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ABSENCE OF THE FILARIAL ENDOSYMBIONT WOLBACHIA IN SEAL HEARTWORM

(ACANTHOCHEILONEMA SPIROCAUDA) BUT EVIDENCE OF ANCIENT LATERAL GENE

TRANSFER

Caroline D. Keroack*, Jenna I. Wurster*†, Caroline G. Decker*, Kalani M. Williams*, Barton E. Slatko‡, Jeremy M. Foster‡,
and Steven A. Williams*

* Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063. Correspondence should be sent to: ckeroack@smith.edu

ABSTRACT: The symbiotic relationship of Wolbachia spp. was first observed in insects and subsequently in many parasitic filarial
nematodes. This bacterium is believed to provide metabolic and developmental assistance to filarial parasitic nematodes, although the
exact nature of this relationship remains to be fully elucidated. While Wolbachia is present in most filarial nematodes in the family
Onchocercidae, it is absent in several disparate species such as the human parasite Loa loa. All tested members of the genus
Acanthocheilonema, such as Acanthocheilonema viteae, have been shown to lack Wolbachia. Consistent with this, we show that
Wolbachia is absent from the seal heartworm (Acanthocheilonema spirocauda), but lateral gene transfer (LGT) of DNA sequences
between Wolbachia and A. spirocauda has occurred, indicating a past evolutionary association. Seal heartworm is an important
pathogen of phocid seals and understanding its basic biology is essential for conservation of the host. The findings presented here may
allow for the development of future treatments or diagnostics for the disease and also aid in clarification of the complicated nematode–
Wolbachia relationship.

The genus Wolbachia is comprised of intracellular a-proteo-
bacteria within a wide range of arthropods and filarial nematodes

(Serbus et al., 2008; Foster et al., 2013; Slatko et al., 2014). Since
their discovery, Wolbachia spp. have been identified in every

major insect order and in mites, crustaceans, and filarial

nematodes (Hertig and Wolbach, 1924; McLaren, 1975; Werren
et al., 1995; Bandi et al., 1998; Jeyaprakash and Hoy, 2000; Fenn

et al., 2006; Pfarr et al., 2007; Werren et al., 2008). In arthropods,
Wolbachia localize to the reproductive tract and exhibit repro-

ductive parasitism through multiple mechanisms including

induction of cytoplasmic incompatibility, feminization of males,
male killing, or parthenogenesis (Bouchon et al., 1998; Stout-

hamer et al., 1999; Harris and Braig, 2003; Tram et al., 2003;
Serbus and Sullivan, 2007; Werren et al., 2008). Wolbachia in

nematodes appear not to have the same reproductive manipula-
tions as in arthropods, as male killing, feminization, cytoplasmic

incompatibility, and parthenogenesis have not been observed

(Brattig, 2003; Fenn and Blaxter, 2004; Taylor et al., 2005a).
The dynamics of Wolbachia–nematode host interactions have

been a topic of active investigation (Taylor and Hoerauf, 1999;
Brattig, 2003; Taylor et al., 2005a; Foster et al., 2013; Landmann

et al., 2014). Antibiotic depletion of Wolbachia leads to

developmental defects in embryogenesis and nematode larvae,
as well as killing of adult filarial worms, supporting the essential

nature of the Wolbachia–nematode relationship (Hoerauf et al.,
1999, 2000; Fenn and Blaxter, 2004; Taylor et al., 2001, 2005b;

Strubing et al., 2010; Foster et al., 2013; McCall et al., 2014).

There is also evidence that Wolbachia spp. may support or
provide certain metabolic pathways, including heme and vitamin

B2 metabolism, that are missing in their nematode hosts, which
may explain why eliminating Wolbachia affects the nematode

(Foster et al., 2005; Wu et al., 2009, 2013; Darby et al., 2012; Li
and Carlow, 2012). Still, the nature of nematode–Wolbachia

symbiosis remains to be elucidated (Foster et al., 2005; Wu et al.,

2009; Strubing et al., 2010; Landmann et al., 2010, 2011, 2014;

Desjardins et al., 2013; Melnikow et al., 2013).

Aside from the biological nature of the nematode–Wolbachia

interaction, the phylogenetic relationship between the two also

remains perplexing. In nematodes, Wolbachia spp. are only

known to reside in the filarial nematodes (family: Onchocercidae)

and mainly cluster in 2 families: Dirofilariinae and Onchocercinae

(Taylor and Hoerauf, 1999; Bandi et al., 2001; Casiraghi et al.,

2001; Chirgwin et al., 2002; Ferri et al., 2011; Landmann et al.,

2014). However, Wolbachia distribution is not ubiquitous

throughout the filarial nematodes. Notably, several species

including Loa loa, Acanthocheilonema viteae, Onchocerca flexuosa,

and all screened Setaria species lack Wolbachia, as demonstrated

by various molecular analyses (Chirgwin et al., 2002; Bordenstein

et al., 2003; McGarry et al., 2003; Casiraghi et al., 2004; McNulty

et al., 2010; Ferri et al., 2011; Desjardins et al., 2013). Recently it

has been shown that more filarial species lack Wolbachia than

expected, including other species of the genus Acanthocheilonema

(Ferri et al., 2011; Uni et al., 2013). These anomalies have

generated contrasting opinions regarding the pattern of acquisi-

tion–loss of Wolbachia through filarial nematode evolutionary

history. Two alternative hypotheses have been proposed: first,

Wolbachia spp. were inherited by a distant common ancestor of

filarial nematodes and were subsequently lost in some lineages or,

second, that Wolbachia spp. were inherited independently

multiple times (Casiraghi et al., 2001; Ferri et al., 2011; Blaxter

and Koutsovoulous, 2015). Due to a small data set, this quandary

persists. By adding data we hope to aid in elucidating the

evolutionary history of the nematode–Wolbachia relationship.

This study focuses on the seal heartworm (Acanthocheilonema

spirocauda), a filarial parasite of many phocid seals such as the

charismatic harbor seal (Phoca vitulina) (Leidenberger et al.,

2007). Seal heartworm has no singular definitive host seal species

and is distributed throughout the Northern hemisphere (Mea-

sures, 2001). Clinical manifestations of infection include anorexia,

fatigue, dehydration, coughing–bronchiospasm, and many other

classical symptoms of heartworm infection (Daily, 2005).

Complications include secondary bacterial infection, irreversible

pathological changes, and death. Seal heartworm is a significant

cause of morbidity in neonatal and juvenile seals, and its full host

range is unknown (Geraci et al., 1981; Leidenberger et al., 2007).
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Controlling the spread of the parasite between seals and

potentially across species is likely essential for marine mammal

health and conservation (Raga et al., 1997). In additional to

potential conservational impacts, studying A. spirocauda has

direct phylogenetic impact on the interpretation of the evolution-

ary history between Wolbachia and filarial nematodes.

Here, we present molecular evidence against Wolbachia

endosymbiosis in seal heartworm (A. spirocauda), which is

consistent with the general absence of Wolbachia in other

Acanthocheilonema species such as A. viteae and Acanthocheilo-

nema delicata (Casiraghi et al., 2004; McNulty et al., 2010; Uni et

al., 2013). We also present data indicating lateral gene transfer

(LGT) between Wolbachia and the nuclear genome of A.

spirocauda, data which support the concept that Wolbachia was

present in this genus at one point in its evolutionary history

(McNulty et al., 2010; Blaxter and Koutsovoulous, 2015). This

study bolsters the hypothesis that the acquisition of Wolbachia

endosymbionts was an ancestral event and that loss of the

endosymbiont is apomorphic. This study also reveals that A.

spirocauda is a Wolbachia-free parasite that could be used in

genomic comparisons with Wolbachia-containing parasites to

attempt to decipher the biological relationship between the host

and symbiont.

MATERIALS AND METHODS

Parasites

Whole adult seal heartworms (A. spirocauda) stored in glycerin were
obtained from the National Marine Life Center (NMLC) in Falmouth,
Massachusetts. Additional seal heartworm specimens frozen in saline were
obtained from the North East Marine Fisheries Service (NEMFS) in
Woods Hole, Massachusetts. Parasites were collected during necropsy of
stranded or by-caught harbor seals (P. vitulina), and no live animals were
involved or harmed in collection. Parasites were obtained with permission
of the National Oceanic and Atmospheric Administration authorized
under the regulations at 50 CFR 216.22(c)(5) and 216.37 of the Marine
Mammal Protection Act, which allows transfer of marine mammal parts
for scientific research purposes. Parasites used in this study were obtained
from 2 stranded harbor seals (P. vitulina) identified as DO-5476 (NEMFS;
seal by-caught off the coast of Gloucester, Massachusetts on 20 February
2000) and P Pr 13-104 (NMLC; seal found stranded in Eastham,
Massachusetts on 1 January 2013). Five worms were obtained from
DO-5476 and a single worm was obtained from P Pr 13-104. Brugia
pahangi (females, Wolbachia positive) were provided by the Filariasis
Research Reagent Resource Center (FR3), Athens, Georgia. Acantho-
cheilonema viteae DNA (positive control for the porphobilinogen
deaminase pseudogene [PBGD] PCR), Dirofilaria immitis, and Onchocerca
volvulus DNA (positive controls for Wolbachia surface protein [WSP] and
16sWolb PCRs) and Loa loa (PBGD PCR negative control) were also
provided by the FR3.

DNA isolation method

Intact worms (A. spirocauda worms [1 from DO-5476; 1 from P Pr 13-
104]; 50 B. pahangi worms [verified by FR3]) were washed and
resuspended in phosphate-buffered saline (250 lL) and homogenized
using a sterile metal ball bearing (Qiagen, Venlo, Netherlands) in 250 lL
lysis buffer (50 mM Tris-HCl pH 7.5, 0.1 M ethylenediaminetetraacetic
acid, 0.2 M sodium chloride) using a Qiagen Retsch model TissueLyser II
for 8 min at a frequency of 1/20 sec (total volume of homogenate was
~500 lL). Following homogenization, 60 lL of proteinase K (New
England Biolabs, Ipswich, Massachusetts; 0.8 units/lL; 48 units total), 30
lL of 10% sodium dodecyl sulfate (final concentration 0.5%), and 2 lL b-
mercaptoethanol (final concentration, 48 mM) were added to the sample
and incubated at 56 C for 6–9 hr (total volume was 592 lL). The sample
was treated with 1.5 lL RNaseA (Qiagen; 0.337 lg/mL final concentra-
tion) at 37 C for 1 hr. DNA was extracted using phenol followed by
chloroform and then precipitated using absolute ethanol. DNA was

resuspended in 50 lL 0.1X TE buffer (American Bioanalytical, 1X stock,
Natick, Massachusetts) and quantified.

Species identification and DNA quality check

DNA isolated from A. spirocauda was subjected to barcode PCR and
subsequent sequencing for identification. DNA provided for Loa loa, O.
volvulus, A. viteae, and D. immitis was verified by the FR3 but subjected to
the same PCR to ensure DNA was suitable for amplification. A partial
cytochrome c oxidase subunit 1 (cox1) mitochondrial gene was used for
identification. Primers used were 50-TGATTGGTGGTTTTGGTAA-30

and 50-ATAAGTACGAGTATCAATATC-30 with an expected product
size between 500–700 base pairs (bp) (Casiraghi et al., 2001; Ferri et al.,
2009). Amplification consisted of 40 cycles, an annealing temperature of
52 C, and an extension time of 1.5 min. Master mix was prepared
following the manufacturer’s protocols with 0.2 lM final primer
concentrations (Phusion polymerase, New England Biolabs).

Polymerase chain reaction (PCR) amplification of target sequences

PCR was performed on both A. spirocauda from P Pr 13-104 and DO-
5476 parasites in addition to controls. DNA was isolated from whole,
single worms. All PCRs were performed using the following thermal
cycling conditions, with any variations noted: 98 C for 3 min as an initial
denaturing step followed by 35–40 cycles of 98 C denaturing, variable
temperature for annealing, 72 C extension, followed by a final extension
for 10 min at 72 C. The WSP was amplified using 50-GTCCAATARST
GATGARGAAAC-30 and 50- CYGCACCAAYAGYRCTRTAAA-30

primers for an expected product size of ~590 bp (Bazzocchi et al.,
2000). These primers were designed based on arthropod Wolbachia
sequences and have been shown to amplify WSP from both Brugia spp.
and Litomosoides sp. (Bazzocchi et al., 2000). Amplification consisted of
35 cycles of with an annealing temperature of 50 C for 45 seconds and an
extension time of 1.5 min. The 16s ribosomal RNA subunit (16s rRNA)
was amplified using primers specific to Wolbachia (16swolb) with 50-
GAAGATAATGACGGTACTCAC-3 0 and 5 0-GTCACTGATCC
CACTTTAAATAAC-30 for an expected product size of approximately
1,000 bp (Casiraghi et al., 2001). These primers were designed to amplify
Wolbachia sequences from supergroups (clades) A–D and were previously
demonstrated to amplify the 16s rRNA in a wide range of Wolbachia
strains (Casiraghi et al., 2001). Amplification was for 40 cycles with an
annealing temperature of 48 C for 30 sec and an extension time of 2 min.
All reactions were prepared in nuclease-free water with the following final
concentrations: deoxynucleotide triphosphate solution (0.2 mM; New
England Biolabs), forward and reverse primer (0.2 lM each), dimethyl
sulfoxide (New England Biolabs, 3% final concentration), 5X HF Phusion
buffer (1X final concentration), and template DNA (~100 ng). The master
mix was supplemented with an additional 0.5 mM magnesium chloride,
bringing the final concentration to 2.0 mM. One unit of Phusion
polymerase (New England Biolabs) was added to each reaction.

The PBGD, reported to be laterally transferred to the nuclear genome
of A. viteae from a former Wolbachia colonization (McNulty et al., 2010;
New England Biolabs, unpubl. data) was amplified as 3 different-sized
fragments using 3 different forward primers and 1 reverse primer, Av-
wPBGDr (Table I). Amplification used 35 cycles, an annealing temper-
ature of 50 C, and an extension time of 1 min. Reactions were prepared as
above, with the exclusion of additional magnesium chloride.

Controls for WSP and 16s rRNA PCR were DNA samples extracted
from B. pahangi, O. volvulus, and D. immitis, which are known to harbor
Wolbachia (Casiraghi et al., 2004). The positive control for the PBGD
PCR was A. viteae DNA and the negative control was Loa loa DNA.
PCRs were performed in duplicate, and the results shown are represen-
tative of 2 independent experiments. All PCR products were electropho-
resed on 1.5% agarose gels in 1X TAE buffer (50X Stock, American
Bioanalytical).

DNA sequencing

Automated Sanger dideoxy terminator sequencing was performed at
the Smith College core facility on an ABI 3130xl (Hitachi, Tokyo, Japan)
following the BigDye� Terminator v3.1 cycle kit (Life Technologies,
Carlsbad, California) protocols using the Av-PBGDf1 primer. Sequences
were deposited in GenBank (A. spirocauda [P Pr 13-104] PBDG:
KU19397; A. spirocauda [DO-5476] PBDG: KT369810; A. viteae PBGD:
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KT369809; A. spirocauda [DO-5476] cox1: KT899871; A. spirocauda [P Pr
13-104] cox1: KU19398).

Western blot

Whole-worm lysates were prepared by freezing parasites in liquid nitrogen
and homogenizing them using a mortar and pestle with 1X Cell lysis buffer
(10X stock, Cell Signaling Technology, Danvers, Massachusetts, prepared
according to the manufacturer’s instructions) combined with SDS (6% w/v).
Parasites tested were A. spirocauda (DO-5476; 1 adult worm, sex unknown)
and B. pahangi (50 adult females, used as a control). The amount of parasite
tissue used in both samples was roughly equal (~50mg). Fourteenmicroliters
of lysate were loaded into each well of a 4–20% polyacrylamide gel. Gels were
wet-transferred onto nitrocellulose and blocked following a publicly available
protocol (Cell Signaling Technology, 2013). Membranes were rocked
overnight at 4 C in 5% non-fat dry milk in 1X TBS-T with the appropriate
dilution of anti-Wolbachia surface protein primary antibody (Anti-WSP,
1:20,000 dilution; BEI Resources, Manassas, Virginia). This monoclonal
antibody (purified IgG, produced in vitro; NR-31029) has been shown to
bind to WSP in various systems including Brugia malayi and Drosophila
melanogaster (Michalski et al., 2011; Newton et al., 2015). Anti a-tubulin
(Cell Signaling Technology, Danvers,Massachusetts, #2125 1:2000) served as
a control. Membranes were washed and then incubated with secondary
antibody (anti-rabbit, Cell Signaling Technology, no. 7074, 1:2000) following
the manufacturer’s protocols (Cell Signaling Technology, 2013). Membranes
were developed using SignalFiree (Cell Signaling Technology).

Phylogenetic reconstruction

The phylogeny was constructed using MEGA 5.2 software (Tamura et
al., 2011). PBGD sequences were aligned using MUSCLE (MEGA 5.2)
with standard parameters. The maximum likelihood tree was constructed
using a Tamura 3-parameter model, considering all nucleotide sites, with
gamma distribution. Neorickettsia risticii (an a-proteobacterium) was used
as an out-group to root the tree. In the tree, bootstrap confidence values
after 500 iterations were displayed at the nodes (Fig. 5). Sequences not
generated in this study were obtained from GenBank.

RESULTS

Species identification and DNA quality verification

PCR reactions were used for sequencing to confidently

determine the species of the seal parasites. While parasites were

identified morphologically by the providing agencies, PCRs were

run to confirm these designations. PCRs also served as a control

for all other DNA samples; these reactions served to show DNA

quality and ability of the DNA samples to be amplified (Fig. 1).

COI gene sequences were analyzed by BLASTn (National Center

for Biotechnology Information [NCBI], http://www.blast.ncbi.

nlm.nih.gov/Blast.cgi. Isolate P Pr 13-104 (KU19398) showed

99% identity with A. spirocauda (HF583266) with 100%

coverage; isolate DO-5476 (KT899871) had 99% identity with

A. spirocauda (HF583266) with 100% coverage. Loa loa, O.

volvulus, B. pahangi, D. immitis, and A. viteae were not sequenced,

as their identity was previously determined and confirmed by the

providing agency (NIH).

PCR screen for Wolbachia presence

PCR reactions were used to determine the presence or absence

of Wolbachia endosymbionts in A. spirocauda. Amplification was

from total genomic DNA using Wolbachia-specific 16S ribosomal

RNA subunit (16swolb) primers (Fig. 2) and WSP primers (Fig.

3). No amplicons were obtained from A. spirocauda, although

correct-size amplicons (~1,000 bp, 16S rRNA; ~590 bp WSP)

were generated from the B. pahangi, O. volvulus, and D. immitis-

positive controls (Figs. 2, 3). Duplicate PCRs yielded identical

results.

Western blot screen for Wolbachia presence

Western blots were performed using a monoclonal anti-WSP

antibody. This antibody has been shown to react with protein

from a wide range of Wolbachia strains (Michalski et al., 2011;

Newton et al., 2015). No WSP was detected in the A. spirocauda

samples. The antibody did detect the protein (WSP) in B. pahangi,

indicated by the 25-kDa band (Fig. 4). To ensure intact protein

TABLE I. Primer sequences for porphobilinogen deaminase pseudogene (PBGD) PCR.*

Name Sequence Amplicon size

Av wPBGDf1 50-ACC TAA AAT CTG TGT GTC CAT ATG GTC-30 400 bp

Av wPBGDf2 50-TCG AAG TGC TTA AGA ATA ATA TAG AC-30 300 bp

Av wPBGDf3 50-TCA TTC GGT AAA GAT GTC TCT CC-30 250 bp

Av wPBGDr 50-AGC TAG AAT TAT TCC ATC AAA ATT GTG G-30 —

* Primers were designed based on unpublished data from New England Biolabs and information generated by McNulty, et al. 2010.

FIGURE 1. COI PCR for DNA quality verification. Lane 1: 100-bp
ladder; Lane 2: DO 5476 (Acanthocheilonema spirocauda); Lane 3: P Pr 13-
104 (A. spirocauda); Lane 4: Acanthocheilonema viteae; Lane 5: Brugia
pahangi; Lane 6: Dirofilaria immitis; Lane 7: Loa loa; Lane 8: Onchocerca
volvulus; Lane 9: no template control (NTC).

FIGURE 2. 16swolb PCR. Lane 1: 100-bp DNA ladder (New England
Biolabs); Lane 2: DO 5476 (Acanthocheilonema spirocauda) genomic
DNA; Lane 3 P Pr 13-104 (A. spirocauda) genomic DNA; Lane 4: Brugia
pahangi genomic DNA; Lane 5: Dirofilaria immitis genomic; Lane 6: DNA
Onchocerca volvulus genomic DNA; Lane 7: no template control (NTC).
Amplicons are at the expected size of 1,000 base pairs.
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was present in both samples, western blots using an anti–a-
tubulin monoclonal antibody were also preformed. This protein

was selected because it is a constitutively expressed housekeeping

gene. Both lysates showed a band between 50 and 60 kDa on the

western blot, indicating the presence of a-tubulin (52 kDa) and

that the lysates were of suitable quality for western blots (Fig. 4).

Screen for LGT

PCR was used to determine if the Wolbachia-like pseudogene

PBGD was present in the A. spirocauda genome. The reaction

captures a size-variable region of a pseudogene depending on the

forward primer used (Table I). Primers were designed for

specificity to the Wolbachia-like PBGD pseudogene of A. viteae,

identified by McNulty et al. (2010). This gene was selected due to

its relation to heme metabolism, which is one of the proposed

functions of Wolbachia endosymbiosis in nematodes (Wu et al.,

2009). This assay was developed based on a combination of data.

First, screening of A. viteae cDNA revealed the presence of a

PBGD pseudogene fragment even though the parasite is

Wolbachia-free (Wu, Foster, and Slatko, unpubl. obs.). Second,

low coverage genomic sequencing of the A. viteae genome

revealed LGTs of heme-biosynthesis related gene fragments,

including a PBGD sequence (McNulty et al., 2010), which

overlapped and extended the first-identified fragment. The PCR

generated amplicons of expected size for each of the different

PBGD primer sets (Fig. 5, top). Sequencing of the largest PCR

product (~400 bp) and subsequent NCBI BLAST identification

showed that the PBGD sequences in both individuals of A.

spirocauda (DO-5476: KT369810; P Pr 13-104: KU19389) and A.

viteae (KT369809) were most similar to those of Wolbachia found

in B. malayi and O. volvulus, both the filarial parasites known to

harbor Wolbachia (Fig. 5, bottom).

The sequences generated using the PBGD primers contained no

open reading frame, indicating these sequences are pseudogenes.

The phylogeny of PBGD sequences shows that the sequences

obtained in this study most closely resemble Wolbachia hemC

(hemC is the gene designation for bacterial PBGD), which codes

for porphobilingen deaminase in the bacterium (Klasson et al.,

2009). More specifically, the A. spirocauda PBGD sequences

matched hemC from extant Wolbachia that reside in other filarial

parasites (McNulty et al., 2010) (Fig. 5, bottom). BLASTn

analysis of the PBGD sequence of A. spirocauda (DO-5476)

showed 80% sequence identity over 78% of the sequence with

Wolbachia hemC of O. volvulus (e-value 6e-68), A. spirocauda (P

Pr 13-104) showed 81% identity over 90% (e-value 2e-157), and

the sequence from A. viteae similarly showed 83% sequence

identity over 78% of the sequence (e-value 1e-76). This supports
the conclusion that these pseudogenes derive from nuclear

insertions of Wolbachia sequences similar to those found in the

bacteria in other filarial parasites. Given that the 16s rRNA and

WSP PCR and western blot experiments showed the absence of
Wolbachia in A. spirocauda, these results indicate an LGT

occurred between a Wolbachia endosymbiont and A. spirocauda

in the distant past, before the loss of the Wolbachia endosymbi-

ont. Interestingly, the sequence similarity between A. spirocauda
(DO-5476: P Pr 13-104) and A. viteae PBGD is 94/93% over 99/

86% of the sequence lengths, indicating possible pressure to

preserve the sequence over evolutionary time.

DISCUSSION

The molecular evidence presented here suggests that A.
spirocauda lacks a current symbiotic relationship with Wolbachia.

These results are consistent with the pattern of Wolbachia

distribution in filarial worms, as members of the Acanthocheilo-

nema genus including A. viteae, A. reconditum, and A. delicata
also lack Wolbachia (Casiraghi et al., 2004; McNulty et al., 2010;

Uni et al., 2013). These data might be thought to support the

conclusion that the Acanthocheilonema genus diverged before

filarial nematodes obtained Wolbachia. However, our data on
LGT provide evidence to the contrary: specifically, that A.

spirocauda has acquired Wolbachia-like genes, presumably

through LGT. The close relationship of the laterally-transferred

gene to PBGD genes found in Wolbachia present in other filarial
worms implies that A. spirocauda once harbored Wolbachia

endosymbionts and that the loss of the endosymbiont is a derived

characteristic. The presence of Wolbachia-like sequences in the

FIGURE 3. Wolbachia surface protein (WSP) PCR. Lane 1: 100-bp
DNA ladder (New England Biolabs); Lane 2: DO 5476 (Acanthocheilo-
nema spirocauda) genomic DNA; Lane 3 P Pr 13-104 (A. spirocauda)
genomic DNA; Lane 4: Brugia pahangi genomic DNA; Lane 5: Dirofilaria
immitis genomic; Lane 6: DNA Onchocerca volvulus genomic DNA; Lane
7: no template control (NTC). Amplicons are of expected size of
approximately 590 bp.

FIGURE 4. Left: Anti-Wolbachia surface protein (WSP) western blot.
Left: Wolbachia surface protein appears between 20–30 kDa. Lane 1:
Biotinylated ladder (Cell Signaling Technology no. 7727), Lane 2: positive
control Brugia pahangi lysate, Lane 3: Acanthocheilonema spirocauda
lysate (DO-5476, whole worm). Right: Control western blot. Alpha-
tubulin bands appear between 50–60 kDa. Lanes are the same as WSP
blot.
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nuclear genomes of both A. spirocauda and A. viteae suggests that

the Acanthocheilonema genus once harbored Wolbachia and that

divergence was preceded by endobacterial loss. This is counter to

the hypothesis that Acanthocheilonema should be considered an

out-group when examining Wolbachia phylogeny and coevolution

with its nematode hosts (Bordenstein et al., 2003; Casiraghi et al.,

2004).

The presented data support the hypothesis that multiple losses

of Wolbachia have occurred, as seen in Acanthocheilonema spp.,

O. flexuosa, and possibly other nematode species. The clustering

of the PBGD sequences with those from extant Wolbachia found

in other filarial worms possibly suggests that they share a

common origin (Fig. 5, bottom). However, due to low bootstrap

values, this conclusion would need to be further supported by

additional experimentation. A likely common origin between the

Acanthocheilonema PBGD sequences is nonetheless supported by

the similarity of the sequences from A. spirocauda and A. viteae,

which additionally may imply that there is functional significance

to the pseudogene.

In combination with reported filarial nematode phylogeny, the

most parsimonious explanation for the existence of laterally

transferred Wolbachia genes in the A. spirocauda and A. viteae

nuclear genomes is that ancestral endosymbiont acquisition

occurred in the last common ancestor of most filarial nematodes

(Xie et al., 1994; Casiraghi et al., 2001, 2004; Desjardins et al.,

2013). A counter example has been found in Loa loa, where

genomic sequencing has shown an absence of obvious LGT

between Wolbachia and the parasite; however, the evolutionary

implications of this absence remain to be elucidated (Desjardins et

al., 2013).

FIGURE 5. Top: porphobilinogen deaminase pseudogene (PBGD) gel images: Lane 1: 100-bp ladder (New England Biolabs); Lanes 2 and 3:
Acanthocheilonema spirocauda genomic DNA (DO-5476); Lanes 4 and 5: A. spirocauda genomic DNA (P Pr 13-104); Lanes 6 and 7: Acanthocheilonema
viteae genomic DNA; Lanes 8 and 9: Loa loa genomic DNA (negative control); Lanes 10 and 11: no template control. Bottom: Phylogeny of hemC
(PBGD) pseudogene sequences. Bootstrap confidence values after 500 iterations are displayed at the nodes. Displayed are the PBGD sequences obtained
in this study compared against the top 3 filarial parasite results indicated by BLASTn analysis as well as several insect Wolbachia sequences that showed
similarity to the query sequence in BLAST.
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The Wolbachia-like PBGD sequences obtained in this study

contained no functional open reading frame, meaning that the

acquired Wolbachia sequence is not functionally utilized as a

PBGD by the nematode host. We do not currently understand

why this gene fragment has been maintained with high sequence

identity in sister species following lateral transfer. As noted above,

the A. viteae PBGD pseudogene fragment is transcribed (Wu,

Foster, and Slatko, unpubl. obs.), as are many other gene

fragments transferred from Wolbachia to their nematode hosts

(Ioannidis et al., 2013). Perhaps certain laterally transferred genes

are maintained for functions we have yet to elucidate, such as

those of small regulatory RNAs for example. Further genomic

and transcriptomic analysis of various Acanthocheilonema species

would be required to elucidate these questions.

CONCLUSION

Evidence presented in this study indicates that A. spirocauda

lacks the Wolbachia endosymbiont. However, A. spirocauda

genomic DNA contains at least 1 gene fragment that appears to

be of Wolbachia origin. A close relative, A. viteae, also harbors

this same Wolbachia-like PBGD sequence amongst a number of

other LGTs (McNulty et al., 2010). This suggests that Acantho-

cheilonema contained Wolbachia in the past and lost the

endosymbiont after an LGT event. Future studies employing

larger-scale genomic sequencing and analysis will be required to

fully elucidate the nature of the evolutionary and symbiotic

relationship between Wolbachia and filarial nematodes.
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