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Spiral Unfoldings of Convex Polyhedra

Joseph O’Rourke∗

October 20, 2015

Abstract

The notion of a spiral unfolding of a convex polyhedron, a special
type of Hamiltonian cut-path, is explored. The Platonic and Archimedian
solids all have nonoverlapping spiral unfoldings, although overlap is more
the rule than the exception among generic polyhedra. The structure of
spiral unfoldings is described, primarily through analyzing one particular
class, the polyhedra of revolution.

1 Introduction

I define a spiral σ on the surface of a convex polyhedron P as a simple (non-self-
intersecting) polygonal path σ = (p1, p2, . . . , pm) which includes every vertex vj
of P (so it is a Hamiltonian path), and so when cut permits the surface of P to
be unfolded flat into R2. (Other requirements defining a spiral will be discussed
below.) The starting point for this investigation was Figure 2, an unfolding of
a spiral cut-path on a tilted cube, Figure 1. The cut-path σ on P unfolds to
two paths ρ and λ in the plane, with the surface to the right of ρ and to the left
of λ. Folding the planar layout by joining (“gluing”) ρ to λ along their equal
lengths results in the cube, uniquely results by Alexandrov’s theorem. Note that
the external angle at the bottommost vertex (marked 1 in Figure 2) and the
topmost vertex (marked 17, because σ has 16 segments and m = 17 corners1)
is 90◦, which is the Gaussian curvature at those cube vertices. Note also that
there are 8 vertices of P along both ρ and λ, with one shared at either end.

The notion of restricting unfoldings of convex polyhedra by following a
Hamiltonian path along polyhedron edges was introduced by Shephard 40 years
ago [She75]. Shepard noted that not every polyhedron has such a Hamiltonian
edge-unfolding, because not every polyhedron 1-skeleton has a Hamiltonian path
(e.g., the rhombic dodecahedron does not have such a path). Here we are not
restricting cuts to polyhedron edges. A single Hamiltonian cut-path, not neces-
sarily following polyhedron edges, leads to what was memorably christened as

∗Departments of Computer Science, and Mathematics, Smith College, Northampton, MA
01063, USA. orourke@cs.smith.edu.

1We reserve the term “vertices” to refer to P ’s vertices, and use “corners” for the turns of
σ.
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Figure 1: Cube with spiral cut-path σ.
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Figure 2: Spiral unfolding of cube.
Vertices are marked with red dots. ρ
is purple; λ is green.

a zipper unfolding in [LDD+10]. Those authors posed the still-open problem of
whether or not every convex polyhedron has a nonoverlapping zipper unfolding.
The investigation reported here does not make an advance on this question, as
spiral unfoldings are a special subclass of zipper unfoldings, and nonoverlap is
rare (as we will see in Section 5). Instead we pursue these unfoldings for their
intrinsic, almost aesthetic, interest. In keeping with this attitude, we reach no
grand conclusions, and do not offer formal proofs of claims. For terminology
and background (e.g., Alexandrov’s theorem, Gaussian curvature), see [DO07].

The cube unfolding in Figure 2 suggests seeking spiral unfoldings of other
convex polyhedra, seeing if they avoid overlap in the plane, i.e., if they unfold
to simple (non-self-intersecting) polygons. First we add some detail to the
definition of a spiral. We insist that a spiral σ satisfies these requirements:

1. pi+1 is vertically higher or the same height as pi. Letting zi be the z-
coordinate of pi, this condition is zi+1 ≥ zi. Therefore, p1 is a bottommost
vertex and pm a topmost vertex of P .

2. Each segment pipi+1 “advances” counterclockwise (ccw) around its band.

We defer the somewhat technical definition of what constitutes a ccw advance
to Section 2.1 below.

2 Platonic Solids

All of the five Platonic solids have nonoverlapping spiral unfoldings: the tetra-
hedron (Figures 3 and 4), the octahedron (Figures 5 and 6), the dodecahedron
(Figures 7 and 8), and the icosahedron (Figure 9 and 10).

Before proceeding further, a few remarks are in order. By no means are
spirals uniquely defined. First, the polyhedron may be oriented with two degrees
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Figure 3: Tetrahedron with spiral cut
path.

16

Figure 4: Spiral unfolding of tetrahe-
dron.

Figure 5: Octahedron with spiral cut
path.

1

11

Figure 6: Spiral unfolding of octahe-
dron.
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Figure 7: Dodecahedron with spiral
cut path.
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Figure 8: Spiral unfolding of dodeca-
hedron.

Figure 9: Icosahedron with spiral cut
path.
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35

Figure 10: Spiral unfolding of icosahe-
dron.
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of continuous freedom. The orientation of the dodecahedron above was carefully
selected to avoid overlap: see Figure 11. Second, for a fixed orientation, even

1

83overlap

Figure 11: Overlapping spiral unfolding of a tilted dodecahedron.

though σ must pass through every vertex in sorted vertical order, there are still
an infinite number of choices for spirals. For example, one may wind around
several times between each vertically adjacent pair of vertices of P ; see Figure 12.

1
128

Figure 12: Upright octahedron with densely wound spiral cut-path.

Further intuition may be gained from an animation of the previously shown
(Figure 9 and 10) icosahedron unfolding: see Figure 13.

2.1 Spiral Definition: Bands

We return to the definition of a spiral, to make precise the sense in which the
spiral must always advance ccw around the polyhedron P . Let a band be the
portion of P between two horizontal (z = constant) planes, such that there is
no vertex of P strictly between the planes (although vertices may lie on those
planes). See Figure 14. The edges of P crossing the band provide a natural
combinatorial sense of ccw. If a segment pipi+1 of σ connects two edges of
a band, then it is ccw if the second edge is ccw of the first edge (recall our
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Figure 13: Snapshot of animation of icosahedron rolling out its spiral (35th out
of 50 frames). http://cs.smith.edu/~orourke/SpiralUnf/.

convention that the spiral rises from a bottom to a top vertex). In general, and
in all examples in this paper, each pi does in fact lie on an edge (or several,
where they meet at a vertex). However, this is not a necessary condition: pi
could lie interior to a face.

If pipi+1 does not connect two band edges (e.g., both pi and pi+1 might be
vertices connected by an edge of P ), then the following rule is used to determine
whether it represents a ccw advance. Let ρhi be the total surface angle to the
right from pipi+1 down to the horizontal plane through pi, and similarly let λhi
be the surface angle to the left. Here the superscript h indicates an angle to the
horizontal plane. For pi+1 the analogous angles measure up to the horizontal
plane through pi+1. Then pipi+1 is ccw iff (a) ρhi < λhi , and (b) ρhi+1 > λhi+1; see
Figure 15. This condition requires appropriate “slant” at each end of pipi+1,
and ensures vertical symmetry: reversing z-coordinates of a path renders it a
spiral iff the original is a spiral.

Before proceeding further, we describe the implementation that produced
the unfoldings displayed in this paper.

3 Implementation

The spiral cut-paths illustrated were created by a particular implementation,
selecting a specific σ among the infinite number of choices for a given, fixed
orientation of P . We first describe the algorithm in the case when no two vertices
of P lie at the same height. At any one time, the portion of σ below and up
to a vertex vi of P has been constructed. P is sliced with a horizontal plane
through vi, and again sliced through the next vertex in the z-direction, vi+1.
See Figure 16. These two planes define a vertex-free band Bi. The algorithm
takes a parameter w indicating how many complete times σ should wind around

6
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Figure 14: A band between two hor-
izontal planes; bottom plane shown.
Both planes pass through vertices in
this example.

pi

pi+1

ρh
i

λh
i+1

Figure 15: Surface angles above and
below horizontal planes through pi
and pi+1.

Figure 16: The portion of σ between vi (9) and vi+1 (5). The green polygons
outline the intersection of P with parallel horizontal planes through vi and vi+1.
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Bi before connecting to vi+1. In the figure, w = 0, so the connection is as direct
as possible. In this instance, vivi+1 is an edge of P and could be followed, but
it is not slanting ccw (Section 2.1). Therefore σ spirals across several edges of
P before reaching vi+1. Note that, in general, σ cannot follow a geodesic as it
winds around the band, as the shape of a band would only allow that in special
circumstances..

The top and bottom vertices are handled specially. Because our goal is to
avoid overlap, and overlap usually occurs at these apexes when acute angles are
forced, the first segment from the bottom vertex v1, to v2, is selected to make
a nonacute turn to connect to v2. This can be seen clearly in Figure 1, where
a 90◦ turn is selected, and in other figures. I proved that such a nonacute turn
is always possible. Of course the turn at v2 to connect to v3 might be highly
acute, often leading to overlap (e.g., in Figure 11).

Because the algorithm progresses from the bottom vertex to the top without
look-ahead, it is possible that the details of the connection to the top vertex are
not identical to the details at the bottom vertex, even when P is symmetric.
This is again evident in Figure 1.

When P is oriented so that more than one vertex lies at a particular z-
height, it is necessary, by the definition of a spiral, for σ to cycle around the
slice polygon at that height until all the vertices are included, before angling off
to the next vertex vertically. This is evident for the dodecahedron (Figure 7),
and for all the Archimedian solid unfoldings in Section 4.

4 Archimedian

All 13 of the Archimedian solids have nonoverlapping spiral unfoldings. Six
unfoldings are shown in Figure 17, six more in Figure 18, and the most complex
13th, the great rhombicosidodecahedron, is shown in Figure 19. The σ used in
this last case has 452 corners; the polyhedron itself has 60 vertices.

As shown in [LDD+10], all the Platonic and Archimedian solids have Hamil-
tonian edge-unfoldings, and in general they can be chosen to be “S-shaped,”
visually not unlike the spiral unfoldings above. The exception is the great
rhombicosidodecahedron, whose Hamiltonian edge-unfolding leads to a rather
differently shaped planar polygon.

5 Overlapping spiral unfoldings

5.1 Random polyhedra

Despite the nonoverlapping spiral unfoldings of the Platonic and Archimedian
solids, avoiding overlap is actually rare. Figure 20 shows data from polyhedra
constructed as the convex hull of random points uniformly distributed on a
sphere. By the time P has 25 vertices, essentially no random polyhedron, in a
random orientation, lead to a nonoverlapping unfolding using the spiral cut-path
generated by the algorithm discussed in the previous section. The intuition for
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1
23

Truncated Tetrahedron

1

19

CubeOctahedron

1

65

Truncated Octahedron

1

34

Small
RhombiCubeOctahedron

1

99

Great
RhombiCubeOctahedron

Truncated Cube

1

64

Figure 17: Spiral unfoldings of six Archimedian solids.
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1
45

Snub Cube

1

48

IcosiDodecahedron

1

130

Truncated Dodecahedron

1

99

Truncated Icosahedron

1

136

Small
RhombiIcosiDodecahedron

1

207

SnubDodecahedron

Figure 18: Spiral unfoldings of six more Archimedian solids
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Figure 19: Great RhombIcosiDodecahedron.
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Figure 20: The percentage of overlapping spiral unfoldings for random polyhe-
dron with n vertices. Each point plotted is the mean of 50 random trials.
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why overlap is common can be seen in the nonoverlapping spiral unfolding of
the 60-vertex great rhombicosidodecahedron in Figure 19: with many vertices,
the spiral turns many times near the apex, and those must unfold to a precisely
nested, tightly wound spiral in the plane to avoid overlap.

Of course, this random data just suggests that overlap is common, not that
it cannot be avoided.

5.2 Polyhedra without nonoverlapping spiral unfoldings

Despite the rarity of nonoverlapping spiral unfoldings, it is not straightforward
to identify a particular polyhedron P that has no nonoverlapping spiral un-
folding, for two reasons: (1) For a given orientation of P , there are an infinite
number of spirals compatible with that orientation. (2) All orientations must
be blocked. Here I propose a P which almost certainly has no spiral unfolding,
but my argument for this falls short of a formal proof.

Define a hemiball H as the convex hull of a circle and a semicircle of equal
radii, as illustrated in Figure 21. Here the full (red) circle C lies in the xy-
plane, and the (green) semicircle C+ lies in the xz-plane. Let n be the number
of points equally spaced around C, with n/2 around C+. Figure 22 shows the
convex hull Hn. The lateral hull edges ab connect a(θ) on C and b(θ) on C+,

Figure 21: HemiBall rims. Figure 22: HemiBall Hn, n = 32.

where

a(θ) = (cos θ, sin θ, 0) , (1)

b(θ) = (cos θ, 0, | sin θ|) . (2)

Conjecture 1 For sufficiently large n, the hemiball Hn has no nonoverlapping
spiral unfoldings.

I now present evidence for this conjecture, for H = H16. There are two special
orientations of H. The first is when the flat base is horizontal; see Figure 23.
Then spiral unfoldings overlap near the top ofH, as in Figure 24. This illustrates
the logic of H: planes slicing through the rims cut highly non-circular bands,
which tend to lead to acute angles and overlapping unfoldings.

12



Figure 23: H oriented with (0, 0, 1)
vertical.

1

67

Figure 24: Overlapping unfolding.

A second special orientation, tilting H 90◦, is shown in Figure 25, which
leads to overlap at both ends: Figure 26.

For other orientations of H, either the top or the bottom (or both) plane
slices cut H in eccentric bands, which result in overlaps. A typical example
is shown in Figure 27. I have verified overlap occurs in hundreds of random
orientations of H, which of course only implies that overlap is common, not
necessary. I suggest a proof of necessity might be formulated around the follow-
ing approach.

Figure 28 illustrates the normal vectors to H in its standard position. Now
consider orienting H so that v is normal to the horizontal slicing planes. We
need only consider v in the northern hemisphere of the figure. If v lies within the
90◦ wedge containing the northpole, then these nearly horizontal slicing planes
will cut the upper rim C+ in a manner similar to that seen in Figure 23. In
particular, the top vertex will be unique. If v lies outside of that wedge, then
the nearly vertical slicing planes will cut the rim C, and the bottom vertex will
be unique. In either case, a rim is sliced at one end or the other, and such slices
will be elongated by design, leading to overlapping unfoldings.

I believe this argument could be formalized. Incidentally, it is easy to find a
nonoverlapping unzipping of the hemiball: see Figure 29.

Another candidate for a polyhedron with no nonoverlapping spiral unfold-
ings is a distorted dodecahedron, distorted so that no two pentagonal faces are
parallel. A flat doubly covered regular polygon with large n has just one orien-
tation whose spirals avoid overlap: that with the disk horizontal, in which case

13



Figure 25: H oriented so (1, 0, 0) is
vertical.

1

48

Figure 26: Overlapping unfolding.

1

198

Figure 27: Random spiral unfolding of H.
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Figure 28: Normal vectors to H faces (Figure 22). The single vector in the
southern hemisphere derives from the horizontal base.

Figure 29: A zipper path that unfolds the hemiball H.
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it unfolds to two connected regular polygons.

6 Polyhedra of Revolution

In this section we study a narrow class of convex polyhedra whose spiral unfold-
ings are easily understood. I believe this sheds light on the general case. The
class is polyhedra of revolution, formed as follows. Let C be a convex curve in
the yz-halfplane with x ≥ 0. Spin this curve around the z-axis, forming nspin
discrete copies. Then take the convex hull to form P .

Two examples for the same C are shown Figure 30. Note the faces of such

Figure 30: Polyhedra of revolution, with C shown, and nspin = 4 and 20. The
spiral cut-path σ is shown on the left polyhedron.

a P are trapezoids, but in the triangulated figure, each trapezoid is cut by a
diagonal. Let v be a vertex of C. The natural spiral cut-path σ we explore
circles around the horizontal regular polygon of nspin sides formed by each v,
following a trapezoid diagonal to the next ring upward.2

Typical spiral unfoldings are shown in Figure 31. Here we see overlap for
nspin ≤ 4, just barely nonoverlap for nspin = 6, and nonoverlap for all larger
nspin. The claim of this section is that this is the general situation:

Proposition 2 For any convex curve C, there is some3 nspin ≥ 2 such that the
spiral unfolding of the polyhedron of revolution determined by C and all ≥ nspin
does not overlap.

2If σ follows a vertical trapezoid edge rather than the coplanar diagonal, σ would constitute
a Hamiltonian edge-unfolding.

3 nspin = 2 produces a flat, doubly covered convex polygon, which is usually considered a
convex polyhedron in the context of unfolding.

16



1

40

1

1

28

1

124

1

nspin=4

nspin=6

nspin=20

overlap

no overlap

no overlap

Figure 31: Spiral unfoldings of the shape in Figure 30, for nspin = 4, 6, 20.
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We now argue for this proposition, somewhat informally. First, it helps to
imagine nspin →∞. Then σ follows horizontal circles around P , and the vertical
diagonal cuts join adjacent circles orthogonal to both.

Second, view adjacent bands as deriving from nested cones, as depicted in
Figure 32. Let β be the half-angle of a cone in R3, and let α be the total surface

Figure 32: Nested cones determined by adjacent bands.

angle at the cone apex, i.e., the angle of the wedge when the cone is cut open
along a generator and flattened to R2. Then α = 2π sinβ, which implies that
these angles grow and shrink together monotonically. Let B1 be the lower band
and B2 the upper band, sharing a circle of radius r. Then β1 < β2 and so
α1 < α2.

Let ρ be the planar layout curve with surface to the right, and λ the curve
with surface to the left. Each unfolded band B is bounded by ρ and λ, each
of which is an arc of a circle centered on the image of the apex of the cone
containing B.

Consider again two adjacent bands B1 and B2 sharing a horizontal circle
of σ. B1 is right of σ and B2 left of σ on P . B1 unfolds to a strip bounded
by circle arcs of radius r1 strictly larger than the radius r2. The shared seam
between B1 and B2 therefore unfolds to ρ1 and λ2 as illustrated in Figure 33.
The arcs ρ1 and λ2 share a common tangent at the orthogonal cuts to adjacent
bands, when nspin → ∞. The centers of the circle arcs are aligned so that c1
and c2 are collinear with that point of common tangency.

So now it is clear that each band unfolding sits inside an annulus, with each
annulus nested inside and tangent to its z-lower mate. Thus the bands cannot
intersect one another except where they join. Of course the same holds at each

18



B1

B2
r1

r2

c1

c2ρ1 λ2

Figure 33: Portion of a spiral unfolding with band circles illustrated (polyhedron
of revolution not shown). We must have r1 > r2, and ρ1 joining smoothly with
λ2, and so the B2 annulus is tangent to and nested inside the B1 annulus.
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“end” of any polyhedron of revolution P , with the nesting occurring to the other
side of the unfolding.

The only possible overlap occurs for small nspin, when two regular polygons
are separated near the unfolding of the apex of P , as we saw in Figure 31. But
for any apex curvature ω, regardless of how small, there is some nspin that avoids
overlap, as do all larger nspin values.

6.1 Relationship to arbitrary P .

For arbitrary P , the bands are not as circular, and do not necessarily lie on cones.
But one can see an analogous structure to spiral unfoldings: bands are unfolded
and attached, increasing in “radii” away from the apexes of P . The more vertices
of P , and the more circular each cross-section, the closer will a spiral unfolding
resemble an unfolding of a polyhedron of revolution. This incidentaly reinforces
the intuition of why nonoverlap is rare: even with polyhedra of revolution, the
nesting to avoid overlap is delicate.

6.2 Nonconvex Polyhedra of Revolution

We end this section with a curiosity: some spiral unfoldings of nonconvex poly-
hedra avoid overlap. Figure 34 shows a nonconvex polyhedron of revolution and
a nonoverlapping unfolding. But this cannot be pushed too far, as the right
overlapping unfolding demonstrates.

1

31

1

58

nspin=3 nspin=6

Figure 34: A peanut-shaped polyhedron of revolution, for two different nspin
values (sharing the same curve C).
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7 Conjecture

We mentioned in Section 1 that it was posed as an open question in [LDD+10]
whether or not every convex polyhedron has a nonoverlapping zipper unfolding.
The spiral unfoldings we explored here are a narrow class of zipper unfoldings,
and shed no direct light on the open problem. Rather than require a spiral to
pass through the vertices in vertical order, one could imagine loosening the defi-
nition to allow spiral-like paths that rely more on intrinsic surface features rather
than on an extrinsic vertical sorting. I have explored this direction enough to
know that some overlaps can be avoided with more general spirals. Nevertheless,
this effort has led me to conjecture that the answer to the Lubiw et al. open
problem is No: there are polyhedra whose every zipper unfolding overlaps.

I reach this conclusion through two hunches. First, although there are a
vast number of possible zipper unfoldings for polyhedra with many vertices n,
if the vertices are sprinkled uniformly but unorganized, spiral-like paths are the
only real options. Second, for polyhedra that are close to spheres with many
unorganized vertices, any spiral will overlap. So I suggest two similar candidates
for counterexamples: (1) P is the convex hull of a large number of random points
on a sphere; (2) P is geodesic dome, but with the vertices perturbed slightly to
break all symmetries.

Figure 35 shows the second example, and Figure 36 shows a spiral unfolding.

Figure 35: Geodesic dome with perturbed vertices.

The irregularity of the vertex positions causes significant overlap along many
turns of the spiral.
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Figure 36: Overlapping spiral unfolding of a geodesic dome.
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