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FIG. 1. Color online. Cartoon of the FFLO state showing
the nodes in the order parameter as horizontal planes where
we estimate the spin-polarization to be � 10% at 25 T in the
low temperature limit. The red arrows represent the net spin
polarization. Although the diagram is schematic, all of the
lengths are to scale; small boxes represent the unit cells of
κ - (BEDT-TTF)2Cu(NCS)2, yellow slabs represent the least
conducting layers of the crystal, and red rectangles represent
Josephson core-less vortices at about the right distance apart
in a 25 T field. Full height of the crystal is � 20 nm.

The second criteria is that the materials need to be suffi-
ciently electronically clean for a coherent superconduct-
ing wave function to persist over distances on the order
of the FFLO wave vector (corresponding to the distance
between the nodes in Fig. 1).

Quasi-2D layered organic superconductors should
therefore be perfect candidates for forming a FFLO state:
they have long electronic mean free paths, as shown by
large quantum oscillations [23] and they are highly two-
dimensional, so the vortices can be confined to the least
conducting layers [24]. As a consequence, the vortices
become Josephson coupled [25] and only weakly interact
with the superconducting layers [26]. Phase diagrams
suggesting the existence of a higher field superconduct-
ing phase in κ - (BEDT-TTF)2Cu(NCS)2 (Tc of 9.5 K)
and other superconductors have been established using
rf penetration depth[27], tunnel diode oscillator (TDO)
rf penetration depth [24, 28–30], resistivity[31], thermal
conductivity [32], heat capacity [33], torque magnetome-
try [31, 34], and NMR [35, 36], but the claimed location,
slope, and curvature of the phase boundary between the
two superconducting states varies dramatically.

In this paper, we report results of magnetic-field-
dependent heat capacity and magnetocaloric effect mea-
surements as a function of field strength, direction, and
temperature between 0.15 K and 4.2 K. The heat capac-
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FIG. 2. Color online. Magnetic-field induced
change (solid-up, dotted-down) in the specific heat of
κ-(BEDT-TTF)

2
Cu(NCS)

2
(scaled by temperature) for

magnetic field parallel to the superconducting planes (θ = 0).
For ease of comparison, ∆Cp/T is set equal to zero in
the normal, non-superconducting state (H > Hc2). We
observe a first order phase transition between two different
superconducting states at H � Hp = 20.7 T, followed by a
transition to the normal state at a temperature dependent
field Hc2(T ). Arrows represent Hc2 for 0.18 K and 2.03 K.

ity measurements allow us to discern the locations of the
phase boundaries and determine the order of the transi-
tions. The magnetocaloric effect measurements allow us
to infer whether a phase is paramagnetic, diamagnetic,
or fully polarized, and, for first order transitions, observe
the sign of the change in entropy at the transition.
To carry out these measurements, we have made use

of a recently developed rotatable calorimeter [18] de-
signed for use in the portable dilution refrigerator and
32 mm bore high field resistive magnets at the National
High Magnetic Field Laboratory dc field facility. The
calorimeter fits into a top-loading single-axis probe [37]
capable of 360 degree rotation at base temperature with
a resolution of 0.02 degrees. The sample is weakly ther-
mally linked to a temperature controlled platform inside
the vacuum calorimeter, which is in turn weakly linked
to the cryogenic mixture. When inserted into a dilution
refrigerator, measurements can be made from 100 mK
to 10 K during a single experiment. The heat capac-
ity was measured as a function of magnetic field for a
series of fixed temperatures and field orientations using
an ac calorimetric method [38], after corrections for the
magnetic-field dependence of the resistive thermometers
[39]. The sample layers were oriented parallel to the ap-
plied magnetic field to within 0.1 degrees through the
calorimetric determination of Hc2(θ).
Figure 2 shows the measured magnetic-field-dependent

heat capacity between 15 and 32 T in the low tempera-
ture limit for an applied field parallel to the conducting
layers. The results reveal the presence of a hysteretic, and
therefore first order phase transition between two differ-
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FIG. 3. Color online. Evolution of the heat capacity sweeps
as a function of angle at 0.3 K, with plane parallel θ = 0
orientation shown in black at the bottom. The bump at 21
T marking the transition at Hp at 0◦ is gone by 0.7◦ and
is replaced by the beginning of the Hc2 transition by 1.6◦,
consistent with expectation for 2D FFLO superconductivity.

ent superconducting states at H ≈ Hp = 20.7 T followed
by a phase transition to the normal, non-superconducting
state at a temperature dependent field Hc2(T ). In addi-
tion, we note that this transition to a high field supercon-
ducting state is strongly angle dependent, disappearing
for angles θ ≥ 1◦ as shown in Fig. 3. The rapid disap-
pearance of the transition at HP as the sample is rotated
away from the field parallel orientation is as expected for
an FFLO transition in a 2D superconductor, since such a
phase would readily be destroyed by spin-orbit scattering
once the sample is tilted enough for Abrikosov vortices
to begin to penetrate the superconducting planes.

The overall increase in specific heat with increasing ap-
plied field is expected because the magnetic field is break-
ing Cooper pairs (and when in the FFLO phase, creating
paramagnetic spin domains), thereby increasing the num-
ber of quasiparticles that can carry entropy. The steep
upward curvature to the field dependence of Cp(H) that
arises at high fields within the superconducting state is
characteristic of strongly Pauli-paramagnetic supercon-
ducting materials [40, 41]. At higher temperatures we
observe a broad peak in the specific heat Cp(H)|T due
to the transition from the high-field superconducting to
normal state at Hc2(T ). At lower temperatures, how-
ever, the peak diminishes in height, disappearing by 0.3
K. For consistency, we therefore take Hc2(T ) to corre-
spond to the inflection point between the normal and
superconducting state, as shown by arrows in Fig. 2.

The superconducting phase diagram thus determined
from our calorimetric measurements is shown in Fig. 4.
For comparison, we also include data points from ear-
lier NMR [35, 36], rf penetration depth [24], and specific

FIG. 4. Color online. Phase diagram of κ-(BEDT-
TTF)2Cu(NCS)2 for parallel magnetic field (θ = 0). Solid
black circles represent our calorimetric observations of the
phase transitions between the lower and higher field super-
conducting phases at Hp, and squares, the normal and su-
perconducting state at Hc2(T ). Points from an earlier calori-
metric determination of Hc2(T ) [33] are shown as open blue
squares. Also included are supporting determinations of both
the Hc2 and Hp phase boundaries by means of rf penetration
measurements (green) [24] and NMR measurements [35, 36]
(open purple and red symbols, respectively).

heat measurements [33]. Our Hc2(T ) phase boundary is
in agreement with previous measurements. The location
and curvature of our phase boundary between the low-
field superconducting states and suggested FFLO state at
HP is in good experimental agreement with our earlier
tunnel diode oscillator (TDO) rf penetration measure-
ments [24] and NMR [35, 36] but in strong disagreement
with previous penetration depth [27] and calorimetric [33]
claims for observation of an FFLO phase boundary.
The size of the specific heat jump ∆C/T we observe at

Hc2 is governed by the magnetic Ehrenfest relation [42]
for a second order phase boundary:

(

∆C

T

)

=

(

∂∆M

∂H

)(

∂Hc2

∂T

)2

. (1)

For traditional superconductors, the first term in this
product remains finite, but the second term — the slope
of the Hc2(T ) phase boundary — starts high, then flat-
tens out as T → 0 [43], leading to a decrease in ∆C/T
as T → 0. In contrast, in the FFLO state, the slope
of Hc2(T ) remains high [44], while the first term in the
product approaches zero as T → 0 [35, 45], leading to the
observed change in the field position of the specific heat
jump and the absence of a discernible jump by 0.3 K.
When we transform our field sweep measurements at

fixed T into temperature sweeps at fixed field, we find
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that in the region of overlap (T ≥ 1.8 K), the field de-
pendence of our data is self consistent with an earlier
report by Lortz et. al [33], including the broad peak be-
low Hc2. The weak temperature dependence of the first
order phase line we observe at HP means however, that
this transition would not be expected to be resolved in
their temperature sweeps of Cp(T ) at constant magnetic
field[33]. In contrast, their temperature sweep measure-
ments naturally yield sharper peaks at Hc2(T ) than field
sweeps as T → Tc.
We now turn to our swept-field magnetocaloric mea-

surements across this low field to high field supercon-
ducting phase boundary. Magnetocaloric measurements
were made in the field parallel θ = 0 orientation. In
these measurements, as with the specific heat measure-
ments, the sample is thermally linked to a temperature
controlled platform while the magnetic field is swept up
or down, but in contrast to the specific heat measure-
ments, no heating is provided by the sample heater. The
measured temperature difference ∆T between the sam-
ple and the platform depends on the field sweep rate Ḣ,
the thermal conductance κ of the wires linking the sam-
ple and platform, and the temperature dependence of the
magnetization (∂M/∂T )H [46]:

∆T = −

[

T

κ

(

∂M

∂T

)

H

+ τ
d∆T

dH

]

Ḣ (2)

where τ = C/κ is the sample to platform relaxation time.
For a strongly temperature-dependent paramagnetic

phase (∂M/∂T < 0) and sufficiently high sweep rate, the
up sweep will therefore be warmer than the down sweep.
At a first order transition, additional contributions to the
magnetocaloric effect arise from (1) the release of latent
heat at a first-order transition upon leaving a higher-
entropy phase, (2) the absorption of latent heat upon en-
tering a higher-entropy phase, and (3) the release of heat
in both sweep directions due to irreversibility, reflecting
the system’s tendency to briefly remain at the boundary
in what becomes a metastable state before jumping to
the lower-energy thermodynamically preferred state.
The expected change in entropy at the transition de-

pends on the nature of the high field phase. In the FFLO
state, the SC gap function is inhomogeneous (being spa-
tially modulated with a wave length 2π/q); paramagnetic
quasiparticles appear periodically at the nodes in the gap
function [14]. These additional quasiparticles lead to an
increase in entropy upon crossing the phase boundary at
Hp for up sweeps into a FFLO phase, and a correspond-
ing decrease in entropy at Hp for down sweeps [14, 47].
In contrast, spin-density wave ordering within a homo-
geneous superconducting phase leads to a reduction in
the number of degrees of freedom and a corresponding
decrease in entropy for the high field phase [14].
As seen in Fig. 5, we find a positive difference in sam-

ple temperature ∆Tud = ∆Tup − ∆Tdown emerging as
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FIG. 5. Color online. Magnetocaloric effect measurements at
200 mK. The temperature difference ∆T between the up and
down sweeps indicates that the system has become paramag-
netic (yellow shading). On down sweeps (blue line) there is a
brief increase in the temperature of the sample due to release
of latent heat from the sample at Hp. On up sweeps (red
line) there is a corresponding decrease in the temperature of
the sample due to absorption of latent heat by the sample
at Hp. The results indicate the high field state is higher en-
tropy than the low field state, as expected for high field FFLO
superconductivity.

H → HP , consistent with the emergence of paramagnetic
spins. The strong maximum in ∆Tud within the param-
agnetic high field state is possibly due to the remarkably
strong temperature dependence of the electronic spin po-
larization (and spin relaxation rate) observed in NMR at
these fields [35, 36]. At a still higher field, ∆Tud → 0
as H → Hc2 since ∂M/∂T → 0 due to the strong polar-
ization of the high field, low temperature metallic state.
Superimposed on that overall positive temperature dif-
ference ∆Tud we also observe the release of latent heat
(plus irreversibility heating) at the Hp boundary on the
down sweep its absorption (less irreversibility heating) on
the up sweep, as expected for the high field FFLO state.
Measurements on a second sample gave the same results.

This directly observed increase in entropy upon enter-
ing the high field superconducting state implies, by the
magnetic Clausius-Clapeyron equation, that the phase
boundary between the two superconducting states must
be at least weakly negatively temperature dependent.
This result is in agreement with the FFLO phase dia-
gram presented here in addition to theoretical[14, 43] and
experimental[48] expectation.

We have shown (1) that a bulk thermodynamic first-
order phase transition occurs within the superconduct-
ing state of the molecular superconductor κ-(BEDT-
TTF)2Cu(NCS)2 (2) that this transition occurs at the
paramagnetic limit Hp for traditional superconductivity
in this material (3) that this phase transition occurs only



5

when vortices are excluded from the 2D superconducting
planes (4) that this high-field superconducting state is
paramagnetic, and (5) that this high-field superconduct-
ing state is higher entropy, even though higher magnetic
fields usually decrease entropy. Taken together, these
results provide the first thermodynamic case for the exis-
tence of an inhomogeneous FFLO superconducting phase
with paramagnetic spin domains for H ≥ Hp in highly-
anisotropic 2D molecular superconductors, such as κ -
(BEDT-TTF)2Cu(NCS)2.
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