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Abstract

Suppose that G is a simple, vertex-labeled graph and that S is a multiset.
Then if there exists a one-to-one mapping between the elements of S and the
vertices of G, such that edges in G exist if and only if the absolute difference
of the corresponding vertex labels exist in S, then G is an autograph, and
S is a signature for G. While it is known that many common families of
graphs are autographs, and that infinitely many graphs are not autographs,
a non-autograph has never been exhibited. In this paper, we identify the
smallest non-autograph: a graph with 6 vertices and 11 edges. Furthermore,
we demonstrate that the infinite family of graphs on n vertices consisting of
the complement of two non-intersecting cycles contains only non-autographs
for n ≥ 8.

Keywords: graph labeling, difference graphs, autographs, monographs.
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578 B.S. Baumer, Y. Wei and G.S. Bloom

1. Introduction

Let G = (V,E) be a simple, vertex-labeled graph, and let S be a multiset. If there
exists a bijection π : S → V such that for every s, t ∈ S, the edge (π(s), π(t)) ∈ E
if and only if |s − t| ∈ S, then we say that G is an autograph and that S is a
signature for G. For example, consider the path graph on three vertices P3 shown
in Figure 1. This is an autograph, since one possible signature for this graph is
S = {1, 2, 4}.

1

2

4

Figure 1. The path graph P3 on three vertices. This is an autograph realized by the
signature {1, 2, 4}. The edge between the vertices labeled 1 and 2 exists because |1−2| =
1 ∈ S, and similarly for the vertices labeled 2 and 4. However, the edge between 1 and
4 does not exist because |1− 4| = 3 /∈ S.

The use of a signature to define and categorize graphs is useful because it
provides an exceptionally compact data structure for graphs — an autograph can
be represented using only n numbers, whereas a non-sparse graph requires O(n2).
The study of autographs — or undirected difference graphs — has led to the
knowledge that many families of graphs are autographs, and indeed, signatures
for a large number of common graph families have been discovered. For example,
the set S = {1, 2, . . . , n} provides a signature for the complete graph Kn on n
vertices. However, it is also known that infinitely many graphs on n vertices
are not autographs, and further, it is conjectured that nearly all graphs are not
autographs. Yet while [1] proved that infinitely many non-autographs exist, none
has ever been demonstrated. In this paper, we prove that the graph M6 on
6 vertices shown in Figure 2 is the smallest non-autograph. Furthermore, the
infinite family of graphs Gn = Kn \2Cn/2, n even, consisting of a complete graph
with two non-intersecting cycles deleted, contains only non-autographs for n ≥ 8.
An illustration of G10 is shown in Figure 3.

1.1. Motivation

The bijective nature of autographs becomes useful in a variety of practical con-
texts. The primary advantage is that since the adjacency matrix for an autograph
can be computed from its signature, an autograph can be stored using O(n) space,
compared to O(n2) for a non-sparse graph. For large graphs, this order of mag-
nitude savings can be of considerable practical value. For example, these savings
could improve reliability if such information had to be transmitted over a noisy
channel. Given its brevity, the representation of an autograph by its signature
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(b) M6

Figure 2. The smallest non-autograph, M6 (left), and its complement (right).
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(a) G10 = 2C5
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(b) 2C5

Figure 3. Illustration ofG10 = 2C5 and 2C5. We show that this graph is not an autograph.

provides some inherent increase in the probability of a successful transmission
over a network.

Two problems are of interest:

Problem 1 (Autograph). Given a simple graph G, determine if G is an auto-
graph.

Problem 2 (Signature). Given an autograph G, find a signature S for G.

In Section 5, we discuss some computational complexity concerns of these
two problems.

1.2. Related work

Within graph labeling, there is a substantial interest in graceful labelings, dating
back to the work of [6] and [10]. A graph G = (V,E) is considered graceful if
the vertices can be numbered with integers chosen from [0, |E|] such that every
edge receives a distinct integer label defined by the absolute difference of the
labels of its neighboring vertices. This theory led, in particular, to the Ringel-
Kötzig graceful tree conjecture, which poses the question of whether all trees are
graceful [2, 10].
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580 B.S. Baumer, Y. Wei and G.S. Bloom

However, while graphs may or may not admit a graceful labeling, the pro-
cess of translating between vertex labels and graphs is not bijective. That is,
if given a graph, one might be able to find a graceful labeling, but if given a
graceful vertex labeling, one cannot recover the original graph. The desire to
make this process bijective led to the notion of an autograph, as defined above.
[3] found all signatures for graphs with at most four vertices, as well as trees,
paths, cycles, complete graphs, pyramids and n-prisms. [5] investigated wheel
graphs, and proved that they are proper1 autographs for n = 3, 4 and 6 only. [7]
used the difference graph terminology, wherein the edge labels may come from
the difference (not necessarily absolute) of the vertex labels. In this realm [13]
found conditions for building directed graphs from smaller difference graphs and
also found that all cacti with girth at least 6 are autographs [12].

If the signature for a graph contains distinct elements, then the graph is
known as a monograph. [14] studied the properties of monographs and discov-
ered signatures for cycles, fan graphs, kite graphs and necklaces. [11] listed
signatures for all graphs of order 5 and discovered signatures for gear graphs,
triangular snakes, and dragons, among other things. The related construction of
mod difference digraphs, in which S = [n] = {1, 2, . . . , n} and the edge labels are
taken modulo n, were explored by [8].

1.3. Our contributions

While most of the work cited above has focused on discovering signatures for
families of graphs, thereby proving that they are autographs, comparatively less
work has investigated the properties of non-autographs. [1] proved that there
are infinitely many graphs on n vertices that are not autographs, but did not
produce one. In that effort, monographs of low codegree — i.e., graphs in which
each vertex is connected to most other vertices — were used to put constraints on
possible signature values for monographs. We extend this work to demonstrate
that a certain family of graphs of low codegree are not autographs. Moreover,
while [3] found proper autograph signatures for all simple non-isomorphic graphs
with at most 5 vertices, they exhibited three graphs with 6 vertices that were
not proper autographs. We show that one of these graphs (Figure 2) is not an
autograph, making it the smallest non-autograph.

Theorem 1. M6 is the smallest non-autograph.

Theorem 2. Let Gn = Kn\2Cn/2 be the complete graph on n vertices (n is even),
with two non-intersecting cycles deleted. Then the infinite family of graphs Gn

contains only non-autographs for n ≥ 8.

1A proper autograph contains only positive signature values.
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This paper proceeds as follows: in Section 2 we develop some preliminary
notions and lemmas that constrain possible signatures for graphs based on certain
properties. In particular, we investigate the relationship between autographs and
signatures composed of arithmetic progressions. In Section 3 we prove that M6

is the smallest non-autograph. In Section 4 we prove that Gn is a non-autograph
for n ≥ 8. We conclude with open problems and thoughts on future work.

2. Preliminaries

Recall that if the signature S(G) for a graph G is a set (i.e., not a multiset),
then that graph is a monograph. We show presently that both M6 and Gn are
monographs.

Observation 3. If 0 ∈ S(G), then any vertex v ∈ V (G) with π−1(v) = 0 is

adjacent to every vertex with a non-negative signature value.

Proof. For any other vertex w ∈ V (G) with π−1(w) > 0, an edge between v and
w exists, since |π−1(w)− π−1(v)| = |π−1(w)| = π−1(w) ∈ S(G).

Observation 4. If two vertices v, w ∈ V (G) have the same label, then v and w
have the same neighborhood.

Proof. Let NG(v), NG(w) denote the set of vertices in G adjacent to vertices
v, w ∈ V (G), respectively, where π−1(v) = π−1(w). For any x ∈ NG(v), |π

−1(x)−
π−1(w)| = |π−1(x) − π−1(v)| ∈ S(G), since v, w have the same label. Thus,
x ∈ NG(w). Similarly, for any y ∈ N(w), |π−1(y)−π−1(w)| = |π−1(y)−π−1(v)| ∈
S(G) and y ∈ NG(v). Therefore, NG(v) = NG(w).

It follows that if every vertex in a graph G has a different set of neighbors,
then G is a monograph. Both M6 and Gn have this property, and accordingly we
restrict our attention to monographs throughout this paper.

2.1. Notation

We assume that G is a monograph with signature S(G) = S = {s1, . . . , sn},
where s1 < s2 < · · · < sn. Let m be the number of negative signature values in
S(G), and set S− = {s1, . . . , sm} and S+ = {sm+1, . . . , sn}. Thus, we have that

S(G) = S− ∪ S+, with s1 < s2 < · · · < sm
︸ ︷︷ ︸

negative

< sm+1 < · · · < sn−1 < sn
︸ ︷︷ ︸

non-negatitive

.

If δ is the minimum degree of any vertex in G, then k = n− 1− δ is the codegree

of G — i.e., the maximum number of vertices to which each vertex in G is not
adjacent.
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582 B.S. Baumer, Y. Wei and G.S. Bloom

Let S = {ts, (t+1)s, . . . , (n−1+ t)s} be a signature for a proper monograph
consisting of an arithmetic progression of n terms, beginning at ts and continuing
in integer steps of size s. Note that S defines a monograph. We adopt the simpler
notation [t]ns for such a signature.

Definition. For any signature value s ∈ S(G), where G is a monograph, the
difference set D(s) = {|s − t| : t ∈ S, t 6= s} is the set of all possible edge labels
associated with the vertex π(s) in G.

2.2. Basic results

Lemma 5. In a monograph, the vertex labeled with the rth largest non-negative

signature value can be adjacent to at most r − 1 vertices labeled with negative

signature values.

Proof. Note that sn−r+1 is the rth largest positive signature value, and r − 1
vertices have signature values greater than sn−r+1. Assume by contradiction that
sn−r+1 has at least r neighbors with negative signature values si, for 1 ≤ i ≤ m.
For all such si, |sn−r+1 − si| = sn−r+1 + |si| ∈ S+. Since G is a monograph, we
have identified at least r distinct values in S+ that are greater than sn−r+1, a
contradiction.

Corollary 6. The number of negative signature values in any monograph with n
vertices is at most n− 1− deg(sn).

Proof. Apply Lemma 5 to the maximum signature value sn, and we get that sn
can only be adjacent to vertices with positive signature values, of which there are
n−m− 1 other than sn. Thus,

deg(sn) ≤ n−m− 1 ⇒ m ≤ n− 1− deg(sn).

Lemma 7 (The Maximum Element Lemma for Monographs). In a monograph, if

0 is not in the signature and sn is adjacent to all vertices with positive signature

values, then

sn = sm+1 + sn−1 = sm+2 + sn−2 = · · · = s⌊m+n

2
⌋ + s⌈m+n

2
⌉.

Proof. Consider the difference set D(sn) of sn. In decreasing order,

D(sn) = {sn − sm+1, sn − sm+2, . . . , sn − sn−1}.

By Lemma 5, sn is only adjacent to vertices with non-negative signature
values. We also know 0 /∈ S. Thus, the n − m − 1 terms of D(sn) are distinct
and contained in S+ \{sn}. Note that S

+ \{sn} has n−m−1 positive signature
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1 2 3 4 5 6 7 8 9 10

is (p− i)s ps (p+ i)s

Figure 4. Example of one deletion from a complete graph signature. Illustrated is the
case where n = 10, i = 3, and p = 8. For the vertex ps, if is is deleted, then the two
dashed edges are lost, but the one dotted edge never existed. Thus, the degree of ps in
the resulting graph is n− 3. This is Case 3 in the proof below (p > max(n− i, i).)

values. Thus, there is a one-to-one correspondence between D(sn) and S+ \{sn},
that is D(sn) = S+ \ {sn}. In decreasing order,

S+ \ {sn} = {sn−1, sn−2, . . . , sm+1}.

Since D(sn) = S+ \ {sn},

sn − sm+1 = sn−1, sn − sm+2 = sn−2 . . . .

The result now follows.

2.3. Arithmetic progressions

Recall that S = [t]ns = {ts, (t + 1)s, . . . , (n − 1 + t)s} is a signature for a proper
monograph consisting of an arithmetic progression of n terms, beginning at ts
and continuing in integer steps of size s. This section concerns the properties of
graphs resulting from deleting members of S = [1]ns .

Lemma 8. Let S = [1]ns = {s, 2s, . . . , ns} be a signature for Kn. If the vertex of

signature value is, for 1 ≤ i ≤ n, is removed from Kn, the degree of ps, where
p 6= i, 1 ≤ p ≤ n is

deg(ps) = ǫi +







n− 4 if p ∈ (i, n− i],

n− 2 if p ∈ (n− i, i),

n− 3 otherwise,

where

ǫi =

{

1 if p = 2i, i ≤ ⌊n
2
⌋,

0 otherwise.

Proof. We will first consider the general case p 6= 2i. Before the deletion of is,
deg(ps) = n − 1 for all 1 ≤ p ≤ n. The vertices whose degrees are potentially
affected by the deletion of is have signature values (p − i)s and (p + i)s. Note
that (p − i)s < ns and (p + i)s > 0 always hold. Thus, we will discuss the
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584 B.S. Baumer, Y. Wei and G.S. Bloom

relationship of (p − i)s with 0, and (p + i)s with ns to determine whether they
are in the signature or affected by the deletion. We illustrate one case in Figure
4, but the reader is encouraged to envision how the other cases could be similarly
illustrated.

Case 1. p+i ≤ n and p−i > 0 ⇒ i < p ≤ n−i. Both (p+i)s and (p−i)s are in
the signature. Thus, three edges adjacent to ps: (is, ps), ((p−i)s, ps), ((p+i)s, ps)
are deleted after the deletion of the vertex is and deg(ps) = n− 1− 3 = n− 4.

Case 2. p+i ≤ n and p−i < 0 ⇒ p ≤ min(n−i, i). (p+i)s is in the signature
and (p − i)s is not. Thus, two edges adjacent to ps: (is, ps), ((p + i)s, ps) are
deleted and deg(ps) = n− 1− 2 = n− 3.

Case 3. p+i > n and p−i > 0 ⇒ p > max(n−i, i). (p−i)s is in the signature
and (p+ i)s is not. Two edges are deleted and deg(ps) = n− 1− 2 = n− 3. An
example of this case is illustrated in Figure 4.

Case 4. p+i > n and p−i < 0 ⇒ n−i < p < i. Neither (p+i)s nor (p−i)s is
in the signature. Only the edge (is, ps) is deleted and deg(ps) = n−1−1 = n−2.

If p = 2i, then (p − i)s and is are the same vertex. That is, (ps, (p − i)s) and
(ps, is) are the same edge. Therefore, we overcounted the number of deleted edges
by 1 and this defines ǫi.

This result can be extended to the removal of two signature values, and we
will use it in the proof of the main result.

Lemma 9. Let S = [1]ns = {s, 2s, . . . , ns} be a signature for Kn. If vertices of

signature value is and js, for 1 ≤ i < j ≤ n, are removed from Kn, the degree of

ps, where p 6= i, j, 1 ≤ p ≤ n is

deg(ps) = ǫi + ǫj + γij + βij

+







n− 7 if j < p ≤ n− j,

n− 6 if max(j, n− j) < p ≤ n− i or i < p ≤ min(n− j, j),

n− 4 if max(i, n− i) < p < j or n− j < p ≤ min(n− i, i),

n− 3 if n− i < p < i,

n− 5 otherwise,

where

γij =

{

2 if p = i+ j,

0 otherwise,
βij =

{

1 if p = j − i,

0 otherwise,

and ǫi and ǫj are defined as before.
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1 2 3 4 5 6 7 8 9 10 11 12

is js ps (p+ j)s

Figure 5. Example of two deletions from a complete graph signature. Illustrated is the
case where n = 12, i = 2, j = 3, and p = 5. For the vertex ps, if is and js are deleted,
then the six dashed edges are lost, but we have double-counted two of them. Thus, the
degree of ps in the resulting graph is n − 5. This is Case 1 in the proof below, with
γ23 = 2.

1 2 3 4 5 6 7 8 9 10 11 12

is js(p− i)s (p+ i)sps(p− j)s (p+ j)s

Figure 6. Example of two deletions from a complete graph signature. Illustrated is the
case where n = 12, i = 3, j = 8, and p = 7. If is and js are deleted, then the four dashed
edges are lost, but the two dotted edges never existed. Thus, the degree of ps in the
resulting graph is n− 5. This is Case 9 in the proof below.

Proof. We will first consider the general case where p /∈ {2i, 2j, j − i, j + i}.
The vertices whose degree are potentially affected by the deletion of is, js have
signature values of (p− j)s, (p+ j)s, (p− i)s and (p+ i)s. Note that (p− i)s <
ns, (p− j)s < ns, (p+ j)s > 0 and (p+ i)s > 0 always hold. Thus, we will discuss
the relationship of (p − i)s and (p − j)s with 0, (p + i)s and (p + j)s with ns
to determine whether these four values are in the signature or affected by the
deletion. See Figures 5 and 6 for examples.

Case 1. p−j > 0 and p+j ≤ n ⇒ j < p ≤ n−j. Since j > i, we know p−i > 0
and p+ i ≤ n. Then (p+ j)s, (p− j)s, (p+ i)s and (p− i)s are all in the signature.
Thus, six edges adjacent to ps: (is, ps), ((p− i)s, ps), ((p+ i)s, ps), (js, ps), ((p−
j)s, ps), ((p+ j)s, ps) are deleted and deg(ps) = n− 1− 6 = n− 7. An example
is illustrated in Figure 5.

Case 2. p − j > 0, p + j > n and p + i ≤ n ⇒ max(j, n − j) < p ≤ n − i.
Since j > i and p− j > 0, we know p− i > 0. Then (p− j)s, (p+ i)s and (p− i)s
are in the signature. Thus, five edges adjacent to ps: (is, ps), ((p − i)s, ps),
((p+ i)s, ps), (js, ps), ((p− j)s, ps) are deleted and deg(ps) = n− 1− 5 = n− 6.

Case 3. p− j > 0, p+ j > n and p+ i > n ⇒ p > max(j, n− i). Since j > i
and p− j > 0, we know p− i > 0. Then (p− j)s and (p− i)s are in the signature.
Thus, four edges adjacent to ps: (is, ps), ((p − i)s, ps), (js, ps), ((p − j)s, ps) are
deleted and deg(ps) = n− 1− 4 = n− 5.

Case 4. p+ j ≤ n, p− j ≤ 0 and p− i > 0 ⇒ i < p ≤ min(j, n− j). Since
p+ j ≤ n and j > i, we know p+ i ≤ n. Then (p− i)s, (p+ j)s and (p+ i)s are
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in the signature. Thus, five edges adjacent to ps: (is, ps), ((p − i)s, ps), (js, ps),
((p+ j)s, ps), ((p− j)s, ps) are deleted and deg(ps) = n− 1− 5 = n− 6.

Case 5. p+ j ≤ n, p− j ≤ 0 and p− i ≤ 0 ⇒ p < min(i, n− j). Since j > i
and p+ j ≤ n, we know p+ i ≤ n. Then (p+ j)s and (p+ i)s are in the signature.
Thus, four edges adjacent to ps: (is, ps), ((p+ i)s, ps), (js, ps) and ((p+ j)s, ps)
are deleted and deg(ps) = n− 1− 4 = n− 5.

Case 6. p − j < 0, p − i > 0, p + i > n ⇒ max(i, n − i) < p < j. Since
p+ i > n, we know p+ j > n. Only (p− i)s is in the signature. Thus, three edges
adjacent to ps are deleted and deg(ps) = n− 1− 3 = n− 4.

Case 7. p− i < 0, p+ i > n ⇒ n− i < p < i. Since p+ i > n and p− i < 0,
we know p+ j > n and p− j < 0. Then, only two edges adjacent to ps: (is, ps),
(js, ps) are deleted and deg(ps) = n− 1− 2 = n− 3.

Case 8. p− i < 0, p + j > n, p+ i ≤ n ⇒ n − j < p ≤ min(i, n − i). Since
p− i ≤ 0, we know p− j ≤ 0. Only (p+ i)s is in the signature. Thus, three edges
adjacent to ps are deleted and deg(ps) = n− 1− 3 = n− 4.

Case 9. p − j ≤ 0, p − i > 0, p + j > n, p + i ≤ n ⇒ max(i, n − j) < p ≤
min(j, n − i). Two values (p − i)s and (p + i)s are in the signature. Thus, four
edges adjacent to ps are deleted and deg(ps) = n − 1 − 4 = n − 5. An example
is illustrated in Figure 6.

Combining all the cases, we have the general result for p /∈ {2i, 2j, j − i, j + i}.
If p = 2i, 2j, we need to add ǫi, ǫj which are defined in the previous proof. If
p = i + j, then (p − i)s and js are the same vertex, and (p − j)s and is are the
same vertex. So we overcounted the number of deleted edges by 2 and this defines
γij . If p = j − i, then js and (p− i)s are the same vertex, which defines βij .

2.4. Structure lemmas

Recall that s1 is the smallest element in the proper monograph signature S =
S(G), and k is the codegree of G. Then [1] make the following observation:

Observation 10 (Fact 3.1). The elements of S can be partitioned into at most

k + 1 arithmetic progressions with common difference s1. Furthermore, at least

one such arithmetic progression has at least n
k+1

terms.

Note that the arithmetic progressions can be as short as one element, and
one of them begins with s1. [1] continue by setting l equal to the number of terms
in the longest such arithmetic progression.

Observation 11 (Fact 3.2). Among the numbers s1, 2s1, . . . , (l − 1)s1, at most

k are missing from S.
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While the previous observations hold for proper monographs only, it is natu-
ral to extend this logic to all monographs. The fact that for any signature values
a > 0 and b < 0, an edge exists between them if and only if |a− b| = a+ |b| ∈ S
leads to the following companion observation for negative signature values.

Observation 12. For each negative signature value si ∈ S, where deg(si) 6= 0,
the elements of S+ can be partitioned into at most k arithmetic progressions with

common difference |si|. Furthermore, at least one such progression has at least
n
k terms.

Proof. Consider any maximal arithmetic progression with common difference
|si|, where a ≥ 0 is the largest member of this arithmetic progression. Then
|a − si| = a + |si| is not in S, and hence a is not adjacent to si. Thus, the
number of such arithmetic progressions is no more than the codegree k since k
is defined as the maximum number of vertices which any vertex, including si, is
not adjacent to.

Observation 13. If s1 is the only negative signature value in S and 0 /∈ S, then
among the numbers |s1|, 2|s1|, . . . , (l − 1)|s1|, at most k − 1 are missing from S.

Proof. Assume that s1 is in the longest arithmetic progression with l terms and
common difference |s1|. Then, the l-term arithmetic progression is {s1, 0, |s1|, . . . ,
(l−2)|s1|}. This contradicts that 0 /∈ S, and so s1 is not in the l-term arithmetic
progression. Suppose a is the smallest term of an l-term arithmetic progression
a, a + |s1|, . . . , a + (l − 1)|s1|. By definition of codegree k, vertex a fails to be
adjacent to at most k vertices, not including a, but specifically including s1 which
is not in the l-term arithmetic progression. Each vertex in this sequence which
is adjacent to a implies the existence of the label a+ t|s1| − a = t|s1|.

3. M6 is the Smallest Non-Autograph

Observe that vertices in M6 with the same degree are neighbors and that all
vertices of M6 have degree 3 or 4. Furthermore, the largest clique contained in
M6 is of size 4. We first eliminate the possibility that zero is in a signature for M6.

Lemma 14. A set containing 0 cannot be the signature for M6.

Proof. Let S = {s1, s2, s3, s4, s5, s6}. Assume by contradiction that 0 ∈ S and S
is a signature for M6. By Corollary 6, M6 has at most m = 2 negative signature
values.

Case 1. m = 1. That is, s1 < 0 and s2 = 0. Note that by Observation 3,
deg(s2) = 4, and in particular, s2 is adjacent to s3, s4, s5, and s6. Thus, s2 is not
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s1

?

0

?

s6

?

(a) Case 2(a)

0

?

s2
s6

s1

?

(b) Case 2(b)

Figure 7. Possible configurations for M6 discussed in Lemma 14.

adjacent to s1, and so the only possible signature has the configuration depicted
in Figure 7(a). Since s2 and s1 are not connected, it follows that |s2 − s1| =
s2 + |s1| = |s1| /∈ S. But then, regardless of which vertex is labeled s5, it must
be adjacent to both s1 and s6. The first condition requires

|s5 − s1| = s5 + |s1| ∈ S ⇒ s5 + |s1| = s6 ⇒ s6 − s5 = |s1|.

But the second condition then implies |s6 − s5| = |s1| ∈ S, contradicting the fact
that |s1| /∈ S.

Case 2. m = 2. In this case s1 < s2 < 0 and s3 = 0. It now follows from
Observation 3 that deg(s3) = 3 and that in particular, s3 is not adjacent to s1 and
s2. However, it follows from Lemma 5 that deg(s6) = 3, and that s6 is similarly
not adjacent to s1 and s2. But this violates the structure of M6, since then s1
and s2 are both non-adjacent to s3 and s6, and no such vertex exists in M6. This
impossible situation is depicted in Figure 7(b).

Lemma 15. A set P that contains an arithmetic progression of 5 non-negative

numbers and a negative number is not a signature for M6.

Proof. Assume by contradiction that P = {p, t, t + s, t + 2s, t + 3s, t + 4s} is a
signature for M6, where t > 0, s > 0 and p < 0. We consider two cases based on
whether s is in P or not.

Case 1. s ∈ P . Since t + s ≥ s > 0, s can only equal t or t + s. If s = t,
P = {p, s, 2s, 3s, 4s, 5s}. If s = t + s, P = {p, 0, s, 2s, 3s, 4s}. The vertices with
signature values s, 2s, 3s, 4s, 5s (if s = t) or 0, s, 2s, 3s, 4s (if s = t + s) form a
clique of size 5 in M6, which contradicts that the clique number of M6 is 4.

Case 2. s /∈ P . Consider the difference set of t+ 2s,

D(t+ 2s) = {t+ 2s− p, 2s, s, s, 2s}.

Since s /∈ P , we must have that 2s ∈ P since otherwise deg(t+ 2s) ≤ 1, and M6

does not contain such a vertex. Thus, deg(t + 2s) = 3. Similarly, consider the
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difference sets of t+ 3s and t+ s,

D(t+ 3s) = {t+ 3s− p, 3s, 2s, s, s},

D(t+ s) = {t+ s− p, s, s, 2s, 3s}.

Since s /∈ P , deg(t+ 3s) and deg(t+ s) cannot be 4. Then, three vertices would
have degree 3: t+ 3s, t+ 2s, t+ s. This contradicts that only two vertices of M6

have degree 3.

Hence, P is not a signature for M6.

Theorem 16. M6 is a non-autograph.

Proof. Assume by contradiction that M6 has a signature S. As noted in Sec-
tion 2, M6 is a monograph.

Since all vertices of M6 have degree 3 or 4, M6 has at most two negative
signature values by Corollary 6. We consider three cases based on the number of
negative signature values.

Case 1. m = 2. Let s1 < s2 < 0 < s3 < s4 < s5 < s6. Since s6 is only
adjacent to vertices with positive signature values, we know deg(s6) = 3 and
deg(s1) = deg(s2) = 4, since s1, s2 are not adjacent to s6 (see Figure 8). Then,
s1 and s2 are both adjacent to s5. Since s5− s1 and s5− s2 are both greater than
s5 and are both in the signature, we have that

s5 − s1 = s6 and s5 − s2 = s6.

This contradicts that s1 < s2.

s6

?

s1

?

s2

?

Figure 8. Possible configuration for M6 with two negative signatures values (s1 and s2).

Case 2. m = 1. Let s1 < 0 < s2 < s3 < s4 < s5 < s6. By Lemma 5, s6 is not
adjacent to s1. We consider two cases based on deg(s1).

Case (a) deg(s1) = 4. Since s1 is not adjacent to s6, we know deg(s6) = 3.
Note that s1 is adjacent to s2, s3, s4 and s5. Thus, s5 − s1 > s5 has to be s6 and
s6 − s5 = |s1| (see Figure 9(a)). Since s4 < s4 − s1 < s5 − s1 = s6, we have that
s4 − s1 = s5, and thus s5 − s4 = |s1|. Since s3 < s3 − s1 < s4 − s1 = s5, we have
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?
s1

?
s6

?

?

(a) Case 2(a)

s1

?

?

?

s6

?

(b) Case 2(b)

Figure 9. Possible configurations forM6 in the case where s1 is the only negative signature
value. At left, deg(s1) = 4, while at right, deg(s1) = 3.

that s3 − s1 = s4, hence s4 − s3 = |s1|. Since s2 < s2 − s1 < s3 − s1 = s4, we
have that s2 − s1 = s3, and thus s3 − s2 = |s1|. Therefore, s2, s3, s4, s5, s6 form
an arithmetic progression of length 5 with common difference |s1|, that is,

s3 − s2 = s4 − s3 = s5 − s4 = s5 − s4 = −s1.

By Lemma 15, S is not a signature for M6.

Case (b) deg(s1) = 3. Since s1 is not adjacent to s6, we know deg(s6) = 4
and s6 is adjacent to all vertices with positive signature values. By Lemma 7,

s6 = s2 + s5 = s3 + s4 ⇒ s6 − s5 = s2, s5 − s4 = s3 − s2.

We consider four cases based on the other vertex to which s1 is not adjacent (see
Figure 9(b)).

(i) s5 is not adjacent to s1. Then, deg(s5) = 4. Consider the intersection of
the difference set of s5 and S,

D(s5) ∩ S = {s6 − s5, s5 − s2, s5 − s3, s5 − s4}.

We already know that s6 − s5 = s2. Note that all other elements of D(s5) ∩ S
are less than s5 and greater than s1, and thus can only take values of s2, s3 or
s4. Therefore, we can find a one-to-one correspondence between sets D(s5) ∩ S
and {s2, s3, s4}. Namely,

s5 − s2 = s4, s5 − s3 = s3, and s5 − s4 = s2.

Since s5−s4 = s2, we have that s3−s2 = s2, thus s3 = 2s2. Then s5 = 2s3 = 4s2,
s6 = s5 + s2 = 5s2 and s4 = s5 − s2 = 3s2. Therefore, s2, s3, s4, s5, s6 form an
arithmetic progression of length 5 with common difference s2. By Lemma 15, S
is not a signature for M6.
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(ii) s4 is not adjacent to s1. Then, deg(s4) = 4. Consider the intersection of
the difference set of s4 and S,

D(s4) ∩ S = {s4 − s3, s4 − s2, s6 − s4, s5 − s4}.

Note that s4 − s3 and s4 − s2 are both less than s4 and greater than s1. Thus,
we must have s4 − s3 = s2 and s4 − s2 = s3. We already know that s6 − s4 = s3.
Then, s5 − s4 < s6 − s4 can only be s2. Since s5 − s4 = s3 − s2, s3 = 2s2. Thus,
s4 = 3s2, s5 = 4s2 and s6 = s4 + s3 = 5s2. Note that s2, s3, s4, s5, s6 form an
arithmetic progression with common common difference s2. By Lemma 15, S is
not a signature for M6.

(iii) s3 is not adjacent to s1. Then, deg(s3) = 4. Consider the intersection of
the difference set of s3 and S,

D(s3) ∩ S = {s3 − s2, s4 − s3, s5 − s3, s6 − s3}.

Since s3 − s2 < s3, s3 − s2 has to be s2. We already know that s6 − s3 = s4.
Note that both s5 − s3 and s4 − s3 are less than s6 − s3 = s4 and greater than
s3−s2 = s2. Then s5−s3 and s4−s3 both are s3, which contradicts that s4 6= s5.

(iv) s2 is not adjacent to s1. Then, deg(s2) = 4. Consider the intersection of
the difference set of s2 and S,

D(s2) ∩ S = {s3 − s2, s4 − s2, s5 − s2, s6 − s2}.

We already know that s6− s2 = s5. All other elements of D(s2)∩S are less than
s5 and greater than s1, and thus can only take values of s2, s3 or s4. Therefore,
we can find a one-to-one correspondence between sets D(s2)∩ S and {s2, s3, s4}.
Namely,

s3 − s2 = s2, s4 − s2 = s3, and s5 − s2 = s4.

Thus, s3 = 2s2, s4 = 3s2, s5 = 4s2 and s6 = s5 + s2 = 5s2. Therefore, s2, s3,
s4, s5, s6 form an arithmetic progression of length 5 with common difference s2.
By Lemma 15, S is not a signature for M6.

Case 3. m = 0. Let s denote the smallest signature value in S. By Observa-
tion 10, S can be partitioned into at most three maximal arithmetic progressions
of common difference s. S cannot consist of one arithmetic progression with com-
mon difference s since [1]ns is a signature for the complete graph. Thus, we con-
sider two cases.

Case (a) Three arithmetic progressions. Let the three progressions be [1]l0s ,
[a1]

l1
s , and [a2]

l2
s , where we assume without loss of generality that s < a1 < a2.

Note that s is not adjacent to either a1 or a2 since [a1]
l1
s and [a2]

l2
s are maximal

progressions. Thus, deg(s) = 3 and deg(a1) = deg(a2) = 4. Note that s is not in
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the complete subgraph on 4 vertices. Then, the length of [1]l0s , l0, must be less
than 4. Moreover, l1 and l2 are less than 4. Assume by contradiction that li = 4,
where i = 1, 2. Then, the other two arithmetic progressions have length 1, and
there exists an arithmetic progression of four terms: {ai, ai + s, ai + 2s, ai + 3s}.
Since ai is not adjacent to s only, ai + s− ai, ai + 2s− ai, ai + 3s− ai ∈ S, thus
s, 2s, 3s ∈ S, which contradicts that l0 = 1. Therefore, l0, l1, l2 are all less than 4.
We discuss three cases of l0.

(i) l0 = 1. Since l1, l2 are both less than 4, S = {s, a1, a1+s, a2, a2+s, ai+2s},
where i is 1 or 2. However, |ai+2s−ai| = 2s /∈ S, contradicting that ai is adjacent
to every vertex besides s.

(ii) l0 = 3. Then S = {s, 2s, 3s, a1, a2, ai + s}, where i = 1 or 2. Since
2s, 3s are adjacent, 2s and 3s both have degree 4, and deg(ai + s) = 3. Note
that ai + s is not adjacent to 2s, 3s. Since a1 − 2s < a1 and a1 is adjacent to 2s,
then a1 − 2s ∈ {s, 2s, 3s}. Since {s, 2s, 3s} ∈ S, a1 = 5s. If ai + s = a1 + s =
6s, then ai + s is adjacent to 3s, a contradiction. Thus, l1 = 1, l2 = 2 and
S = {s, 2s, 3s, 5s, a2, a2 + s}. Since a2 − 2s < a2 ∈ S, a2 − 2s = a1 = 5s, hence
a2 = 7s. However, a2 − 3s = 4s /∈ S, which contradicts that 3s is adjacent to
every vertex besides a2 + s.

(iii) l0 = 2. Note that a1 is adjacent to 2s. We discuss three cases based on
l1, l2.

A. l1 = 2, l2 = 2. Then S = {s, 2s, a1, a2, a1+s, a2+s}. Since a2 is adjacent
to every vertex besides s, a2 − a1, a2 + s− a1, a2 − (s+ a1) ∈ S. They form an
arithmetic progression of length 3 with common difference s, contradicting that
l0 = l1 = l2 = 2.

B. l1 = 1, l2 = 3. Then S = {s, 2s, a1, a2, a2 + s, a2 + 2s}, and a2 − a1, a2 +
s − a1, a2 + 2s − a1 ∈ S. They form an arithmetic progression of length 3 with
common difference s, and S only contains one arithmetic progression of three
terms: {a2, a2 + s, a2 + 2s}. Thus, a2 − a1 = a2, a contradiction.

C. l1 = 3, l2 = 1. Then S = {s, 2s, a1, a2, a1+s, a1+2s} and a1+s−a2, a1+
2s− a2 ∈ S. We know {s, 2s} is the only arithmetic progression of two terms in
S. Then a1 + s− a2 = s, a contradiction.

Case (b) Two arithmetic progressions. Let the two maximal progressions be
[1]l0s , [a1]

l1
s , that is,

S = {s, 2s, . . . , l0s} ∪ {a1, a1 + s, . . . , a1 + (l1 − 1)s}.

Consider the difference set of s,

D(s) = {a1 − s, a1, a1 + s, . . . , a1 + (l1 − 2)s} ∪ {s, 2s, . . . , (l0 − 1)s}.
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Since [a1]
l1
s is a maximal arithmetic progression, a1−s cannot be in the signature.

Note that all terms in D(s) besides a1 − s are in the signature, and deg(s) = 4.
Since s is only non-adjacent to a1, deg(a1) = 3. We discuss five cases based on
l0 and l1.

(i) l0 = 1 l1 = 5. Then, S = {s, a1, a1+s, a1+2s, a1+3s, a1+4s}. Consider
the difference set of a1 + 2s,

D(a1 + 2s) = {s, s, 2s, 2s, a1 + s}.

Thus, deg(a1+2s) = 3. However, a1+2s is not adjacent to a1, which contradicts
that a1 and a1 + 2s both have degree 3.

(ii) l0 = 2, l1 = 4. Then, S = {s, 2s, a1, a1 + s, a1 + 2s, a1 + 3s}. Consider
the difference set of a1 + 2s,

D(a1 + 2s) = {s, s, 2s, a1, a1 + s}.

All elements of D(a1 + 2s) ∈ S, which contradicts that all vertices have degree 3
or 4.

(iii) l0 = 3, l1 = 3. Then, S = {s, 2s, 3s, a1, a1 + s, a1 + 2s}. Consider the
difference set of 2s,

D(2s) = {s, s, a1 − 2s, a1 − s, a1}.

We know that a1 − s /∈ S. If a1 − 2s /∈ S, then deg(2s) = 3. However, 2s is not
adjacent to a1, the other vertex with degree 3, a contradiction. Thus, a1−2s ∈ S.
Since a1 − 2s < a1 and a1 > 4s, a1 − 2s can only be 3s. Consider the difference
set of a1 = 5s,

D(a1) = {4s, 3s, 2s, s, 2s}.

Only 4s in D(a1) is not in S, contradicting that deg(a1) = 3.

(iv) l0 = 4, l1 = 2. Then, S = {s, 2s, 3s, 4s, a1, a1 + s}. Consider the
difference set of 2s. Following the same argument, we deduce that a1 − 2s can
only be 4s, thus a1 = 6s. Consider the difference set of a1 = 6s,

D(a1) = {5s, 4s, 3s, 2s, s}.

Only 5s in D(a1) is not in S, contradicting that deg(a1) = 3.

(v) l0 = 5, l1 = 1. Then, S = {s, 2s, 3s, 4s, 5s, a1}. Consider the different
sets of 2s, 3s, 4s, 5s:

D(2s) = {s, s, 2s, 3s, a1 − s},

D(3s) = {2s, s, s, 2s, a1 − 3s},

D(4s) = {3s, 2s, s, s, a1 − 4s},

D(5s) = {4s, 3s, 2s, s, a1 − 5s}.
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Thus, s, 2s, 3s, 4s, 5s all have degree 4, which contradicts that two vertices have
degree 4.

We have exhausted all possible signatures for M6, without finding one. This
completes the proof.

4. Gn Are Non-Autographs

Let G = 2Cn

2
, for some even n ≥ 8. That is, let Gn consist of the graph formed

by taking the complement of two disjoint cycles of length n/2. A symmetric
depiction of Gn for n = 10 is shown in Figure 3, with which we also include a
drawing of its complement for clarity.

We begin by making three observations about the structure of Gn that will
prove useful later on.

Observation 17. The clique number of Gn is at most n
2
, where n is even.

Proof. Consider cycles of length n
2
in Gn. If 4 | n, the maximum clique includes

every other vertex in each cycle. If 4 ∤ n, each cycle in Gn has an odd length,
and so the maximum clique has n

2
− 1 vertices. In both cases, the clique number

is no more than n
2
.

Observation 18. The size of the largest independent set in Gn is 2, where n is

even.

Proof. Note that Gn contains two cycles of length greater than or equal to 5.
Every vertex is non-adjacent to exactly two vertices. Those two vertices are
always adjacent to avoid forming a 3-cycle in Gn.

Observation 19. The length of the longest path in Gn is n
2
−1, where n is even.

Proof. Take one of the cycles in Gn and remove one edge.

We first prove a helpful lemma based on our previous results on arithmetic
progressions.

Lemma 20. A set containing 0 cannot be the signature for Gn for some even

n ≥ 8.

Proof. Note that δ(Gn) = n − 3, and the codegree of Gn is k = 2. By Corol-
lary 6 we have that there are at most two negative signature values. Assume by
contradiction that 0 ∈ S = {s1, s2, . . . , sn} and S is the signature for Gn. By
Observation 3, it is clear that if S contains 0, it must contain exactly two negative
signature values, since otherwise deg(0) > n − 2. Thus, since the vertex labeled
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with 0 is adjacent to all n − 3 vertices with positive signature values, it is not
adjacent to s1 and s2. Then s1 < s2 < 0, s3 = 0, and 0 < s4 < s5 < · · · < sn.
By Lemma 5, sn is also not adjacent to s1 and s2. Thus, s1, sn, s2 and s3 form a
4-cycle in Gn. This is only possible when n = 8, as shown in Figure 10. In this
case, s7 is adjacent to both s1 and s2. Hence,

s7 − s1 > s7 ∈ S, s7 − s2 > s7 ∈ S ⇒ s7 − s1 = s7 − s2 = s8.

This contradicts the fact that Gn is a monograph.

0

?

s2

?

sn

?

s1

s7

Figure 10. G8: In G8, s7 is adjacent to both s1 and s2, creating the impossible situation
in which there are two distinct signature values greater than s7.

Lemma 21. The set S = {s, 2s, . . . , ns}\{is} is not a signature for Gn−1, where

n ≥ 9 and n is odd.

Proof. We can immediately apply Lemma 8 to obtain the degree of vertices in
the monograph generated by S. Note that every vertex of Gn−1 has degree n−4.
Only for p ∈ (i, n − i] and p 6= 2i, deg(ps) = n − 4. Clearly, (i, n − i] \ {2i}
containing n − 2i − 1 terms does not include all of [1, n] \ {i} containing n − 1
terms. Therefore, some vertices in S do not have degree n− 4, and S cannot be
a signature for Gn−1.

Lemma 22. The signature S = {s, 2s, . . . , ns} \ {is, js} for some i < j is not a

signature for Gn−2, where n ≥ 10 and n is even.

Proof. Assume by contradiction that S is a signature for Gn−2. We apply
Lemma 9 to obtain the degree of vertices in the monograph generated by S.
Since all vertices of Gn−2 have degree n − 5, there does not exist p such that
max(i, n − i) < p < j or n − j < p ≤ min(n − i, i) or n − i < p < i, since this
would already imply too large of a degree for ps. Thus, n− i ≥ j ⇒ n ≥ i+ j if
all vertices have degree n− 5.
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sn
s2

sn−1

?

?

s1

(a) Case 2(a)

sn
s2

?

?

sn−1

s1

(b) Case 2(b)

Figure 11. Possible configurations for Gn with m = 2. At left, sn−1 is adjacent to s1 but
not s2. At right, the opposite.

If there exists p such that j < p ≤ n− j, then there must exist only one such
value p in (j, n − j] and γij = 2 for the vertex with signature value ps so that
deg(ps) = n− 5. Therefore, it must be the case that j and n− j are consecutive
integers, and in particular, j + 1 = n − j. Thus p = i + j = j + 1 = n − j, and
hence n = 2j + 1, which contradicts that n is even. Therefore, there does not
exist p such that j < p ≤ n − j, and γij = 0 for all vertices. Thus, i + j > n,
which contradicts the previous conclusion that n ≥ i+ j.

Our main result follows.

Theorem 23. Let Gn = 2Cn

2
, for some even n ≥ 8. Then Gn is not an auto-

graph.

Proof. First, note that no two vertices in Gn have the same set of neighbors,
and so by Observation 4, Gn is a monograph. Next, note that δ(Gn) = n − 3,
and the codegree of Gn is k = 2. It follows from Corollary 6 that m ≤ 2. We
thus consider three cases.

Case 1. m = 2. Let s1 < s2 < 0. Note that the maximum signature value sn
is adjacent to all vertices with positive signature values, namely s3, s4, . . . , sn−1.
By Lemma 7,

sn = s3 + sn−1 ⇒ sn − sn−1 = s3.

Since sn is not adjacent to either s1 or s2 and s1, s2 have different neighborhoods,
it follows that s1 and s2 are adjacent. Likewise, sn−1 is adjacent to either s1 or s2,
but not both. Consider two cases where sn−1 is adjacent to s2 or s1, as depicted
in Figure 11.

Case (a). sn−1 is adjacent to s1. Then sn−1 − s1 > sn−1 must be sn. This
implies that sn−1 − s1 = sn, and so sn − sn−1 = −s1. But now,

s2 − s1 = s2 + sn − sn−1 < sn − sn−1 = s3.

Since s3 is the smallest positive signature value, s2 − s1 < s3 indicates that
s2 − s1 /∈ S, contradicting that s2 and s1 are adjacent.
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Case (b). sn−1 is adjacent to s2. Then,

sn−1 − s2 = sn.

Since sn = s3 + sn−1 by Lemma 7, it follows that s2 = −s3.
By Observation 12, {s3, s4, . . . , sn} can be partitioned into at most two arith-

metic progressions with common difference |s2| = s3. If {s3, s4, . . . , sn} is an
arithmetic progression with common difference s3, the graph would contain a
complete subgraph of n − 2 vertices, contradicting that the clique number of
Gn cannot exceed n/2 (Observation 17). Thus, {s3, s4, . . . , sn} consists of two
arithmetic progressions with common difference s3. Let the two arithmetic pro-
gressions be

{s3, 2s3, . . . , l0s3} and {a1, a1 + s3, . . . , sn},

where a1 6= (l0 + 1)s3. Note that s1 is adjacent to all vertices other than sn and
sn−1. In particular, s1 is adjacent to l0s3. Then, l0s3 − s1 = (l0 + 2)s3 is in the
signature and (l0 + 2)s3 ∈ {a1, . . . , sn}. Thus, {a1, . . . , sn} consists of multiples
of s3 and a1 > (l0 + 1)s3.

Since |s1| > |s2| = s3, |s1| > sn − sn−1, and hence sn−1 + |s1| > sn. Thus,
|sn−2 − s1| = sn−2 + |s1| = sn−1 − s3 + |s1| > sn − s3 = sn−1. Since sn−2 is
adjacent to s1, sn−2 + |s1| must be sn. Therefore,

sn − sn−2 = |s1| = 2s3.

Since a1 > (l0 + 1)s3, a1 + s3 > (l0 + 2)s3 and all terms in {a1, a1 + s3, . . . , sn}
except for a1 are greater than (l0+2)s3. It follows that a1 = (l0+2)s3. Therefore,
the signature S is

S = {−2s3,−s3} ∪ {s3, 2s3, . . . , l0s3} ∪ {(l0 + 2)s3, (l0 + 3)s3, . . . , sn}.

Consider the difference set of s3,

D(s3) = {3s3, 2s3} ∪ {s3, 2s3, . . . , (l0 − 1)s3}

∪ {(l0 + 1)s3, (l0 + 2)s3, . . . , sn − s3}.

Observe that inD(s3) only (l0+1)s3 is not in the signature. Thus, deg(s3) = n−2,
which contradicts that every vertex in Gn has degree n− 3.

Case 2. m = 1. Let s1 < 0. Observation 12 implies that S consists of s1
and at most two arithmetic progressions with common difference |s1|. Two cases
are discussed based on the number of arithmetic progressions in S. Recall that l
denotes the length of the longest arithmetic progression.

Case (a) One arithmetic progression. Then,

S = {s1} ∪ {s2, s2 + |s1|, . . . , s2 + (l − 1)|s1|},
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D(s1) = {s2 + |s1|, s2 + 2|s1|, . . . , s2 + (l − 1)|s1|, s2 + l|s1|}.

In D(s1), only s2 + l|s1| /∈ S and s1 is only non-adjacent to s2 + (l − 1)|s1|,
contradicting that every vertex of Gn has degree n− 3.

Case (b) Two arithmetic progressions. By Observation 13, at most one of
{|s1|, 2|s1|, . . . , (l− 1)|s1|} is not in S. If |s1| /∈ S, we suppose the two arithmetic
progressions of S are {2|s1|, 3|s1|, . . . , (l1+1)|s1|} and {sn− (l2− 1)|s1|, . . . , sn−
|s1|, sn}. Since we assume |s1| /∈ S, {2|s1|, 3|s1|, . . . , (l1 + 1)|s1|} and {s1, sn −
(l2 − 1)|s1|, . . . , sn − |s1|, sn} form two paths in Gn, starting with 2|s1|, s1 and
ending with (l1 + 1)|s1|, sn − (l2 − 1)|s1|, respectively. This contradicts that Gn

consists of two cycles. Therefore, |s1| ∈ S and |s1| is the smallest term in one
arithmetic progression.

Suppose the smallest term of the other arithmetic progression is sj . If no
element from {|s1|, 2|s1|, . . . , (l1− 1)|s1|} is missing, we suppose the length of the
other arithmetic progressions is l2. Thus,

S = {s1} ∪ {|s1|, 2|s1|, . . . , (l − 1)|s1|}

∪ {sj , sj + |s1|, . . . , sj + (l2 − 1)|s1|},

D(|s1|) = {2|s1|} ∪ {|s1|, 2|s1|, . . . , (l − 2)|s1|}

∪ {|sj − |s1||, sj , sj + |s1|, . . . , (l2 − 2)|s1|}.

In D(|s1|), only |sj−|s1|| may not be in S and deg(|s1|) ≥ n−2. This contradicts
every vertex of Gn has degree n− 3.

Thus, exactly one member of {|s1|, 2|s1|, . . . , (l− 1)|s1|} is not in S. Let t|s1|
be that value. Since we know |s1| ∈ S, it remains to check two possibilities.

Case (a) 2 ≤ t ≤ l − 2. In this case

S = {s1} ∪ {|s1|, 2|s1|, . . . , (t− 1)|s1|} ∪ {(t+ 1)|s1|, (t+ 2)|s1|, . . . , n|s1|}.

This is also not a signature for Gn, since the vertex labeled (n−1)|s1| is adjacent
to every other vertex except for (n−1− t)|s1|. This contradicts that every vertex
in Gn has degree n− 3.

Case (b) t = l−1. In this case there exists a maximal arithmetic progression
of length exactly l−2, namely {|s1|, . . . , (l−2)|s1|}. By definition of l, there also
exists a maximal arithmetic progression of length l with common difference |s1|.
By Observation 3, 0 /∈ S, and so s1 is not in any arithmetic progression with
common difference |s1|. The first term of the arithmetic progression of length l
is greater than s1, and its last term is greater than (l− 2)|s1|. Note that the two
arithmetic progressions are disjoint. If they have a common term, then all terms
following the common term are the same since both arithmetic progressions have
common difference |s1|. Then {|s1|, . . . , (l − 2)|s1|} can be extended to the last
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term of the l-term arithmetic progression, and would not be a maximal arithmetic
progression. Thus, we must have that l+l−2 = n−1, thus l = n+1

2
, contradicting

that n is even.

Case 3. m = 0. Let s denote the smallest signature value in S. By Observa-
tion 10, S can be partitioned into at most three maximal arithmetic progressions
of common difference s, one of which begins with s. S cannot consist of one
arithmetic progression with common difference s since [1]ns is a signature for the
complete graph Kn.

Case (a) Two arithmetic progressions. Let the two maximal progressions be
[1]l0s , [a1]

l1
s . Thus,

S = {s, 2s, . . . , l0s} ∪ {a1, a1 + s, . . . , a1 + (l1 − 1)s}.

Consider the difference set of s,

D(s) = {a1 − s, a1, a1 + s, . . . , a1 + (l1 − 2)s} ∪ {s, 2s, . . . , (l0 − 1)s}.

Since [a1]
l1
s is a maximal arithmetic progression, a1−s cannot be in the signature.

Note that all terms in D(s) besides a1−s are in the signature, and deg(s) = n−2.
This contradicts every vertex of Gn has degree n− 3.

Case (b) Three arithmetic progressions. Let the three progressions be [1]l0s ,
[a1]

l1
s , and [a2]

l2
s , where we assume without loss of generality that s < a1 < a2.

Note that s is not adjacent to either a1 or a2 since [a1]
l1
s and [a2]

l2
s are maximal

progressions. By Observation 11, at most two members are not present in the set
{s, 2s, . . . , (l − 1)s}.

We will first prove that a1 > (l0 + 1)s. Since a1 is the first term of an arith-
metic progression, a1 6= (l0 + 1)s. Assume by contradiction that a1 < (l0 + 1)s.
Then, ps < a1 < (p + 1)s, where 1 ≤ p ≤ l0s. Note that the differences of a1
with all elements in [1]l0s are less than l0s. Since a1 is not a multiple of s, the
differences of a1 with all elements in [1]l0s are not multiples of s and not in S.
That a1 is not adjacent to any vertex in [1]l0s contradicts that deg(a1) = n − 3
unless l0 = 2. However, if l0 = 2 and a1 < (l0 + 1)s, then a1 is not adjacent to s
and 2s. Since a1 is adjacent to every element of [a1]

l1
s , l1 = 2. Then l2 ≥ 4. Since

a1 is adjacent to every element of [a2]
l2
s , S contains the arithmetic progression

of length l2 ≥ 4: a2 − a1, a2 + s − a1, . . . , a2 + (l2 − 1)s − a1, contradicting that
l0 = l1 = 2. Therefore, a1 > (l0 + 1)s. By similar arguments, a2 > a1 + l1s.

Consider the ith term of the arithmetic progression [1]l0s is for 1 ≤ i ≤
min{l0, l1, l2}. Since a1−s and a2−s are not in the signature and deg(is) = n−3,
is is adjacent to every vertex other than a1+(i−1)s and a2+(i−1)s. In particular,
if 2s ∈ S, then 2s is adjacent to a1 and a2, and thus |a1 − 2s| and |a2 − 2s| are
in S.
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Case (i) 2s ∈ S. Since a1 > (l0+1)s, |a1− 2s| = a1− 2s. Since a1− 2s < a1
and |a1 − 2s| ∈ S, then a1 − 2s ∈ [1]l0s . Let a1 − 2s = ks, where 1 ≤ k ≤ l0. Since
a1 is the first term of an arithmetic progression, a1 = (k + 2)s > (l0 + 1)s, and
hence k > l0 − 1. Thus, k = l0 and a1 = (l0 + 2)s. The arithmetic progression
[a1]

l1
s can be written as {(l0 + 2)s, (l0 + 3)s, . . . , (l0 + l1 + 1)s}.
By a similar reasoning, |a2−2s| = a2−2s < a2 is in S and thus, is a multiple

of s. Let a2 − 2s = js, where 1 ≤ j ≤ l0 or l0 + 2 ≤ j ≤ l0 + l1 + 1. Note
that a2 = (j + 2)s > (l1 + l0 + 2)s, hence j > l0 + l1. Thus, j = l1 + l0 + 1 and
a2 = (l0 + l1 + 3)s. Therefore,

S = {s, 2s, . . . , l0s} ∪ {(l0 + 2)s, (l0 + 3)s, . . . , (l0 + l1 + 1)s}

∪ {(l0 + l1 + 3)s, (l0 + l1 + 4)s, . . . , (l0 + l1 + l2 + 2)s}.

Note that S is an arithmetic progression with two deletions. Lemma 22 shows
that this is not a signature for Gn.

Case (ii) 2s /∈ S. The three arithmetic progressions that partition S are:

S = {s} ∪ [a1]
l1
s ∪ [a2]

l2
s .

Without loss of generality, we assume that l1 > l2, and so l1 ≥ 4 and a1+2s, a1+
3s ∈ S. Since 2s, a1 − s /∈ S, a1 is not adjacent to s and a1 + 2s. Then, a1 must
be adjacent to a1 + 3s, and so 3s ∈ S. Thus,

S = {s} ∪ {3s, 4s, . . . , (l1 + 2)s} ∪ [a2]
l2
s .

We know 3s is not adjacent to s and 5s, and so 3s must be adjacent to a2. By
assumption, a2 > 3s. We suppose a2 − 3s = qs, where 3 ≤ q ≤ l1 + 2 or q = 1.
Since a2 is the first term of an arithmetic progression, a2 = (q + 3)s > (l1 + 3)s,
thus q > l1. This implies that q can only be l1 + 1, l1 + 2. If q = l1 + 1, then S
is an arithmetic progression with two deletions of 2s and (l1 + 3)s. By Lemma
22, this is not a signature for Gn. Thus, q = l1 + 2, and hence a2 = (l1 + 5)s.
Therefore,

S = {s} ∪ {3s, 4s, . . . , (l1 + 2)s} ∪ {(l1 + 5)s, (l1 + 6)s, . . . , (n+ 3)s}

= [1]n+3
s \ {2s, (l1 + 3)s, (l1 + 4)s}.

But this can never be a signature for Gn. If 1 ≤ l1 ≤ n− 4, then l1 + 7 ≤ n+ 3,
and thus (l1 + 7)s, (l1 + 6)s are both in S. Then, the vertex labeled 3s will not
be adjacent to s, (l1 + 6)s, and (l1 + 7)s, contradicting that deg(3s) = n− 3. On
the other hand, if n− 3 ≤ l1 ≤ n− 2, then l1 + 7 > n+ 3 and the vertex labeled
(l1 + 5)s is only not adjacent to s, contradicting that deg((l1 + 5)s) = n− 3.

We have exhausted all possible signatures for Gn, without finding one. This
completes the proof.
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5. Conclusion

The study of autographs offers some insight into what makes certain graphs dif-
ficult or impossible to express in this particular abbreviated form. The demon-
stration of these specific non-autographs confirms the intuition of [1] that graphs
whose complements have low degree are not likely to be autographs.

5.1. Discussion

At first glance, one might be tempted to hope that autographs might provide a
mechanism for determining if two graphs are isomorphic, since it is easy to verify
that two signatures are identical. However, such a mechanism could provide a
solution to the Graph Isomorphism Problem, which, while not known to be NP-
complete, has no known polynomial time solution [4]. Thus, it is unlikely that a
polynomial time algorithm for the Signature problem can be found. Indeed, the
question of whether possible signature values for a graph could be bounded was
raised by [3] and addressed for certain cases by [1]. Thus, algorithmic searches for
signatures for graphs are compromised by the facts that: (i) signatures are not
unique; (ii) bounds for possible signature values are not known; and (iii) there
is no polynomial time solution for determining whether a candidate signature
realizes a target graph. Nevertheless, the Graph Isomorphism Problem can be
solved in polynomial time for graphs of bounded degree [9], so there is some
hope that algorithmic approaches could be viable in finding signatures for some
autographs.

5.2. Open Problems

Many interesting problems concerning autographs remain. Namely:

1. Is the signature problem GI-complete? Such a result would clarify the com-
putational complexity of this line of inquiry.

2. Is it possible to derive bounds for signature values in autographs that would
enable polynomial time algorithmic searches for signatures?

3. Are there other interesting families of non-autographs?

4. Is there a property that determines whether a graph is an autograph?
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