsequent interaction with an SGz device will, inde-
pendent of the exact position ~X2, instead result in its being
deflected up. That is, the CWF for particle 2 collapses, as a
result of the measurement on particle 1, to a state of definite
z-spin. This happens, however, despite the fact that the
two-particle wave function obeys the (unitary) Schr€odinger
equation without exception! And the usual quantum mechan-
ical statistics are reproduced: the two possible joint outcomes
(particle 1 is spin-up and particle 2 is spin-down, or particle
1 is spin-down and particle 2 is spin-up) each occur with
50% probability. Of course, the pilot-wave theory being after
all deterministic, these probabilities are quite reducible. In
particular, which of the two joint outcomes occurs depends
on the random initial position of particle 1 (specifically, its
initial z-coordinate).

In order to make the non-local character of the theory
absolutely clear, it is helpful to now consider an alternative
scenario in which particle 1 is not subjected to any measure-
ment. For example, perhaps Alice, who is stationed there
next to it, decides (at the last possible second before particle
1 arrives) to yank the SGz device out of the way. Then, the
two-particle wave function remains in a state described by
Eq. (39) until particle 2 arrives at its SGz device. But then
particle 2 will behave in just exactly the way we previously
described for particle 1 (when it was the first to encounter an
SGz device): its velocity in the overlap region behind the
magnets will be proportional to ŷ and the outcome of the
spin measurement will depend on the initial position (in par-
ticular, the z-coordinate) of particle 2.

The non-locality is thus clear: even for the same initial
state—two-particle wave function given by Eq. (39) and,
say, both particle positions, ~X1 and ~X2, in the upper halves of
their respective packets—the outcome of the measurement
on particle 2 depends on what Alice chooses to do in the vi-
cinity of particle 1. If Alice subjects particle 1 to an SGz-
based measurement, that measurement will have outcome
“spin-up,” the CWF of particle 2 will collapse to a state pro-
portional to v%z, and the subsequent measurement of particle
2’s z-spin will have outcome “spin-down.” On the other
hand, if Alice removes the SGz device, the measurement of
particle 2’s z-spin will instead have the outcome spin-up.23 It
is clear that the non-locality is a form of contextuality in
which the part of the experimental “context” affecting the
realized outcome of the experiment is remote (Fig. 6).

Although we have focused here on the concrete example in
which the z-components of the spins of both particles are (per-
haps) measured, it should now be clear that, and how, the

pilot-wave theory accounts for the empirically observed corre-
lations in the more general sort of case in which arbitrary com-
ponents of spin are measured. One of the particles will
encounter its measuring device first; the outcome of this first
measurement will be determined by the random initial position
of this measured particle within its wave packet; the comple-
tion of this first measurement induces a collapse in the distant
particle’s CWF; and this in turn determines the statistics for a
subsequent measurement on the distant particle. (Showing
that, in addition, the expected statistical results are reproduced
even if one or both of the measuring devices are replaced with
alternative SG0n devices is left as an exercise for the reader.)

That so much hangs on which measurement happens first
(or more mathematically, that the CWF of each particle is
the two-particle wave function evaluated at the actual cur-
rent position of the other particle, no matter how distant)
makes it clear that the non-locality of the pilot-wave theory
will be difficult to reconcile with relativity. This is, however,
in principle no different from the non-locality implied by the
collapse postulate of ordinary QM. (Indeed, the collapse of
the pilot-wave theory’s CWFs can and should be understood
as a mathematically precise derivation of the usual textbook
approach to measurement, in a theory where imprecise
notions like “measurement” play no fundamental role.) And
of course, the “grossly non-local structure” of the pilot-wave
theory and ordinary QM turns out to be “characteristic… of
any such theory which reproduces exactly the quantum me-
chanical predictions”—as shown in Bell’s other landmark
paper, of 1964.24

Fig. 6. Illustration of the two scenarios discussed in the text. In the top frame,
particle 1 (on the right) encounters its SGz device first; the particle is found to
be spin-up (solid trajectories) or spin-down (dashed trajectories) depending on
the initial z-coordinate of the particle. If particle 1 goes up, the collapse suffered
by the CWF of particle 2 (on the left) causes it to go down (solid trajectories)
regardless of its initial z-coordinate. On the other hand, if particle 1 goes down,
the collapse causes particle 2 instead to go up (dashed trajectories) regardless
of its initial z-coordinate. In the lower frame, particle 1 is not subjected to any
measurement. The result of measuring the z-spin of particle 2 is then deter-
mined by the initial z-coordinate of particle 2. The difference between the two
scenarios exemplifies the contextuality of the pilot-wave theory (since the result
of measuring the spin of particle 2 depends not only on the initial state but on
whether or not the spin of particle 1 is measured jointly) and also its non-
locality (since the choice of whether or not to measure particle 1 could be
made at space-like relativistic separation from the measurement of particle 2).
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VII. CONCLUSIONS

Contrary to an apparently widespread belief, the pilot-
wave theory has no trouble accounting for phenomena
involving spin. It does so, actually, in the most straightfor-
ward imaginable way: the wave function (a scalar-valued
field on the configuration space in the case of spinless par-
ticles) is replaced with the appropriate spinor-valued func-
tion, evolving according to the appropriate generalization of
the Schr€odinger equation, just exactly as in ordinary QM.
The dynamical law for the motion of the particles, Eq. (2),
doesn’t change at all—one need simply recall, again from or-
dinary QM, that for particles with spin the definitions of both
~jn and q involve summing over the spin indices. Thus under-
stood, the pilot-wave theory reproduces the usual quantum
statistical predictions for spin measurements (including
sequences of measurements performed on a single particle,
and joint measurements performed on pairs of perhaps-
entangled particles) but without any additional postulates or
ad hoc exceptions to the usual dynamical laws. And it does
this, incidentally, in a way that could have been anticipated:
spin measurements too (like position measurements and
measurements whose results are registered by the position of
a pointer) ultimately come down to the position of a particle
(downstream from an appropriate Stern-Gerlach device).

The theory exhibits “contextuality,” as illustrated in the two
examples discussed: the result of a measurement depends not
only on the state of the particle prior to measurement but also
on the measurement’s specific experimental implementation.
In particular, the outcome of a measurement of the z-compo-
nent of the spin of a particle can depend on whether the spin is
measured using an SGz or an SG0z device, and/or can depend
on which (commuting) observable is also being jointly meas-
ured. Considered in the abstract, the idea of a contextual hid-
den variable theory perhaps sounds contrived and implausible.
Such, at least, has apparently been the thinking behind the sug-
gestions that the various “no hidden variables” theorems (due
to von Neumann, Kochen-Specker, and so on) rule out the pos-
sibility of (or even an important class of) hidden variable theo-
ries. But the example of the pilot-wave theory shows, quite
simply and conclusively, that they don’t. And furthermore,
like it or lump it, the theory (backed up by Bell’s theorem)
shows that there is nothing the least bit contrived or intolerable
in the sort of contextuality that is required to eliminate the
“unprofessionally vague and ambiguous” aspects of ordinary
QM in favor of something clear and mathematically precise.28

The idea that there should be something contrived or intol-
erable about contextuality undoubtedly arises from the idea
that, if a property really exists, measurement of it should—by
definition—simply reveal its value. It would be hard, actually,
to disagree with this sentiment. The key question, though, is
precisely whether any such property exists. As has been dis-
cussed in illuminating detail in Ref. 25, the real lesson to be
taken away from examining the pilot-wave perspective on
spin is that so-called “contextual properties” (like the individ-
ual spin components in the pilot-wave theory) are not proper-
ties at all.26 They simply do not exist and there is nothing
mysterious about this at all, just as there is nothing mysterious
in the fact that the eventual flavor of a loaf of bread (which
depends not just on the ingredients but also on how it is later
baked!) is not a pre-existing property of the raw dough:

“Note that one can completely understand what’s
going on in [a] Stern-Gerlach experiment without
invoking any putative property of the electron such

as its actual z-component of spin that is supposed
to be revealed in the experiment. For a general ini-
tial wave function there is no such property. What
is more, the transparency of the [pilot-wave] analy-
sis of this experiment makes it clear that there is
nothing the least bit remarkable (or for that matter
“nonclassical”) about the nonexistence of this
property.”27

As explained by Bell, the appearance to the contrary—that
is, the tacit assumption that there must be some real “z-com-
ponent of spin” property that the measurements unveil—
seems to arise from the unfortunate and inappropriate conno-
tations of the word “measurement”:

“the word comes loaded with meaning from
everyday life, meaning which is entirely
inappropriate in the quantum context. When it is
said that something is “measured” it is difficult not
to think of the result as referring to some pre-
existing property of the object in question. This is
to disregard Bohr’s insistence that in quantum phe-
nomena the apparatus as well as the system is
essentially involved. If it were not so, how could
we understand, for example, that measurement of a
component of “angular momentum”—in an arbi-
trarily chosen direction—yields one of a discrete
set of values? When one forgets the role of the ap-
paratus, as the word measurement makes all too
likely, one despairs of ordinary logic—hence
“quantum logic.” When one remembers the role of
the apparatus, ordinary logic is just fine.”29

Unfortunately, even some of the people in the best possi-
ble position to understand this important point—namely,
proponents of the pilot-wave theory—have missed it and
have thus pointlessly laden the theory with additional varia-
bles corresponding to such actual spin components.30 One
goal of the present paper is thus to present, in a clear and ac-
cessible way, the simplest possible pilot-wave account of
spin, in order to rectify misconceptions like that held by the
anonymous referee quoted in the introduction.

Finally, note that it is by no means only champions of hid-
den variable theories that are sometimes seduced into thinking
of spin components as real properties. Although the official
party line of the orthodox quantum theory, as expressed, for
example, in standard textbooks, is of course that there are no
such things, one often finds that the authors, perhaps swept
away by all the talk of “measuring” “observables,” are some-
what conflicted about this. Townsend, for example, whose
beautiful textbook begins with five full chapters on spin,
stresses early on that, because the operators corresponding to
distinct spin components fail to commute, “the angular mo-
mentum never really ‘points’ in any definite direction.”31 This
already implies the usual, orthodox view that there is simply
no such thing as a spin angular momentum vector, pointing in
some particular direction, at all.

And yet—even for Townsend, who is far more careful
about this issue than most authors32—there is a tendency to
occasionally slip into suggesting that there is such a thing, or
at least that (even though there isn’t) it is sometimes helpful to
pretend that there is. Thus, for example, Townsend later
explains that “placing [a spin-1/2] particle in a magnetic field
in the z direction rotates the spin of the particle about the
z-axis as time progresses …” We also find statements about
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how, for example, in the weak decay of the muon, “the posi-
tron is preferentially emitted in a direction opposite to the spin
direction of the muon” and even a description of hþxjwðtÞi
and hþyjwðtÞi, the amplitudes for a particle in spin state
jwðtÞi to be found, respectively, spin-up along the x- and y-
directions, as “the components of the intrinsic spin in the x- y
plane.” So perhaps after all particles do have definite spin vec-
tors? No, Townsend reminds us that this language and the
associated physical picture are not to be taken too seriously:

“However, we should be careful not to carry over
too completely the classical picture of a magnetic
moment precessing in a magnetic field since in the
quantum system the angular momentum … of the
particle cannot actually be pointing in a specific
direction because of the uncertainty relations …”
[Emphasis added.]

It is not my intention here to criticize Townsend’s text,
which I really do think is wonderful. Surely it would be made
much worse if all the linguistic shortcuts criticized above
were “fixed.” (Just imagine the dreariness and impenetrability
of a textbook that explained, for example, that “the positron is
preferentially emitted in a direction opposite to the direction
along which measurement of the muon’s spin, should such a
measurement have been performed prior to its decay, would
have given the highest probability of yielding the outcome
‘spin-up.’”) Nevertheless, there really is a sense—highlighted
especially by Townsend’s use of the word “too” in the passage
just quoted—in which the orthodox view insists on retaining
the classical picture (of a little spinning ball of charge with
definite spin angular momentum vector) but simultaneously
apologizing for this, by demanding that the picture not be car-
ried over too completely, not be taken too seriously.

The reason for this schizophrenia, I suspect, is that ortho-
dox quantum physicists are, after all, physicists. They cannot
just “shut up and calculate”—not completely. They need
some sort of visualizable picture of what, physically, the
mathematical formalism describes, or they simply cannot
keep track of what in the world they are talking about.33 So
they retain the classical picture while simultaneously, out of
the other sides of their mouths, rejecting it.

Perhaps then, at the end of the day, the most important
thing about the pilot-wave perspective on spin is simply that it
provides a picture of what might actually be going on physi-
cally in phenomena involving spin—a picture that does not
involve any spinning balls of charge, but which is nevertheless
completely and absolutely clear and precise and which can be
taken seriously, without apologies or double-speak.
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