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Abstract

The notion of duty cycling is common in problems which seek to maximize the lifetime of
a wireless sensor network. In the duty cycling model, sensors are grouped into shifts that take
turns covering the region in question, and each sensor can belong to at most one shift. We
consider the imposition of the duty cycling model upon the Strip Cover problem, where we
are given n sensors on a one-dimensional region, and each shift can contain at most k ≤ n
sensors. We call the problem of finding the optimal set of shifts so as to maximize the length of
time that the entire region can be covered by a wireless sensor network, k-Duty Cycle Strip
Cover (k-DutySC). In this paper, we present a polynomial-time algorithm for 2-DutySC.
Furthermore, we show that this algorithm is a 35

24 -approximation algorithm for k-DutySC. We
also give two lower bounds on the performance of our algorithm: 15

11 , for k ≥ 4, and 6
5 , for k = 3,

and provide experimental evidence suggesting that these lower bounds are tight. Finally, we
propose a fault tolerance model and find thresholds on the sensor failure rate over which our
algorithm has the highest expected performance.

Keywords: approximation algorithms, duty cycling, wireless sensor networks, adjustable ranges,
strip cover.

1 Introduction

We consider the following problem: Suppose we have a one-dimensional region (or interval) that
we wish to cover with a wireless sensor network. We are given the locations of n sensors located on
that interval, and each sensor is equipped with an identical battery of finite charge. We have the
ability to set the sensing radius of each sensor, but its battery charge drains in inverse proportion
to the radius that we set. Our goal is to organize the sensors into disjoint coverage groups (or

∗A preliminary version of this paper appeared in the proceedings of the 19th International Colloquium on Structural
Information and Communication Complexity (SIROCCO), 2012.
†The Graduate Center of the City University of New York, New York, NY 10016, USA.
‡Smith College, Northampton, MA 01063, USA.
§Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel. Supported by the Israel Science Foundation

(grant no. 497/14).
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shifts), that will take turns covering the entire region for as long as possible. We call this length of
time the lifetime of the network.

More specifically, we consider the Strip Cover problem with identical batteries under a duty
cycling restriction. An instance consists of a set X ⊆ [0, 1] of n sensor locations, and a rational
number B representing the initial battery charge of each sensor. Each battery discharges in inverse
linear proportion to its radius, so that a sensor i whose radius is set to ri survives for B/ri time.
In the duty cycling model, the sensors are partitioned into disjoint coverage groups, called shifts,
which take turns covering the entire interval for as long as their batteries allow. The sum of these
lengths of time is called the lifetime of the network and is denoted by T . For any fixed k ≤ n, the
k-Duty Cycle Strip Cover (k-DutySC) problem seeks an optimal partitioning of the sensors
such that the network lifetime T is maximized, yet no coverage group contains more than k sensors.
In the fault tolerant variant, each sensor may fail to activate with some fixed probability p ∈ [0, 1],
and we seek to maximize the expected lifetime of the network (i.e., the expected sum of lifetimes
of surviving shifts).

Motivation. Applications of scheduling problems similar to Strip Cover are increasingly com-
mon. One such application involves monitoring a fence, or supply line, that exists in inhospitable
territory. In this case, it may be feasible (even cost-effective) to deploy a set of sensors along
the fence, but unfeasible to position them at pre-determined locations. For example, it might be
easy to drop the senors from an airplane, but impossible to dispatch human beings to place them.
While the scheduler may have access to the location of each sensor via GPS, technical limitations
may require that a single assignment be given. In such a scenario, we might be incentivized to
organize the sensors into disjoint shifts, providing motivation for our duty cycling model. Finally,
any physical device will have some nonzero failure rate, and thus a fault-tolerant solution will be
more robust.

Solutions to the general Strip Cover problem contain both the radial assignments and acti-
vation and de-activation times for each sensors. As a result, these solutions can be complicated
to implement and understand. Moreover, interdependence among multiple sensors can make such
solutions susceptible to catastrophic decline in network lifetime if there is a non-zero probability of
sensor failure. Conversely, since in the duty cycling model each sensor can participate in at most
one cover shift, the scheduling of the shifts is of little importance. Furthermore, by minimizing
the number of sensors participating in each shift, duty cycling solutions become more resilient to
sensor failure.

Related work. This line of research began with Buchsbaum, et al.’s [5] study of the Restricted
Strip Cover (RSC) problem. In RSC, the locations and sensing radii of n sensors placed on an
interval are given, and the problem is to compute an optimal set of activation times, so as to
maximize the network lifetime. They showed that RSC is NP-hard, and presented an O(log log n)-
approximation algorithm. Gibson and Varadarajan [11] later improved on this result by discovering
a constant factor approximation algorithm.

The problem of finding the optimal set of radial assignments for sensors deployed on an interval,
rather than the activation times, is more tractable. Peleg and Lev-Tov [12] considered the problem
of covering a finite set of m target points while minimizing the sum of the radii assigned, and found
an optimal polynomial-time solution via dynamic programming. The situation wherein the whole
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interval must be covered corresponds to a “one shift” version of n-DutySC, wherein the restriction
is not upon the size of each shift, but upon the number of shifts. Bar-Noy, et al. [4] provided an
optimal polynomial-time algorithm for this problem.

The interest in duty cycling developed in part from the introduction of the Set k-Cover
problem by Slijepcevic and Potkonjak [16]. This problem, which they showed to be NP-hard, seeks
to find at least k disjoint covers among a set of subsets of a base set. Perillo and Heinzelman [15]
considered a variation in which each sensor has multiple modes. They translated the problem into
a generalized maximum flow graph problem, and employed linear programming to find an optimal
solution. Abrams et al. [1] provided approximation algorithms for a modification of the problem in
which the objective was to maximize the total area covered by the sensors. Cardei et al. [6, 7, 8]
considered adjustable range sensors, but also sought to maximize the number of non-disjoint set
covers over a set of target coverage points.

The work of Pach and Tóth [13, 14] also has applications in this context. They showed that
a k-fold cover of translates of a centrally-symmetric open convex polygon can be decomposed into
Ω(
√
k) covers. Aloupis, et al. [2] improved this to the optimal Ω(k) covers, and the centrally-

symmetric restriction was later lifted by Gibson and Varadarajan [11]. In each of the above cases,
the concept of finding many disjoint set covers, which can be seen as shifts, is used as a proxy for
maximizing network lifetime.

Finally, the general Strip Cover problem, in which each sensor has a different battery charge,
was studied by Bar-Noy, et al. [4]. They also considered the Set Once Strip Cover (OnceSC)
problem, in which the radius and activation time of each sensor can be set only once. They
showed that OnceSC is NP-hard, and that RoundRobin (sensors take turns covering the entire
interval) is a 3

2 -approximation algorithm for both OnceSC and Strip Cover. Bar-Noy, et al. [4]
also showed that the approximation ratio of any duty cycling algorithm is at least 3

2 for both
OnceSC and Strip Cover. Bar-Noy and Baumer [3] also analyzed non-duty cycling algorithms
for Strip Cover with identical batteries. The Connected Range Assignment problem studied
by Chambers, et al. [9], wherein the goal is to connect a series of points in the plane using circles, is
also related. They presented approximation bounds for the case where solutions use a fixed number
of circles, which is similar to limiting shift sizes.

Our results. In Section 2, we define the class of k-DutySC problems, and present the trivial solu-
tion to 1-DutySC. We present a polynomial-time algorithm, which we call Match, for 2-DutySC
in Section 3. This algorithm is based on the a reduction to Maximum Weight Matching in
bipartite graphs. In Section 4, we compare the performance of RoundRobin to an algorithm
that uses only a single shift. We prove that when the sensors are equi-spaced on the coverage
interval, RoundRobin performs most poorly in comparison to the one shift algorithm. Then we
study the performance of RoundRobin on these “perfect” deployments. This study is used to
analyze Match in k-DutySC, but is of independent interest, since perfect deployments are the
most natural. In Section 5 we show that Match is a 35

24 -approximation algorithm for k-DutySC.
We also give two lower bounds on the performance of Match: 15

11 , for k ≥ 4, and 6
5 , for k = 3,

and provide experimental evidence suggesting that these lower bounds are tight. The question of
whether k-DutySC is NP-hard, for k ≥ 3, remains open. In Section 6, we consider a fault tolerance
model, and show that if the failure rate of each sensor is sufficiently high, Match becomes optimal.
We contend that even if the approximation ratio of k-DutySC for k ≥ 3 is improved, Match will
be of interest, due to its simplicity, performance, and fault tolerance.
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2 Preliminaries

Duty cycles. Let U = [0, 1] be the interval that we wish to cover, and let X = {x1, . . . , xn} ∈ Un
be a set of n sensor locations. Henceforth we assume that xi ≤ xi+1, for every i ∈ {1, . . . , n − 1}.
We first assume that all sensors have unit capacity batteries (as opposed to uniform). We will
justify this assumption later.

A pair (C, t), where C ⊆ X is a subset of k sensor locations and t ≥ 0, is called a k-duty
cycle (or simply a duty cycle, or a shift). The sensors in C are activated at the same time and are
deactivated together after t time units. A duty cycle (C, t) is feasible if the sensors in C can cover
the interval [0, 1] for the duration of t time units. More specifically, a sensor i such that xi ∈ C
is assigned a radius 1/t and covers the range [xi − 1/t, xi + 1/t], and the duty cycle is feasible if
[0, 1] ⊆

⋃
i∈C [xi − 1/t, xi + 1/t].

Let All(C) denote the maximum t for which (C, t) is feasible. All(C) is called the lifetime of
C. Given a duty cycle C = {xi1 , . . . , xik} define

dj
4
=


2xi1 j = 0,

2(1− xik) j = k,

xij+1 − xij otherwise,

and
∆
4
= max

j
{dj} .

Observation 1. All(C) = 2
∆ .

Proof. The maximum lifetime of C is at least 2
∆ , since the radial assignment ri = ∆

2 covers [0, 1].
However, if All(C) > 2

∆ , then ri <
∆
2 for every i. Hence, [0, 1] is not covered.

In light of Observation 1, it suffices to refer to any subset C ⊆ X as a shift, with a corresponding
lifetime that is inferred from All(C).

Problems. k-Duty Cycle Strip Cover (abbreviated k-DutySC) is defined as follows. The
input is a set X = {x1, . . . , xn} ∈ Un of n sensor locations. A solution (or schedule) is a partition
of X into m non-empty pairwise disjoint subsets C1, . . . , Cm ⊆ X such that |Cj | ≤ k, for every j.
The goal is to find a solution that maximizes

∑
j All(Cj). Thus, a solution to DutySC consists

of a partition of X into shifts, where each shift employs All to achieve optimal lifetime.

Note that All(C), for any shift C, and hence the maximum lifetime, are multiplied by a factor
of B if all sensors have batteries with capacity B. Hence, throughout the paper we assume that all
sensors have unit capacity batteries.

The optimal lifetime for k-DutySC is denoted by Optk. The best possible lifetime of a k-
DutySC instance X, for any k, is 2n.

Observation 2. Optk(X) ≤ 2n, for every k.

Proof. Consider a schedule C1, . . . , Cm and let ∆i correspond to Ci. The minimum possible value
of ∆i is 1/|Ci|, for every i. By Observation 1 we get that All(Ci) ≤ 2

∆i
≤ 2|Ci|. The observation

follows from the fact that each of the n sensors is used in exactly one shift.
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Figure 1: Illustration of the 3
2 upper bound on the approximation guarantee of RoundRobin.

For the instance X∗2 = {1
4 ,

3
4}, RoundRobin achieves a lifetime of only 8

3 time units, while Opt
achieves 4.

Perfect deployment. Define

X∗n =

{
2i− 1

2n
: i ∈ {1, . . . , n}

}
=

{
1

2n
,

3

2n
, . . . ,

2n− 1

2n

}
.

We refer to X∗n as the perfect deployment since the n-DutySC lifetime of X∗n is 2n, namely
All(X∗n) = 2n.

Round robin In 1-DutySC each sensor must work alone, therefore there is only one possible
solution: Ci = {i}, for every i. Observe that this solution is valid for k-DutySC, for every k. We
refer to the algorithm that generates this solution as RoundRobin. Observe that the RoundRobin

lifetime is given by RR(X) =
∑

i ti, where ti
4
= All(Ci) = min{1/xi, 1/(1−xi)} by Observation 1.

Bar-Noy, et al. [4] showed that RoundRobin is a 3
2 -approximation algorithm for Strip Cover.

Since RoundRobin schedules are duty cycle schedules and any k-DutySC schedule is also a Strip
Cover schedule, it follows that

Theorem 1. RoundRobin is a 3
2 -approximation algorithm for k-DutySC, for every k ≥ 2.

The above ratio is tight due to the instance X∗2 =
{

1
4 ,

3
4

}
as shown in [3], and illustrated in

Figure 1. We note that in our figures we depict schedules graphically as space-time diagrams.
In each diagram, the horizontal axis represents the interval [0, 1] that is to be covered, with the
sensors in each instance illustrated by (red) circles at the appropriate locations. The vertical axis
represents time, with the maximum possible lifetime of 2n visible at the top. The active coverage
of each sensor is represented by a (blue) rectangle with a vertical arrow pointing upwards.

3 Strip Cover with Shifts of Size 2

We present a polynomial-time algorithm for solving 2-DutySC. The algorithm is based on a re-
duction to the Maximum Weight Matching problem in bipartite graphs that can be solved in
O(n2 log n+ nm) in graphs with n vertices and m edges (see, e.g., [10]).
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(a) The graph G

1
2

1
0

2

4
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8
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(b) The optimal solution.

Figure 2: An example of 2-DutySC for X = {0, 0.2, 0.4, 0.8}. At left, the optimal match-
ing is {(v1, u1), (v2, u4), (v3, u3)} (in bold) and it corresponds to the optimal 2-DutySC solution
{{1}, {2, 4}, {3}} shown at right. The value of both solutions is 6.

Theorem 2. 2-DutySC can be solved in polynomial time.

Proof. Given a 2-DutySC instance X, with n sensors, we construct a bipartite graph G = (L,R,E)
as follows:

L = {vi : i ∈ {1, . . . , n}}
R = {ui : i ∈ {1, . . . , n}}
E =

{
(vi, uj) : xi <

1
2 < xj

}
∪ {(vi, ui) : i ∈ {1, . . . , n}} .

The weight of an edge e = (vi, uj) is defined as follows:

w(e) =

{
All({xi}) i = j,

All({xi, xj}) otherwise.

Let C1, . . . , Cm be a 2-DutySC solution for X. Notice that if there exists a shift Ck = {i, j}
such that xi, xj ∈ [0, 1

2 ], then a better solution may be obtained by splitting Ck into the two shifts
{{i}, {j}}. The same argument applies to xi, xj ∈ [1

2 , 1]. Hence, if C1, . . . , Cm is an optimal 2-
DutySC solution, then each shift contains either a singleton or a pair of sensors: one in [0, 1

2) and
the other in (1

2 , 1]. It follows that an optimal 2-DutySC solution C1, . . . , Cm induces a matching
whose weight is the lifetime of the solution. Also, a matching M ⊆ E induces a 2-DutySC solution
whose lifetime is the weight of the matching. Hence, the weight of a maximum weight matching in
G is the optimal 2-DutySC lifetime of X. An example is depicted in Figure 2

The algorithm that is described in the theorem is henceforth referred to as Algorithm Match.
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4 Round Robin vs. All

Assume we are given a set X of k sensors. In this section we compare RR(X) to All(X). This
comparison will be used in the next section to analyze Algorithm Match for k-DutySC.

Define

γ(X)
4
=

RR(X)

All(X)
.

In this section we look for a lower bound on minX:|X|=k γ(X). Due to Theorem 1 it follows that

γ(X) ≥ 2
3 , for any set X of k sensors. In what follows, we prove the stronger result that the

placement that minimizes the ratio is the perfect deployment, namely X∗k . Notice that this is true
for k = 2, since γ(X∗2 ) = 2

3 .

4.1 Stretching the Instance

Our first step is to transform X into an instance X ′ for which γ(X ′) ≤ γ(X). This is done by
pushing sensors away from 1

2 so that all internal gaps are of size ∆. (See Section 2 for the definition
of ∆.) If a sensor needs to be moved to the left of 0, it is placed at 0, and if it needs to move to
the right of 1, it is placed at 1.

Definition 1. For a given instance X, let j be the sensor whose location is closest to 1
2 . Then we

define the stretched instance X ′ of X as follows:

x′i =


max{0, xj − (j − i)∆} i < j,

xj i = j,

min{1, xj + (i− j)∆} i > j.

We show that γ may only decrease.

Lemma 3. Let X ′ be the stretched instance of X. Then, γ(X ′) ≤ γ(X).

Proof. Sensors only get pushed away from 1
2 , and thus their RoundRobin lifetime only decreases.

Thus, RR(X ′) ≤ RR(X). By definition, ∆ must equal either 2d0, 2dk or the length of the largest
internal gap in X. However neither d0 nor dk can be larger in X ′ than it was in X, since no sensors
move closer to 1

2 . Moreover, by construction the length of the largest internal gap in X ′ is ∆.
Hence ∆′ ≤ ∆, and All(X ′) ≥ All(X).

Notice that it may be that ∆′ < ∆. For example, consider X = {0.4, 0.5, 0.6}. In this case we
have that ∆ = 0.8, X ′ = {0, 0.5, 1}, and ∆′ = 0.5.

4.2 Perfect Deployment is the Worst

By Lemma 3, it suffices to consider only stretched instances. The next step is to show that the
worst stretched instance is in fact the perfect deployment. We use the following approach: we
show that for every stretched non-perfect deployment X there is another deployment Y such that
γ(X) > γ(Y ).
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A stretched instance X with k sensors can be described as follows:

X =
{

0k0 , a, a+ ∆, . . . , a+ (kin − 1)∆ = 1− b, 1k1

}
where kin ≥ 1, k0 ≥ 0, k1 ≥ 0, and k = kin + k0 + k1. We denote kout

4
= k0 + k1. Notice that it

may be the case that a = 0 and/or b = 0. In what follows we use both a = 0 and a = ∆ (and a
different k0) to describe the same instance. The same applies to b = 0 and b = ∆.

If k = 1, then RR(X) = All(X). Recall that γ(X) ≥ 2
3 = γ(X∗2 ) due to Theorem 1, and

therefore we may assume that k = kin+kout ≥ 3. Nevertheless, we prove that the perfect deployment
is the worst for k ≥ 2. (We consider the case of k = 2 for completeness.)

For reasons of symmetry we assume, without loss of generality, that 0 ≤ a ≤ b. Hence, dkin/2e
sensors are located in (0, 1

2 ] and bkin/2c sensors are located in (1
2 , 1). Also, observe that a sensor

located at 0 contributes to RR exactly the same as a sensor located at 1. On the other hand, if
kout = 1, All(X ′) is maximized with a sensor at 1. If kout ≥ 2, All(X ′) is maximized if there is at
least one sensor at 0 and at least one at 1. Hence, we may assume without loss of generality that
there are k0 = bkout/2c sensors at 0, and k1 = dkout/2e sensors at 1.

It follows that it is sufficient to consider stretched deployments X that can be described as
follows:

X =
{

0bkout/2c, a, a+ ∆, . . . , a+ (kin − 1)∆ = 1− b, 1dkout/2e
}

where 0 ≤ a ≤ b. Since the kout sensors located at 0 and 1 contribute a lifetime of exactly 1, the
RoundRobin lifetime of X is:

RR(X) = kout +

dkin/2e−1∑
i=0

1

1− (a+ i∆)
+

bkin/2c−1∑
i=0

1

1− (b+ i∆)
. (1)

Due to (1) and Observation 1 we have that

γ(X) =
∆

2

kout +

dkin/2e−1∑
i=0

1

1− (a+ i∆)
+

bkin/2c−1∑
i=0

1

1− (b+ i∆)


=
kout

2
·∆ +

dkin/2e−1∑
i=0

∆

2− 2(a+ i∆)
+

bkin/2c−1∑
i=0

∆

2− 2(b+ i∆)
. (2)

Let Ωkout denote the set of stretched instances with kout sensors on 0 and 1. We distinguish
between three cases as illustrated in Figure 3:

1. X ∈ Ω0. In this case, a ∈ [0,∆/2] and b ∈ [a,∆/2].

2. X ∈ Ω1. In this case, a ∈ [0,∆/2] and b ∈ [a,∆].

3. X ∈ Ωkout , for kout ≥ 2. In this case, a ∈ [0,∆] and b ∈ [a,∆].

We first explore γ in Ωkout , for kout ≥ 2.

Lemma 4. γ has no local minima in Ωkout, for any kout ≥ 2. Furthermore, the minimum is
obtained when a = b = ∆.
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Figure 3: Illustration of Ωkout .

Proof. First, assume that kin ≥ 2. In this case, ∆ = 1−a−b
kin−1 . We compute ∂γ

∂a using (2). Since
∂∆
∂a = − 1

kin−1 , it follows that

∂

∂a

(
∆

2− 2(a+ i∆)

)
=

(2− 2(a+ i∆))(∂∆
∂a )−∆(−2− 2i∂∆

∂a )

(2− 2(a+ i∆))2
=

2
(
∂∆
∂a (1− a) + ∆

)
4(1− (a+ i∆))2

=

(
− 1
kin−1(1− a) + ∆

)
2(1− (a+ i∆))2

=
−b

2(kin − 1) · (1− (a+ i∆))2
,

and

∂

∂a

(
∆

2− 2(b+ i∆)

)
=

(2− 2(b+ i∆))(∂∆
∂a ) + ∆2i∂∆

∂a

(2− 2(b+ i∆))2
=

2(1− b)∂∆
∂a

4(1− (b+ i∆))2

=
(1− b) −1

kin−1

2(1− (b+ i∆))2

=
b− 1

2(kin − 1) · (1− (b+ i∆))2
.

Thus,

∂γ(X)

∂a
=

−kout
2(kin − 1)

+
1

2(kin − 1)

dkin/2e−1∑
i=0

−b
(1− (a+ i∆))2

+

bkin/2c−1∑
i=0

b− 1

(1− (b+ i∆))2

 < 0 .

Hence γ(X) decreases as a increases. An analogous calculation shows that the same is true for b,

namely that ∂γ(X)
∂b < 0. Since neither ∂γ(X)

∂a nor ∂γ(X)
∂b can be zero at any point in the interior of

the domain Ωkout , γ(X) has no local minima. Finally, any minima must occur when both a and b
are as large as possible within the domain Ωkout , namely when a = b = ∆.

It remains to consider the case where kin = 1. Since kout ≥ 2, we have that ∆ = b. Hence,

γ(X) =
b

2

(
kout +

1

b

)
=

1

2
(b · kout + 1) ,

which means that ∂γ(X′)
∂b > 0. Hence, γ(X ′) decreases as b decreases. It follows that the minimum

occurs when a = b = 1
2 .

Next we consider Ω1.

9



Lemma 5. γ has no local minima in Ω1. Furthermore, the minimum is obtained when a = ∆/2
and b = ∆.

Proof. First, assume that kin ≥ 2. In this case we have that ∆ = 1−a−b
kin−1 , since otherwise this

instance is not stretched. It follows that ∂γ(X)
∂a < 0 and ∂γ(X)

∂b < 0 as shown in Lemma 4 for the
case where kin ≥ 2. Hence the minimum occurs when both a and b are as large as possible within
the domain Ω1, namely when a = ∆/2 and b = ∆.

If kin = 1, we have that ∆ = max{2a, b}. If b > 2a, γ(X) decreases as b decreases as shown in
Lemma 4 for the case where kin = 1. However, if b < 2a, we have that

γ(X) =
2a

2

(
kout +

1

1− a

)
= a+

a

1− a
,

which means that
∂γ(X)

∂a
= 1 +

1− a+ a

(1− a)2
= 1 +

1

(1− a)2
> 0 .

Hence, γ(X) decreases as a decreases. It follows that the minima occurs then 2a = b = 2
3 .

Finally, we deal with Ω0.

Lemma 6. X∗k = argminX∈Ω0
γ(X).

Proof. First, note that kin ≥ 2 if X ∈ Ω0. Observe that if ∆ = 2b > 1−a−b
kin−1 , then X is not stretched.

Hence, if X ∈ Ω0, then ∆ = 1−a−b
kin−1 . It follows that ∂γ(X)

∂a < 0 and ∂γ(X)
∂b < 0 as shown in Lemma 4

for the case where kin ≥ 2. Hence the minimum occurs when both a and b are as large as possible
within the domain Ω0, namely when a = ∆/2 and b = ∆/2. Namely when X = X∗k .

Let γ∗k = γ(X∗k). We show that, for any fixed k, γ(X) reaches its minimum at X = X∗k . We do
so by showing that, for every kout > 0, the deployment X in Ωkout that minimizes γ corresponds to
a deployment from Ωkout−1.

Theorem 3. minX:|X|=k γ(X) = γ∗k.

Proof. We prove that minX:|X|=k γ(X) = γ∗k by induction on kout. For the base case, if X ∈ Ω0,
then by Lemma 6, γ(X) achieves its minimum in X∗k . For the inductive step, let X ∈ Ωkout , for
kout ≥ 1, and assume that minX∈Ωkout−1

γ(X) ≥ γ∗k . If kout = 1 (and kin ≥ 1), then by Lemma 5
the minimum in Ω1 is reached when a = ∆/2 and b = ∆ (if kin = 1, then the minimum is when
2a = b = 2

3), namely for X = {∆
2 ,

3∆
2 , . . . , 1 − ∆, 1}. By symmetry, this instance has the same

ratio as the instance X ′ = {1− x : x ∈ X}, which is in Ω0 with parameters a = 0 and b = ∆
2 . If

kout > 1, then Lemma 4 the minimum in Ωkout is obtained when a = ∆ and b = ∆. In this case
X ′ ∈ Ωkout−1 with parameters a = 0 and b = ∆. Hence by the induction hypothesis we have that
γ(X) ≥ γ∗k .

10



4.3 Properties of γ∗k

In this section we explore γ∗k as a function of k. Observe that for even k we have that

γ∗k =
1

2k
· 2

k/2∑
i=1

2k

2k + 1− 2i
= 2

k/2∑
i=1

1

2k + 1− 2i
= 2

k∑
i=k/2+1

1

2i− 1
,

and for odd k we have that

γ∗k =
1

2k

2 + 2

(k−1)/2∑
i=1

2k

2k + 1− 2i

 =
1

k
+ 2

k−1∑
i=(k+1)/2

1

2i+ 1
.

Lemma 7. γ∗k satisfies the following: (i) γ∗k ≤ γ∗k+2, for every even k. (ii) γ∗k ≥ γ∗k+2, for every
odd k. (iii) γ∗k ≥ γ∗k+1, for every odd k.

Proof. Due to the convexity of the function f(z) = 1
z , we have that for even k,

γ∗k+2 − γ∗k = 2
k+2∑

i=k/2+2

1

2i− 1
− 2

k∑
i=k/2+1

1

2i− 1
=

2

2k + 3
+

2

2k + 1
− 2

k + 1
> 0 .

By the same rationale, for odd k,

γ∗k − γ∗k+2 =

1

k
+ 2

k−1∑
i=(k+1)/2

1

2i+ 1

−
 1

k + 2
+ 2

k+1∑
i=(k+1)/2+1

1

2i+ 1


=

1

k
+

2

k + 2
− 1

k + 2
− 2

2k + 1
− 2

2k + 3

=
1

k
+

1

k + 2
− 2

2k + 1
− 2

2k + 3

> 0 .

Finally, for odd k,

γ∗k − γ∗k+1 =
1

k
+ 2

k−1∑
i=(k+1)/2

1

2i+ 1
− 2

k+1∑
i=(k+1)/2+1

1

2i− 1
=

1

k
− 2

2k + 1
> 0 ,

as required.

Lemma 7 implies that

Corollary 4. γ(X) ≥ 2
3 , for every X.

Furthermore, γ∗k goes to ln 2 as k goes to infinity.

Lemma 8. limk→∞ γ
∗
k = ln 2.

11



k γ∗k Approx

1 1 1
2 2

3 1.5000
3 11

15 1.3636
4 24

35 1.4583
5 223

315 1.4126
6 478

693 1.4498
7 6313

9009 1.4271
8 4448

6435 1.4467
...

...
...

∞ ln 2 1.4427

(a) Exact and approximate values of γ∗k .
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(b) γ∗k is an alternating sequence that converges to ln 2

Figure 4: Tabular and graphical representation of small values of γ∗k .

Proof. Observe that for both even and odd k’s we have that

γ∗k ≥
2k∑

i=k+1

1

i
= H2k −Hk and γ∗k ≤

2k−1∑
i=k

1

i
= H2k−1 −Hk−1,

where Hk the kth Harmonic number. It follows that limk→∞ γ
∗
k = limk→∞(H2k −Hk) = ln 2.

The table in Figure 4(a) contains several values of γ∗k , whose convergence is also depicted
graphically in Figure 4(b).

5 Strip Cover with Shifts of Size k

In this section we analyze the performance of Match in k-DutySC for k ≥ 3. Recall that
Algorithm Match finds the best solution among those using shifts of size at most 2. Since Match
is more powerful than RoundRobin, its approximation ratio is at most 3

2 = 1.5 (by Theorem 1).
We show that the approximation ratio of Match is at most 35

24 ≈ 1.458. We also provide lower
bounds: 15

11 ≈ 1.364 for k ≥ 4, and 6
5 = 1.2, for k = 3. At the end of the section we discuss ways to

improve the analysis of Match.

5.1 Upper Bound

We use our analysis of RoundRobin vs. All to obtain an upper bound on the performance of
Match for k-DutySC.

12



Theorem 5. Algorithm Match is a 35
24 -approximation algorithm for k-DutySC, for every k ≥ 3.

Proof. Let X be a k-DutySC instance and let C1, . . . , Cm be an optimal solution for X. Consider
the 2-DutySC solution that is obtained by splitting each shift Cj with |Cj | > 2 into singleton
shifts. For any such Cj , by Theorem 3 we know that RR(Cj) ≥ γ∗|Cj |All(Cj), and by Lemma 7 we

know that γ∗|Cj | ≥ mink≥3 γ
∗
k = γ∗4 = 24

35 . Hence there exists a 2-DutySC solution whose lifetime is

at least 24
35 ·Optk. The lemma follows since Match finds the best 2-DutySC solution.

Due to Lemma 7 we can generalize this approach to find upper bounds on the performance of
Optk in n-DutySC, for k ≤ n.

Lemma 9. Optk(X) ≥ γ∗`Optn(X), where ` = 2
⌈
k+1

2

⌉
is the smallest even integer larger than k.

Hence, if we use an algorithm that solves k-DutySC to solve n-DutySC and the approach of
Theorem 5 the resulting approximation ratio would be at most 1/γ∗` . Lemma 8 implies that the
smallest upper bound achievable via this technique is 1/ ln 2 ≈ 1.4427. Note that it is possible that
a better ratio may be achieved using a different approach.

5.2 Lower Bounds

We show that the approximation ratio of Match is at least 15
11 , for k ≥ 4, and at least 6

5 , for k = 3.

Lemma 10. Match(X∗4 ) = 11
15Optk(X

∗
4 ), for every k ≥ 4.

Proof. Consider the instance X∗4 = {1
8 ,

3
8 ,

5
8 ,

7
8}. Observe that the RoundRobin lifetime of the

sensors on the outside is RR(1
8) = RR(7

8) = 8
7 , while the lifetime is RR(3

8) = RR(5
8) = 8

5 for the
sensors in the middle. Perhaps surprisingly, any sensible pairing of the sensors achieves a lifetime
of 8/3. Thus, one Match solution is to pair the outside sensors for a lifetime of 8/3, and then
run RoundRobin on the middle sensors successively, for an additional lifetime of 2 · 8

5 , as depicted
in Figure 5. Thus, the total lifetime is Match(X∗4 ) = 8

3 + 2 · 8
5 = 88

15 . The lemma follows, since
Optk(X

∗
4 ) = All(X∗4 ) = 8, for every k ≥ 4.

We have a weaker lower bound for k = 3.

Lemma 11. Match(X∗3 ) = 5
6Opt3(X∗3 ).

Proof. Match has 2 duty cycles: {1
6 ,

5
6}, {

1
2}. Hence, Match(X∗3 ) = 5, while All(X∗3 ) = 6.

We conjecture that both Lemma 10 and Lemma 11 are tight due to the fact that computer-based
searches for counterexamples have failed.

Conjecture 1. Match(X) ≥ 11
15Optk(X), for every k ≥ 4, and Match(X) ≥ 5

6Opt3(X).

For some positive integer d, let Dd = { id : i ∈ {0, 1, . . . , d}} be a discretization of [0, 1]. Clearly,
as d → ∞, D becomes a close approximation of [0, 1]. Using brute force, we checked all 680
possible 3-sensor instances and all 2380 possible 4-sensor instances in D16, and found no instance
X for which Match(X) < 5

6Opt3(X) in the first case, nor any for which Match(X) < 11
15Opt4(X)

in the second case.

Again, we can extend the ideas embedded in Lemma 10 to obtain bounds on the performance
of Optk in n-DutySC.
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Figure 5: Illustration of the 15
11 upper bound for the approximation ratio of Match for k ≥ 4. For

the instance X∗4 = {1
8 ,

3
8 ,

5
8 ,

7
8}, Match achieves a lifetime of 88

15 while Opt achieves 8.

Lemma 12. minX:|X|=n
Optk(X)
Optn(X) ≤

Optk(X∗` )
2` , for every ` ≤ n.

Note that the bound of 2
3 for RR was obtained for k = 1 and ` = 2, while the bounds of 5

6 and
11
15 for Match were obtained for k = 2 and ` = 3, 4.

5.3 Asymptotics

One way to improve the analysis of Algorithm Match would be to first prove that perfect deploy-
ments are worst with respect to Match (as they are with respect to RoundRobin), and then to
analyze γ2

k = Match(X∗k)/All(X∗k).

Our experiments show that γ2
k seems to converge to approximately 0.816, which is significantly

higher than limk→∞ γ
∗
k = ln 2 ≈ 0.693. See Figure 7.

We would like to evaluate limk→∞ γ
2
k . However, since Match explicitly evaluates each pair

of sensors, it is not trivial to extrapolate its behavior for large k. Nevertheless, we obtain lower
bounds on the limit by analyzing simple heuristics. For a given instance X, let L = X ∩ [0, 1

3 ],
M = X ∩ (1

3 ,
2
3), and R = X ∩ [2

3 , 1]. Note that |L| = |R| for the perfect deployment instance X∗k
of any size. Consider the following heuristics:

• Sweep: Sensors in L and R are paired to create shifts of size two, starting with the leftmost
sensor in L and the leftmost sensor in R. Any remaining sensors are put in size one shifts.

• Nest: Sensors in L and R are paired to create shifts of size two, starting with the leftmost
sensor in L and the rightmost sensor in R. Any remaining sensors are put in size one shifts.

Note that these heuristics return valid (albeit suboptimal) 2-DutySC solutions. Examples of these
solutions are shown in Figure 6.
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(a) Sweep(X∗9 ) = 14.27273
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(c) Match(X∗9 ) = 14.72273

Figure 6: Illustration of the performance of the two heuristics, Sweep and Nest, and Algorithm
Match. For the instance X∗9 , each procedure returns a different solution. The lifetimes achieved
by Sweep and Nest represent lower bounds on the performance of Match.

Using similar arguments as in Section 4.3 we can show that:

Sweep(X∗n)

All(X∗n)
≈ 1/2 +H4n/3 −Hn

Nest(X∗n)

All(X∗n)
≈ (Hn −Hn/2)/2 + (H2k/3 −Hk/2)/2 + (H4n/3 −Hn)

which means that

lim
n→∞

Sweep(X∗n)

All(X∗n)
=

1

2
+ ln(4/3) ≈ 0.788

lim
n→∞

Nest(X∗n)

All(X∗n)
=

1

2
ln 2 +

1

2
ln(4/3) + ln(4/3) ≈ 0.778

A comparison of the performance of RoundRobin, Match, Sweep and Nest on perfect deploy-
ments to the performance of Opt is given in Figure 7.

In Figure 8, we show the density of the per sensor network lifetime (Alg(X)/n) for
RoundRobin, All, Match, and Opt (computed via brute force), for all 2380 possible in-
stances with 4 sensors over a grid of size 16. X∗4 was the only instance found for which
Match(X) ≤ 11

15Opt4(X). Moreover, for about 82% of the instances, Match(X) = Opt(X),
and the mean approximation ratio was 0.9923. Meanwhile, the average per sensor lifetime for
Match was 1.483, which easily surpasses the corresponding figure for RoundRobin of 1.365.
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Figure 7: Performance of RoundRobin, Match, Sweep, and Nest compared to Opt on perfect
deployments.

6 Fault Tolerance

In this section we extend our analysis to incorporate a fault tolerance model, in which each sensor
may fail to activate with probability p ∈ [0, 1]. We assume that failures occur randomly and
independently. If any sensor in a shift fails to activate, then the entire coverage lifetime of that
shift is lost. Under these assumptions, we can make the following observation about the expected
lifetime of an algorithm.

Observation 13. For any shift C ⊆ X, the expected lifetime of the shift is (1− p)|C| ·All(C).

The expected lifetime of a solution C1, . . . , Cm ⊆ X is
∑

i(1 − p)|Ci| · All(Ci). In the fault
tolerant version of k-DutySC our goal is to find a solution C1, . . . , Cm ⊆ X such that |Ci| ≤ k
with maximum expected lifetime. Let Optpk(X) denote the expected lifetime of an optimal k-
DutySC solution of X.

Theorem 6. Fault tolerant 2-DutySC can be solved in polynomial time.

Proof. The proof is similar to the proof of Theorem 2. The only difference is that the weight of an
edge e = (vi, v

′
j) is defined as follows:

w(e) =

{
(1− p) ·All{xi} i = j,

(1− p)2 ·All({xi, xj}) i < j.

We show that if the probability of failure is high enough, Match, or even RoundRobin,
compute optimal solutions.
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Figure 8: Comparison of the Distribution of Per Sensor Network Lifetime for various algorithms
in 4-DutySC. The lifetime of each algorithm was computed for all 2380 possible instances of 4
sensors on a grid of size 16.

Lemma 14. If p ≥ 1
3 , then E[RR(X)] = Optpk(X), for every X.

Proof. Let C1, . . . , Cm be an optimal schedule. Consider any shift Cj for which |Cj | ≥ 2. By
Observation 13, the expected lifetime of that shift is at most (1 − p)2 ·All(Cj). Since γ(Cj) ≥ 2

3
for every Cj , due to Corollary 4, we have that RR(Cj) ≥ 2

3All(Cj). It follows that

(1− p)2 ·All(Cj) ≤
2

3
(1− p) ·All(Cj) ≤ (1− p) ·RR(Cj) .

Lemma 15. If p ≥ 1−
√
γ∗3 ≈ 0.144, then E[Match(X)] = Optpk(X), for every X.

Proof. Let C1, . . . , Cm be an optimal schedule. Consider any shift Cj for which |Cj | ≥ 3. By
Observation 13, the expected lifetime of that shift is (1 − p)|Cj | ·All(Cj). Due to Theorem 3 we
have that

(1− p)|Cj |All(Cj) ≤
(1− p)|Cj |−1

γ∗k
· (1− p)RR(Cj) .

If |Cj | = 3, we have that (1 − p)|Cj |−1/γ∗k ≤ 1, since p ≥ 1 −
√
γ∗3 ≈ 0.144. Also, for |Cj | > 3

we have that (1 − p)|Cj |−1/γ∗k ≤ (1 − p)3/γ∗4 < 1, since p > 1 − 3
√
γ∗4 ≈ 0.118. It follows that if

p ≥ 1 −
√
γ∗3 , then there exists an optimal schedule that does not use shifts of size larger than 2.

Hence, Algorithm Match computes an optimal solution.
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7 Discussion and Open Problems

While 1-DutySC can be solved trivially by RoundRobin, and we have shown that 2-DutySC
can be solved in polynomial time using Algorithm Match, it remains open whether k-DutySC
is NP-hard, for k ≥ 3. It would also be interesting to close the gap between the upper and lower
bounds on the approximation ratio of Match, for k ≥ 3. We offered one possible direction to
improving the upper bound in Section 5.3.

In this paper, we have assumed that: (i) the initial battery charge of each sensor is identical;
and (ii) the battery charge in each sensor drains in inverse linear proportion to its assigned radius.
Two natural extensions of our work would be to allow the initial battery charges to differ, and to
allow the latter proportion to vary according to some exponent α 6= 1.

Finally, while we have restricted our attention to a one-dimensional coverage region, one could
consider a variety of similar problems in higher dimensions. For example, one might keep the sensor
locations restricted to the line, but consider a two-dimensional coverage region. Conversely, the
sensors could be located in the plane, while the coverage region remains one-dimensional. Of course,
an even more general problem would allow both the sensor locations and the coverage region to be
two-dimensional.
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