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Abstract

We consider the Set Once Strip Cover problem, in which n wireless sensors are deployed
over a one-dimensional region. Each sensor has a fixed battery that drains in inverse proportion
to a radius that can be set just once, but activated at any time. The problem is to find an
assignment of radii and activation times that maximizes the length of time during which the
entire region is covered. We show that this problem is NP-hard and that RoundRobin, the
algorithm in which the sensors take turns covering the entire region, has a tight approximation
guarantee of 3

2 . Moreover, we show that the more general class of duty cycle algorithms, in
which groups of sensors take turns covering the entire region, can do no better. We present
similar results for the more general Strip Cover problem, in which each radius may be set
finitely-many times. Finally, we give an O(n2 log n)-time optimization algorithm for the related
Set Radius Strip Cover problem, in which sensors must be activated immediately.

Keywords: wireless sensor networks, strip cover, barrier coverage, network lifetime.
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1 Introduction

Suppose that n sensors are deployed over a one-dimensional region that they are to cover with
a wireless network. Each sensor is equipped with a finite battery charge that drains in inverse
proportion to the sensing radius that is assigned to it, and each sensor can be activated only once.
In the Set Once Strip Cover (OnceSC) problem, the goal is to find an assignment of radii
and activation times that maximizes the lifetime of the network, namely the length of time during
which the entire region is covered.

Formally, we are given as input the locations x ∈ ([0, 1] ∩ Q)n and battery charges b ∈ Qn
+ for

each of n sensors (where Q+ = Q ∩ [0,∞)). While we cannot move the sensors, we do have the
ability to set the sensing radius ρi ∈ [0, 1] ∩Q of each sensor and the time τi ∈ Q+ when it should
become active. Since each sensor’s battery drains in inverse proportion to the radius we set (but
cannot subsequently change), each sensor covers the region [xi − ρi, xi + ρi] for bi/ρi time units.
Our task is to devise an algorithm that finds a schedule S = (ρ, τ) for any input (x, b), such that
[0, 1] is completely covered for as long as possible.

Motivation. Scheduling problems of this ilk arise in many applications, particularly when the
goal is barrier coverage (see [9, 22] for surveys, or [14] for motivation). Suppose that we have a
highway, supply line, or fence in territory that is either hostile or difficult to navigate. While we
want to monitor activity along this line, conditions on the ground make it impossible to systemat-
ically place wireless sensors at specific locations. However, it is feasible and inexpensive to deploy
adjustable range sensors along this line by, say, dropping them from an airplane flying overhead
(e.g. [8, 19, 21]). Once deployed, the sensors send us their location via GPS, and we wish to send
a single radius-time pair to each sensor as an assignment. Replacing the battery in any sensor
is infeasible. How do we construct an assignment that will keep this vital supply line completely
monitored for as long as possible?

Models. While the focus of this paper is the OnceSC problem, we touch upon three closely
related problems. In each problem the location and battery of each sensor are fixed, and a solution
can be viewed as a finite set of radius-time pairs. In OnceSC, both the radii and the activation
times are variable, but can be set only once. In the more general Strip Cover problem, the
radius and activation time of each sensor can be set finitely many times. On the other hand,
if the radius of each sensor is fixed and given as part of the input, then we call the problem of
assigning an activation time to each sensor so as to maximize network lifetime Set Time Strip
Cover (TimeSC). Set Radius Strip Cover (RadSC) is another variant of OnceSC in which
all of the sensors are scheduled to activate immediately, and the problem is to find the optimal
radial assignment. Figure 1 summarizes the important differences between related problems and
illustrates their relationship to one another.

Related work. TimeSC, which is known as Restricted Strip Covering, was shown to be
NP-hard by Buchsbaum et al. [7], who also gave an O(log log log n)-approximation algorithm. Later,
a constant factor approximation algorithm was discovered by Gibson and Varadarajan [13].

Close variants of RadSC have been the subject of previous work. Whereas RadSC requires
area coverage, Peleg and Lev-Tov [15] studied target coverage. In this problem the input is a set of
n sensors and a finite set of m points on the line that are to be covered, and the goal is to find the
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Strip Cover:

radii & activation times

can be set finitely many times

Set Once Strip Cover (OnceSC):

radii & activation times

can be set only once

Set Time Strip Cover (TimeSC, RSC):

radii are fixed

activation times are variable

Set Radius Strip Cover (RadSC):

radii can be set only once

activation is immediate

Figure 1: Relationship of Problem Variants.

radial assignments with the minimum sum of radii. They used dynamic programming to devise a
polynomial time alorithm. Bar-Noy et al. [5] improved the running time to O(n + m). Recently,
Bar-Noy et al. [6] considered an extension of RadSC in which sensors are mobile.

Strip Cover was first considered by Bar-Noy and Baumer [3], who gave a 3
2 lower bound on

the performance of RoundRobin, the algorithm in which the sensors take turns covering the entire
region (see Observation 2), but were only able to show a corresponding upper bound of 1.82. The
similar Connected Range Assignment (CRA) problem, in which radii are assigned to points
in the plane in order to obtain a connected disk graph, was studied by Chambers et al. [12]. They
showed that the best one circle solution to CRA also yields a 3

2 -approximation guarantee, and in
fact, the instance that produces their lower bound is simply a translation of the instance used in
Observation 2.

The notion of duty cycling as a mean to maximize network lifetime was also considered in the
literature of discrete geometry. In this context, maximizing the number of covers t serves as a
proxy for maximizing the actual network lifetime. Pach [16] began the study of decomposability
of multiple coverings. Pach and Tóth [17] showed that a t-fold cover of translates of a centrally-
symmetric open convex polygon can be decomposed into Ω(

√
t) covers. This result was later

improved to the optimal Ω(t) covers by Aloupis et al. [2], while Gibson and Varadarajan [13]
showed the same result without the centrally-symmetric restriction.

Motivated by prior invocations of duty cycling [20, 18, 1, 8, 10, 11], Bar-Noy et al. [4] studied a
duty cycle variant of OnceSC with unit batteries in which sensors must be grouped into shifts of
size at most k that take turns covering [0, 1]. (RoundRobin is the only possible algorithm when
k = 1.) They presented a polynomial-time algorithm for k = 2 and showed that the approximation
ratio of this algorithm is 35

24 for k > 2. It was also shown that its approximation ratio is at least
15
11 , for k ≥ 4, and 6

5 , for k = 3. A fault-tolerance model, in which smaller shifts are more robust,
was also proposed.

Our results. We introduce the Set Once model that corresponds to the case where the scheduler
does not have the ability to vary the sensor’s radius once it has been activated. We show that
OnceSC and Strip Cover are NP-hard (Section 3) and that RoundRobin is a 3

2 -approximation
algorithm for both OnceSC and Strip Cover (Section 4). This closes a gap between the best
previously known lower and upper bounds (3

2 and 1.82, resp.) on the performance of this algorithm.
Our analysis of RoundRobin is based on the following approach: We slice an optimal schedule into
temporal (horizontal) strips in which the set of active sensors is fixed (see Figure 4). For each such
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strip we construct an instance with unit batteries and compare the performance of RoundRobin to
the RadSC optimum of this instance. In Section 5 we show that the class of duty cycle algorithms
cannot improve on this 3

2 guarantee. In Section 6, we provide an O(n2 log n)-time exact optimization
algorithm for RadSC. We note that the same approach would work for the case where, for every
sensor i, the ith battery is drained in inverse proportion to ραi , for some α > 0.

2 Preliminaries

Problems. The Set Once Strip Cover (abbreviated OnceSC) is defined as follows. Let

U
4
= [0, 1] be the interval that we wish to cover. Given is a vector x = (x1, . . . , xn) ∈ ([0, 1] ∩ Q)n

of n sensor locations, and a corresponding vector b = (b1, . . . , bn) ∈ Qn
+ of battery charges. We

assume that xi ≤ xi+1 for every i ∈ {1, . . . , n − 1}. We sometimes abuse notation by treating
x as a set. An instance of the problem thus consists of a pair I = (x, b), and a solution is an
assignment of radii and activation times to sensors. More specifically a solution (or schedule) is a
pair S = (ρ, τ) ∈ Qn

+ × Qn
+,1 where ρi is the radius of sensor i and τi is the activation time of i.

Since the radius of each sensor cannot be reset, this means that sensor i becomes active at time
τi, covers the range [xi − ρi, xi + ρi] for bi/ρi time units, and then becomes inactive since it has
exhausted its entire battery.

Any schedule can be visualized by a space-time diagram in which each coverage assignment can
be represented by a rectangle. It is customary in such diagrams to view the sensor locations as
forming the horizontal axis, with time extending upwards vertically. In this case, the coverage of a
sensor located at xi and assigned the radius ρi beginning at time τi is depicted by a rectangle with
lower-left corner (xi − ρi, τi) and upper-right corner (xi + ρi, τi + bi/ρi). Let the set of all points
contained in this rectangle be denoted as Rect(ρi, τi). A point (u, t) in space-time is covered by a
schedule (ρ, τ) if (u, t) ∈

⋃
iRect(ρi, τi). The lifetime of the network in a solution S = (ρ, τ) is the

maximum value T such that every point (u, t) ∈ [0, 1] × [0, T ] is covered. Graphical depictions of
two schedules are shown below in Figure 2.

In OnceSC the goal is to find a schedule S = (ρ, τ) that maximizes the lifetime T . Given an
instance I = (x, b), the optimal lifetime is denoted by Opt(x, b). (We sometimes use Opt, when
the instance is clear from the context.)

The Set Radius Strip Cover (RadSC) problem is a variant of OnceSC in which τi = 0,
for every i. Hence, a solution is simply a radial assignment ρ. Set Time Strip Cover (TimeSC)
is another variant in which the radii are given in the input, and a solution is an assignment of
activation times to sensors.

Strip Cover is a generalization of OnceSC in which a sensor’s radius may be changed finitely
many times. In this case a solution is a vector of piece-wise constant functions ρ(t), where ρi(t)
is the sensing radius of sensor i at time t. The segment [0, 1] is covered at time t, if [0, 1] ⊆⋃
i[xi − ρi(t), xi + ρi(t)]. The solution achieves a lifetime of T , if [0, 1] is covered for all t ∈ [0, T ],

and if
∫∞

0 ρi(t) dt ≤ bi, for every i.

Maximum lifetime. The best possible lifetime of an instance (x, b) is 2
∑

i bi. We state this
formally for OnceSC, but the same holds for the other variants of the problem.

Observation 1. The lifetime of a OnceSC instance (x, b) is at most 2
∑

i bi.

1If S ∈ Rn
+ × Rn

+, our upper bound on the approximation ratio of RoundRobin would be 3
2
+ ε, for any ε > 0.
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Figure 2: RoundRobin vs. Opt with x = (1
4 ,

3
4) and b = (1, 1). The sensors are indicated by

(red) dots. Each of the (blue) rectangles represents the active coverage region for one sensor. The
dashed gray arrow helps to clarify which sensor is active at a particular point in time.

Proof. Consider an optimal solution (ρ, τ) for (x, b) with lifetime T . A sensor i covers an interval
of length 2ρi for bi

ρi
time. The lifetime T of the network is at most the total area of space-time

covered by the sensors, which is at most
∑

i 2ρi · bi/ρi.

Round Robin. We focus on a simple algorithm, we call RoundRobin, which forces the sensors

to take turns covering [0, 1], namely it assigns, for every i, ρi = ri
4
= max{xi, 1 − xi} and τi =∑i−1

j=1 bj/ρj . The lifetime of RoundRobin is thus

RR(x, b)
4
=

n∑
i=i

bi
ri
.

Notice that Observation 1 implies an upper bound of 2 on the approximation ratio of RoundRobin,
since ri ≤ 1, for every i. A lower bound of 3

2 on the approximation guarantee of RoundRobin was
given in [3] using the two sensor instance x = (1

4 ,
3
4), b = (1, 1). The relevant schedules are depicted

graphically in Figure 2.

Observation 2 ([3]). The approximation ratio of RoundRobin is at least 3
2 .

Given an instance (x, b) of OnceSC, let B
4
=
∑

i bi be the total battery charge of the system
and r =

∑
i
bi
B · ri be the average of the ri’s, weighted by their respective battery charge. We define

the following lower bound on RR(x, b):

RR′(x, b)
4
=
B

r
.

Lemma 3. RR′(x, b) ≤ RR(x, b), for every OnceSC instance (x, b).

Proof. We have that

RR(x, b) =

n∑
i=1

bi
ri

=

n∑
i=1

b2i
biri
≥

(
∑n

i=1 bi)
2∑n

i=1 biri
=

∑n
i=1 bi
r

= RR′(x, b) ,
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Figure 3: Proof of NP-hardness. Y = {1, 2, 3, 4} is a given instance of Partition, and (x, b) =(
(1

6 ,
1
2 , . . . ,

1
2 ,

5
6), (5, 1, 2, 3, 4, 5)

)
is the translated OnceSC instance.

where the inequality is due to the following implication of the Cauchy-Schwarz Inequality:
∑

j

c2j
dj
≥

(
∑

j cj)2∑
j dj

, for any positive c, d ∈ Rn.

3 Hardness Results

In this section we show that OnceSC and Strip Cover are NP-hard. This is done using a
reduction from Partition.

Theorem 1. OnceSC is NP-hard.

Proof. Let y = {y1, . . . , yn} be a given instance of Partition, and define β = 1
2

∑n
i=1 yi. We

create an instance of OnceSC with n + 2 sensors, where the n sensors are located at 1
2 , and the

two remaining sensors are located at 1
6 and at 5

6 . Sensor i, for 2 ≤ i ≤ n+ 1, has a battery charge
bi = yi−1, while b1 = bn+2 = β. That is, the instance of OnceSC consists of sensor locations
x = (1

6 ,
1
2 , . . . ,

1
2︸ ︷︷ ︸

n

, 5
6) and batteries b = (β, y1, . . . , yn, β). We show that y ∈ Partition if and only if

the maximum possible lifetime of 8β is achievable for the OnceSC instance.
First, suppose y ∈ Partition, hence there exists a subset I ⊆ {1, . . . , n}, such that

∑
i∈I yi =∑

i 6∈I yi = β. Schedule the sensors that correspond to I to iteratively cover the region [1
3 ,

2
3 ]. Since

all of these sensors are located at 1
2 , this requires that each sensor’s radius be set to 1

6 , i.e. ρi+1 = 1
6 ,

for every i ∈ I. Since the sum of their batteries is β, this region can be covered for exactly 6β
time units. With the help of the additional sensors located at 1

6 and 5
6 , whose radii are also set

to ρ1 = ρn+2 = 1
6 , the sensors that correspond to I can thus cover [0, 1] for 6β time units (see

Figure 3 for an example). Next, by assigning ρi+1 = 1
2 , for every i 6∈ I, the sensors that correspond

to {1, . . . , n} \ I can cover [0, 1] for an additional 2β time units. Thus, the total lifetime is 8β.
Now suppose that for such a OnceSC instance, the lifetime of 8β is achievable. Since the

maximum possible lifetime is achievable, no coverage can be wasted in the optimal schedule. In
this case the radii of the sensors at 1

6 and 5
6 must be exactly 1

6 , since otherwise, they would either
not reach the endpoints {0, 1}, or extend beyond them. Moreover, due the fact that all of the
other sensors are located at 1

2 , and their coverage is thus symmetric with respect to 1
2 , it cannot
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be the case that sensor 1 and sensor n+ 2 are active at different times. Thus, the solution requires
a partition of the sensors located at 1

2 into two groups: the first of which must work alongside
sensors 1 and n + 2 with a radius of 1

6 and a combined lifetime of 6β; and the second of which
must implement RoundRobin for a lifetime of 2β. The sensor partition induces a solution to the
Partition instance.

A similar approach is used for Strip Cover.

Theorem 2. Strip Cover is NP-hard.

Proof. We use the reduction that was used in the proof of Theorem 1. In this proof it was also
shown that if y ∈ Partition, then a set once schedule with a lifetime of 8β is achievable. It
remains to show that if a lifetime of 8β is achievable, then y ∈ Partition.

Consider a schedule that achieves a lifetime of 8β. Recall that this is an optimal schedule, and
thus no coverage can be wasted. Since the radii can change a finite number of times, such a schedule
can be split into temporal (horizontal) strips in which the radii remain unchanged. Consider such
a strip in which sensor 1 participates in the cover. The radius of sensor 1 in such a strip must be
exactly 1

6 , since otherwise it would not reach the barrier end-point or extend beyond it. Since other
sensors are located at 1

2 , it must be that sensor n+ 2 is active in this strip with a radius of 1
6 .

Change the order of the strips, such that all strips in which sensors 1 and n + 2 are active
are placed first. In the resulting schedule sensors 1 and n + 2 are set once. Moreover, due to the
optimality of the schedule, it partitions the rest of the sensors into two subsets: sensors that work
alongside sensors 1 and n+ 2 with a radius of 1

6 , and the sensors that do not. The rest of the proof
is similar to the proof of Theorem 1.

4 Round Robin

We showed in Section 3 that OnceSC and Strip Cover are NP-hard, so here we turn our attention
to approximation algorithms. While RoundRobin is among the simplest possible algorithms (note
that its running time is exactly n), the precise value of its approximation ratio is not obvious
(although it is not hard to see that 2 is an upper bound). In [3] an upper bound of 1.82 and a lower
bound of 3

2 were shown. In this section, we show that the approximation ratio of RoundRobin is
exactly 3

2 . The structure of the proof is as follows:

• In Section 4.1 we start with an optimal schedule S, and cut it into disjoint time intervals,
or strips, such that a fixed set of sensors is active throughout each time interval. Each
strip induces a RadSC instance Ij and a corresponding solution Sj . Given a strip Ij and
a schedule Sj that has a lifetime of Tj , we remove redundant sensors and decrease radii of
extreme sensors while preserving the strip lifetime Tj . (We explain why in the third bullet.)
The new instance and radii are denoted by Îj and ρ̂j . We note that the RoundRobin lifetime
may only decrease, namely RR(Îj) ≤ RR(Ij).

• Next in Section 4.2 we show that for any such pair of a strip Îj and a radii vector ρ̂j , there
exists a uniform-battery instance I ′j and a radii vector σj with the same lifetime Tj . In I ′j
each sensor is represented by a set of sensors that depend on the size of his battery. We make
sure that each original sensor is represented by at least three new sensors. (Again, this is
explained in the third bullet.) Here we show that RR′(I ′j) ≤ RR′(Îj). We note that I ′j may
contain sensors outside [0, 1].

6



• In Section 4.3 we prove a lower bound on the performance of RoundRobin on such uniform
battery instances. First, we show that it is enough to consider unit batteries. Then, we
construct a unit battery instance I ′′j by “stretching” (the unit battery version of) I ′j such that

Opt0(I ′′j ) = Opt0(I ′j) and RR′(I ′′j ) ≤ RR′(I ′j) and show that RR′(I ′′j ) ≥ 2
3Opt0(I ′′j ). The

stretching operation is based on increasing gaps between sensors such that all gaps become
the original maximum gap within [0, 1]. Hence, we need to make sure that the gaps outside
[0, 1] are not larger than the maximum gap within [0, 1]. This is achieved by decreasing the
radii of extreme (original) sensors and by representing each original sensor by at least three
new uniform sensor.

• By combining these results, we prove in Section 4.4 that RR(x, b) ≥ 2
3Opt(x, b).

4.1 Cutting the Schedule into Strips

Given an instance I = (x, b), and a solution S = (ρ, τ) with lifetime T = Opt(x, b), let Ω be the
set of times until T in which a sensor was turned on or off, namely Ω =

⋃
i{τi, τi + bi/ρi} ∩ [0, T ].

Let Ω = {0 = ω0, . . . , ω` = T}, where ωj < ωj+1, for every j. Observe that ωj ∈ Q+, for every j.
Next, we partition the time interval [0, T ] into the sub-intervals [ωj , ωj+1], for every j ∈

{0, . . . , `− 1}, and we define a new instance for every sub-interval. For every j ∈ {0, . . . , `− 1}, let
xj ⊆ x be the set of sensors that participate in covering [0, 1] during the jth sub-interval of time,
i.e., xj = {xi : [ωj , ωj+1] ⊆ [τi, τi + bi/ρi]}. Also, let Tj = ωj+1 − ωj , and let bji be the energy that

was consumed by sensor i during the jth sub-interval, i.e., bji = ρi · Tj . Observe that bji ∈ Q+, for
every i. Also, observe that Ij = (xj , bj) can be seen as a valid RadSC instance, for which ρj , where

ρji = ρi for every sensor i such that xi ∈ xj , is a solution that achieves a lifetime of exactly Tj .
We further modify the battery charges bj and the radii ρj as follows:

• Iteratively remove redundant sensors: starting with i = 1, remove sensor i from the instance
if the interval [0, 1] remains covered during [ωj , ωj+1] without i.

• Decrease the batteries and the radii of the left-most and the right-most sensors as much as
possible.

The resulting instance and schedule are denoted by Îj = (x̂j , b̂j) and ρ̂j . Figure 4 provides an
illustration of this procedure.

Observation 4. Îj = (x̂j , b̂j) and ρ̂j satisfy the following:

1. Let sensors 1 and m be the leftmost and rightmost sensors in x̂j. Then,

• either ρ̂j1 = x̂j1 or the interval [0, x̂j1 + ρ̂j1) is only covered by sensor 1.

• either ρ̂jm = 1− x̂jm or the interval (x̂jm − ρ̂jm, 1] is only covered by sensor m.

2. b̂j , ρ̂j ∈ Qn
+.

For now, it is important to note that RR(x̂j , b̂j) =
∑

xi∈x̂j
b̂ji
ri
≤ RR(xj , bj) is the RoundRobin

lifetime of the jth strip, which can also be seen as a specific RadSC instance Ij with the properties
outlined above. Also note that while S is an optimal solution to I, it is not necessarily the case
that ρ̂j (with lifetime Tj) correspond to an optimal solution to Îj .

7
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Figure 4: Cutting an optimal schedule into strips. Note that coverage overlaps may occur in both
the horizontal and vertical directions in the optimal schedule, but only horizontally in a strip. At
right, the second strip is shown. Note that in the third strip (not shown), the sensor x2 is redundant
(since x3 covers the interval by itself) and will be removed.

4.2 Reduction to Set Radius Strip Cover with Uniform Batteries

Given the RadSC instance Îj = (x̂j , b̂j) and a solution ρ̂j , we construct an uniform-size battery
instance I ′j = (yj , (βj)n), where βj ∈ Q, and a RadSC solution σj , such that the lifetime of σj is
Tj .

The instance I ′j is constructed as follows. First, let βj be small enough such that b̂j/βj ∈ Nm

and b̂ji/β
j ≥ 3, for every i such that x̂ji ∈ x̂j . We replace each sensor i, such that x̂ji ∈ x̂j , with

b̂ji/β
j sensors with battery βj whose average location is x̂i. To do this, we divide the interval

[x̂ji − ρ̂
j
i , x̂

j
i + ρ̂ji ] into b̂ji/β

j equal sub-intervals, and place a unit battery sensor in the middle of
each sub-interval. These new uniform battery sensors are called the children of sensor i. Observe
that child sensors may be placed outside [0, 1], namely to the left of 0 or to the right of 1. Also,
observe that

∑
k:k child of i β

j = b̂ji . The solution σj is defined as follows. For any child k of a sensor

i in Îj , we set σjk = ρ̂ji/(b̂
j
i/β

j). An example is shown in Figure 5.

Lemma 5. The lifetime of σj is Tj.

Proof. First, the b̂ji/β
j children of sensor i in Îj cover the interval [x̂ji − ρ̂

j
i , x̂

j
i + ρ̂ji ]. Also, a child

k of i survives βj/σjk = b̂ji/ρ̂
j
i = Tj time units.

Next, we prove that the lower bound on the performance of RoundRobin may only decrease.

Lemma 6. RR′(yj , (βj)n) ≤ RR′(x̂j , b̂j).

Proof. Let pj be the RoundRobin radii of yj . Observe that if x̂ji ≤
1
2 , it follows that∑

k:k child of i

pjk =
∑

k:k child of i

max
{
yjk, 1− y

j
k

}
≥

∑
k:k child of i

(1− yjk) = b̂ji/β
j · (1− x̂ji ) = b̂ji/β

j · rji ,

where the inequality stems from the possibility that a child of i may be located to the right of 1
2 ,

and following equality is due to an averaging argument. By similar reasoning, if x̂ji ≥
1
2 , we have

that ∑
k:k child of i

pjk =
∑

k:k child of i

max
{
yjk, 1− y

j
k

}
≥

∑
k:k child of i

yjk = b̂ji/β
j · x̂ji = b̂ji/β

j · rji .

8
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Figure 5: Reduction of a non-uniform battery strip Ij to a uniform battery instance I ′j : At the top,

Ij =
(
(1

4 ,
19
24), (3, 4)

)
, while at the bottom, I ′j =

(
( 1

12 ,
3
12 ,

5
12 ,

13
24 ,

17
24 ,

21
24 ,

25
24), 1n

)
.

Hence,

RR′(yj , (βj)n) =

∑
i b̂
j
i/β

j

pj
=

Bj

1
Bj

∑
k p

j
k

≤ Bj

1
Bj

∑
x̂ji∈x̂j

b̂ji/β
j · rji

=
Bj

rj
= RR′(x̂j , b̂j) ,

and the lemma follows.

4.3 Analysis of Round Robin for Unit Batteries

In the previous section we obtained a uniform battery instance (yj , (βj)n). Our next step is to
show that we may assume that we are given unit charge batteries. Notice that an RadSC solution
σ has lifetime t for (yj , (βj)n) if and only if it has lifetime t/βj for (yj ,1). In particular we
have that Opt0(yj ,1) = Opt0(yj ,1)/βj , where Opt0 denote the optimal RadSC lifetime, and
RR(yj ,1) = RR(yj , (βj)n)/βj . Furthermore, RR′(yj ,1) = RR′(yj , 1n)/βj .

For the remainder of this section, we assume that we are given a unit battery instance x that
corresponds to the jth strip. (We drop the subscript j and go back to x for readability.) Recall
that x ∩ [0, 1] is not necessarily equal to x, since some children could have been created outside
[0, 1] in the previous step. We show that RR′(x) ≥ 2

3Opt0(x).
Let i0 = min {i : xi ≥ 0} and let i1 = max {i : xi ≤ 1} be the indices of the left-most and

right-most sensors in [0, 1], respectively.

Lemma 7. maxi∈{i0,...,i1−1}{xi+1 − xi} = maxi∈{1,...,n−1}{xi+1 − xi}.
Proof. By Observation 4 either ρ1 = x1 and hence none of its children are located to the left of
0, or the points to the left of x1 + ρ1 are only covered by sensor 1, which means that the gaps
between 1’s children to the left of zero also appears between its children within [0, 1]. (Recall that
bji/β

j ≥ 3, for all i.) The same argument can be used for the right-most sensor.

As illustrated in Figure 6, we define

∆0
4
=

{
xi0 − xi0−1 i0 > 1,−xi0−1 < xi0 ,

2xi0 otherwise,

9



0 1
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1x1 x2 x3 x4 x5 x6 x7 x8

d1 d2 d3 d4 d5 d6 d7

Figure 6: Illustration of the gaps in a unit battery instance x. Note that i0 = 2 and i1 = 8. ∆0 = d1,
since sensor 1 is closer to 0 than sensor 2. Also, ∆1 = 2(1−x8). Hence, ∆ = max {d4, d1, 2(1− x8)}.

∆1
4
=

{
xi1+1 − xi1 i1 < n, xi1+1 − 1 < 1− xi1 ,
2(1− xi1) otherwise,

and

∆
4
= max

{
∆0,∆1, max

i∈{i0,...,i1−1}
{xi+1 − xi}

}
.

We describe the optimal RadSC lifetime in terms of ∆.

Lemma 8. The optimum lifetime of x is 2
∆ .

Proof. To verify that 2/∆ can be achieved, consider the solution in which ρi = ∆/2 for all i.
Clearly, [0, 1] is covered, and all sensors die after 2/∆ time units. Now suppose that a solution ρ
exists with lifetime strictly greater than 2/∆. Hence maxi{ρi} < ∆/2. By definition, ∆ must equal
∆0, ∆1, or the maximum internal gap. If the latter, then there exists a point u ∈ [0, 1] between the
two sensors forming the maximum internal gap that is uncovered. On the other hand, if ∆ = ∆0,
then if ∆0 = 2xi0 , 0 is uncovered, and otherwise, there is a point in [0, xi0 ] that is uncovered. A
similar argument holds if ∆ = ∆1.

In the next definition we transform x into an instance x′ by pushing sensors away from 1
2 , so

that each internal gap between sensors is of equal width. See Figure 7 for an illustration.

Definition 1. For a given instance x, let k be a sensor whose location is closest to 1/2. Then we
define the stretched instance x′ of x as follows:

x′i =

{
(1− rk)− (dn/2e − i)∆ i ≤ dn/2e ,
(1− rk) + (i− dn/2e)∆ i > dn/2e .

Observation 9. Let x′ be a stretched instance of x. Then |
{
i : x′i ≤ 1

2

}
| =

⌈
n
2

⌉
and

|
{
i : x′i >

1
2

}
| =

⌊
n
2

⌋
.

Lemma 10. Let x′ be the stretched instance of x. Then, Opt0(x′) = Opt0(x) and RR′(x′) ≤
RR′(x).

Proof. First, by construction, the internal gaps in x′ are of length ∆ and ∆′0,∆
′
1 ≤ ∆. Thus, by

Lemma 8, Opt0(x′) = Opt0(x). By Lemma 7 we know that the sensors moved away from 1
2 , hence∑

i r
′
i ≥

∑
i ri and RR′(x′) ≤ RR′(x).

Now we are ready to bound RR(x).

10
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∆
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2

1
0

1

2 RR(x)
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(b) The stretched instance x′

Figure 7: Transformation of instance x to stretched instance x′. The sensor closest to 1
2 (x3)

remains in place, while the other sensors are placed at increasing intervals of ∆ away from x3. The
RoundRobin lifetime of a sensor is shown as a continuous function of its location x.

Lemma 11. RR′(x) ≥ 2
3Opt0(x), for every instance I = (x,1) of RadSC, where sensors may be

located outside [0, 1].

Proof. By Lemma 10 we may assume that the instance is stretched. First, suppose that n is even.
Since x is a stretched instance, it must be the case that exactly half of the sensors lie to the left of
1/2, and exactly half lie to the right. Hence,

r
4
=

1

n

n∑
i=1

ri =
1

n

n/2−1∑
j=0

(rn/2 + j∆) +

n/2−1∑
j=0

(rn/2+1 + j∆)


=

1

n

[
n

2
· rn/2 + ∆

(
n/2

2

)
+
n

2
· rn/2+1 + ∆

(
n/2

2

)]
=
rn/2 + rn/2+1

2
+

2∆

n

(
n/2

2

)
=

1 + ∆

2
+

∆(n− 2)

4

=
1

2
+
n∆

4
,

where we have used the fact that since the sequence is stretched rn/2+rn/2+1 = 1+∆. Furthermore,
since n∆ ≥ 1, it now follows that

RR′(x)

Opt0(x)
=
n/r

2/∆
=

n∆

1 + n∆/2
=

1
1
n∆ + 1

2

≥ 2

3
.
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If n is odd, then w.l.o.g. there are n+1
2 sensors to the left of 1/2, and n−1

2 to the right. Then

r =
1

n

(n−1)/2∑
j=0

(r(n+1)/2 + j∆) +

(n−3)/2∑
j=0

(r(n+3)/2 + j∆)


=

1

n

[
n+ 1

2
· r(n+1)/2 + ∆

(
(n+ 1)/2

2

)
+
n− 1

2
· r(n+3)/2 + ∆

(
(n− 1)/2

2

)]
=
r(n+1)/2 + r(n+3)/2

2
+
r(n+1)/2 − r(n+3)/2

2n
+

∆

n
· (n− 1)2

4

≤ 1 + ∆

2
+

∆

n
· (n− 1)2

4

=
1

2
+ ∆

n2 + 1

4n
.

We have two cases. If r1 ≥ 1, then there are n − 1 gaps of size ∆, as well as one gap of size at
most ∆/2. Since the gaps cover the entire interval, we have that (n− 1)∆ + ∆

2 ≥ 1. It follows that
n∆ ≥ 2n

2n−1 . Thus, we can demonstrate the same bound, since

RR′(x)

Opt0(x)
=
n/r

2/∆
≥ n∆

1 + (n2+1)∆
2n

=
1

1
n∆ + 1

2 + 1
2n2

≥ 2n2

3n2 − n+ 1
>

2

3
.

Finally, we consider the case where r1 < 1. For some ε ∈ (0,∆/2], we can set r(n+1)/2 = 1
2 + ε.

Since sensors (n+ 1)/2 and (n+ 3)/2 are of distance ∆ from one another, it follows that

rn+3
2
− rn+1

2
= (1/2 + ∆− ε)− (1/2 + ε) = ∆− 2ε .

Moreover, we will show that ε ≤ ∆/4, and thus r(n+3)/2 − r(n+1)/2 ≥ ∆/2. To see this, note
first that it follows from the definition of a stretch sequence and the assumption that r1 < 1 that
r1 = r(n+1)/2 + ∆(n− 1)/2 and r2 = r(n+3)/2 −∆(n− 3)/2. Hence their difference is

r1 − rn = (rn+1
2

+ 1
2∆(n− 1))− (rn+3

2
+ 1

2∆(n− 3)) = rn+1
2
− rn+3

2
+ ∆ = 2ε .

However since 1 − ∆/2 ≤ rn ≤ r1 < 1, it must be the case that r1 − rn ≤ ∆/2, and this implies
that ε ≤ ∆/4.

Finally, a computation similar to the one above reveals that

r ≤
rn+1

2
+ rn+3

2

2
+
rn+1

2
− rn+3

2

2n
+

∆

n

(n− 1)2

4
≤ 1 + ∆

2
− ∆

4n
+

∆

n

(n− 1)2

4
=

1

2
+
n∆

4
.

As this is the same bound that we obtained in the even case, we similarly achieve the same 2/3
bound.

4.4 Putting It All Together

It remains only to connect the pieces we have accumulated in the previous three sections.

Lemma 12. RR′(xj , bj) ≥ 2
3Tj, for every strip j.

12



Proof. The result follows immediately from Lemmas 5, 6, and 11.

Our main result now follows from our construction.

Theorem 3. RoundRobin is a 3
2 -approximation algorithm for OnceSC.

Proof. First, observe that

∑
j

RR(xj , bj) =
∑
j

∑
xi∈xj

bji
ri

=
∑
i

1

ri

∑
j:xi∈xj

bji ≤
∑
i

1

ri
bi = RR(x, b) .

By Lemmas 3 and 12 we have that

RR(x, b) ≥
∑
j

RR(xj , bj) ≥
∑
j

RR′(xj , bj) ≥
∑
j

2

3
Tj =

2

3
T =

2

3
Opt(x, b) ,

and we are done.

Theorem 3 readily extends to the Strip Cover problem, assuming all radii are rational and
all radii changes are done at rational times.

Theorem 4. RoundRobin is a 3
2 -approximation algorithm for Strip Cover.

5 Duty Cycle Algorithms

In this paper we analyzed the RoundRobin algorithm in which each sensor works alone. One
may consider a more general version of this approach, where a schedule induces a partition of the
sensors into sets, or shifts, and each shift works by itself. In RoundRobin each shift consists of
one active sensor. We refer to such an algorithm as a duty cycle algorithm.

In this section we show that, in the worst case, no duty cycle algorithm outperforms
RoundRobin. More specifically, we show that the approximation ratio of any duty cycle algo-
rithm is at least 3

2 .

Lemma 13. The approximation ratio of any duty cycle algorithm is at least 3
2 for both OnceSC

and Strip Cover.

Proof. Consider an instance where x = (1
4 ,

3
4 ,

3
4) and b = (2, 1, 1). An optimal solution is obtained

by assigning ρ1 = ρ2 = ρ3 = 1
4 , τ1 = τ2 = 0 and τ3 = 4. That is, sensor 1 covers the interval [0, 0.5]

for 8 time units, sensors 2 covers [0.5, 1] until time 4, and sensors 3 covers [0.5, 1] from time 4 to 8.
This solution is optimal in that it achieves the maximum possible lifetime of 8 = 2

∑
i bi.

On the other hand, the best duty cycle algorithm is RoundRobin, which achieves a lifetime
of 16/3 time units. (The shifts {1, 2} and {3} would also result in a lifetime of 16/3 time units.)
Both schedules are shown in Figure 8.
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Figure 8: Best schedule vs. best duty cycle schedule. Here x = (1
4 ,

3
4 ,

3
4) and b = (2, 1, 1).

6 Set Radius Strip Cover

In this section we present an optimal O(n2 log n)-time algorithm for the RadSC problem. Recall
that in RadSC we may only set the radii of the sensors since all the activation times must be set
to 0. More specifically, we assign non-zero radii to a subset of the sensors which we call active,
while the rest of the sensors get ρi = 0 and do not participate in the cover.

Given an instance (x, b), a radial assignment ρ is called proper if the following conditions hold:

1. Every sensor is either inactive, or exhausts its battery by time T , where T is the lifetime of
ρ. That is, ρi ∈ {0, bi/T},

2. No sensor’s coverage is superfluous. That is, for every active sensor i there is a point ui ∈ [0, 1]
such that ui ∈ [xi − ρi, xi + ρi] and ui 6∈ [xk − ρk, xk + ρk], for every active k 6= i.

Lemma 14. There is a proper optimal assignment for every RadSC instance.

Proof. Let I = (x, b) be a RadSC instance, and let ρ be an optimal assignment for I with lifetime
T . We first define the assignment ρ′ = b/T and show that it is feasible. Since ρ has lifetime T ,
any point u ∈ [0, 1] is covered by some sensor i throughout the time interval [0, T ]. It follows that
ρi ≤ bi/T = ρ′i. Hence, u ∈ [xi − ρ′i, xi + ρ′i], and thus ρ′ has lifetime T . Next, we construct
an assignment ρ′′. Initially, ρ′′ = ρ′. Then starting with i = 1, we set ρ′′i = 0 as long as ρ′′

remains feasible. Clearly, ρ′′i ∈ {0, bi/T}. Furthermore, for every sensor i there must be a point
ui ∈ [xi − ρ′′i , xi + ρ′′i ] such that ui 6∈ [xk − ρ′′k, xk + ρ′′k], for every active k 6= i, since otherwise i
would have been deactivated. Hence, ρ′′ is a proper assignment. Moreover, ρ′′ has lifetime T and
thus it is optimal.

Given a proper optimal solution, we add two dummy sensors, denoted 0 and n + 1, with zero
radii and zero batteries at 0 and at 1, respectively. The dummy sensors are considered active. We
show that the optimal lifetime of a given instance is determined by at most two active sensors.

Lemma 15. Let T be the optimal lifetime of a given RadSC instance I = (x, b). There exist two
sensors i, k ∈ {0, . . . , n+ 1}, where i < k, such that T = bk+bi

xk−xi .

Proof. Let ρ be the proper optimal assignment, whose existence is guaranteed by Lemma 14. We
claim that there exist two neighboring active sensors i and k, where i < k, such that ρi+ρk = xk−xi.
The lemma follows, since ρi = bi/T and ρk = bk/T .
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Observe that if ρi+ρk < xk−xi, for two neighboring active sensors i and k, then there is a point
in the interval (xi, xk) that is covered by neither i and k, but is covered by another sensor. This
means that either i or k is redundant, in contradiction to ρ being proper. Hence, ρi + ρk ≥ xk−xi,
for every two neighboring active sensors i and k.

Let α = min
{
ρk+ρi
xk−xi : i, k are active

}
. If α = 1, then we are done. Otherwise, we define the

assignment ρ′ = ρ/α. ρ′ is feasible since ρ′i + ρ′k = 1
α(ρi + ρk) ≥ xk − xi, for every two neighboring

active sensors i and k. Furthermore, the lifetime of ρ′ is αT , in contradiction to the optimality of
ρ.

Lemma 15 implies that there are O(n2) possible lifetimes. This leads to an algorithm for solving
RadSC.

Theorem 5. There exists an O(n2 log n)-time algorithm for solving RadSC.

Proof. First if n = 1, then ρ1 ← r1
4
= max(x1, 1−x1) and we are done. Otherwise, let Tik ← bk+bi

xk−xi ,
for every i, k ∈ {0, . . . , n + 1} such that i < k. After sorting the set {Tik : i < k}, perform a
binary search to find the largest potentially feasible lifetime. The feasibility of candidate Tik can
be checked using the assignment ρik` ← b`/Tik, for every sensor `.

There are O(n2) candidates, each takes O(1) to compute, and sorting takes O(n2 log n) time.
Checking the feasibility of a candidate takes O(n) time, and thus the binary search takes O(n log n).
Hence, the overall running time is O(n2 log n).

7 Discussion and Open Problems

We have shown that RoundRobin, which is perhaps the simplest possible algorithm, has a tight
approximation ratio of 3

2 for both OnceSC and Strip Cover. We have also shown that both
OnceSC and Strip Cover are NP-hard, but it remains to be seen whether the same is true for
the special case with unit size batteries. Future work may include finding algorithms with better
approximation ratios for either problem. However, we have eliminated duty cycle algorithms as
candidates. Observe that both OnceSC and TimeSC are NP-hard, while RadSC can be solved
in polynomial time. This suggests that hardness comes from setting the activation times.

We have assumed that the battery charges dissipate in direct inverse proportion to the assigned
sensing radius (e.g. τ = b/ρ). It is natural to suppose that an exponent could factor into this
relationship, so that, say, the radius drains in quadratic inverse proportion to the sensing radius
(e.g. τ = b/ρ2). One could expand the scope of the problem to higher dimensions. Before moving
both the sensor locations and the region being covered to the plane, one might consider moving one
but not the other. This yields two different problems: (i) covering the line with sensors located in
the plane; and (ii) covering a region of the plane with sensors located on a line.
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