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Inclusion of females does not increase variability
in rodent research studies
Annaliese K Beery1,2

Underrepresentation of female subjects in animal research has

gained attention in recent years, and new NIH guidelines aim to

address this problem early, at the grant proposal stage. Many

researchers believe that requirements regarding use of females

will hamper research because of a need for increased sample

sizes, and increased costs. Empirical research across multiple

rodent species and traits demonstrates that females are not

more variable than males, and that for most traits, female

estrous cyclicity need not be considered. Statistical

simulations, presented here, illustrate how factorial designs

can reduce the need for additional research subjects, and

cultural issues around the inclusion of male and female

subjects in research are discussed.
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Introduction
Studies incorporating females have revealed marked dif-
ferences in basic biological processes such as pain signal-
ing [1,2!!]. Female subjects are underrepresented in
animal research across disciplines, however [3!!], and lack
of pre-clinical research on female subjects has likely
resulted in poorer treatment outcomes for women [4,5].
In 2014, noting potential human health consequences of
this research bias, the NIH instituted policies to encour-
age use of both male and female animal research subjects,
and consideration of sex as a biological variable [6!!,7].
Biological sex – classification as generally male or female
based on genetic and physiological features – is typically
distinguished from gender – one’s self-representation as
male, female, or non-binary. Inclusion of both sexes in
animal research studies should drive important discover-
ies in both basic and clinically relevant research [5].

The call for inclusion of females has met with some
criticism [8,9]. One oft-used justification for focusing
on males is that females are presumed to be more vari-
able, in part due to estrous cyclicity. Other pushback
comes from concern that where sex differences exist, use
of males and females will reduce statistical power because
of greater spread of pooled data or smaller sub-samples of
each sex [8]. Finally, some are concerned that increased
attention paid to sex differences in preclinical studies will
overemphasize what are sometimes small differences in
the midst of fundamental similarities, or fail to model sex/
gender differences in human health that may have impor-
tant sociocultural components [9].

This review describes the extent of sex bias and presents
the findings of empirical studies and analyses that address
these concerns surrounding the inclusion of female
subjects.

How bad is the status quo?
Sex bias
The use of predominantly male animal research sub-
jects has been documented in many fields. In a survey
across biological disciplines, we found male bias in 8 of
10 fields (general biology, neuroscience, physiology,
pharmacology, endocrinology, behavioral physiology,
behavior, and zoology — reproduction and immunology
were the exceptions) [3!!]. Similar bias toward the use
of male subjects has been found in surveys of pre-
clinical animal research on pain, cardiovascular disease,
diabetes, and surgical methods [10–13]. In the surgical
literature, 80% of studies that specified sex used only
male subjects [11].

We found neuroscience to be one of the worst offenders,
with over five studies on males for each study on females;
only "20% of studies used both sexes, and 25% did not
specify the sex of study subjects (Figure 1a). Lack of
reporting of subject sex has been documented at similar
rates (20, 22, and 26%) in other surveys [11,13,14]. Even
when subject sex is reported, it is sometimes not evident
until late in the results, or may require accessing online
supplementary material. Subsequent analysis of the neu-
roscience literature suggests that omission of subject sex
has decreased in recent years, but the number of male-
only rodent studies has increased, and analysis by subject
sex in mixed-sex studies remains infrequent [15].

The bias in animal subject use does not reflect differ-
ences in rates of men and women presenting with
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diseases or disorders; the percentage of women diag-
nosed with a given condition exceeded the percentage of
non-human female subjects in research studies on that
condition, in each of several disorders sampled [16].
However, the gender of study authors appears to play
a role, as female authorship was significantly positively
correlated with the inclusion of both sexes and analysis
by subject gender/sex [17].

Analysis by subject sex is not the norm
Even when studies include males and females, analy-
sis by subject sex is infrequent. In a survey of surgical
research on animals, only 1% of papers analyzed
results by sex [11]. In the aforementioned

neuroscience example, 5.5% of the human and animal
research papers sampled used both sexes and analyzed
results by sex (Figure 1a); other fields showed even
lower rates [3!!].

In 1993, the NIH introduced the Revitalization Act,
requiring that women be included in NIH-funded
clinical research [18], and requiring sub-group analysis
by sex to be enabled. A 2011 analysis found that less
than a third of studies that were required by the NIH to
analyze results by subject sex/gender had published
analysis by this factor [19!!]. Similar absences of man-
datory subgroup analyses have occurred in drug safety
reporting to the FDA [20!!]. In November 2017, the
NIH announced  an amendment [NOT-OD-18-014] to
the NIH Policy and Guidelines on the Inclusion of
Women and Minorities as Subjects in Clinical
Research, stipulating that results of valid subgroup
analysis (including by subject sex/gender) must be
submitted to clinical-trials.gov. At present, the NIH
instructs preclinical investigators to report subject sex
and consider sex as a biological variable, but analysis of
sex differences need not be performed [7]. Surveys of
researchers revealed that how subject sex should best
be considered in analysis is not uniformly agreed upon,
and that researcher discretion in selecting analyses
appropriate to the sample is preferred [21].

Why not use both sexes? Countering
assumptions surrounding use of females
Although good reasons exist to study females or males
alone, the rationale for use of only one sex often stems
from unfounded concerns about the use of females or
both sexes. These assumptions: that females are more
variable than males, that females must be tested across
the estrous cycle, and that inclusion of both sexes
increases variability, are each countered below.

In considering variability, some common statistical terms
and principles will be of service. Variation in a data set
can be described in terms of standard deviation (SD), a
measure of the dispersion or spread of data. The coeffi-
cient of variation describes this standard deviation as a
fraction of the mean value (SD/mean) so that it is scaled
relative to the data. For example, a sample with
mean # SD of 1 # 0.05 and one with 1000 # 50 have
equivalent levels of variability relative to their respec-
tive means. Statistical power refers to the probability of
correctly rejecting the null hypothesis, for instance to
detect differences between samples at specific conven-
tionally defined statistical thresholds (i.e. p < 0.05). For
a given sample size, power is greater when mean differ-
ences between groups are higher. For a given mean
difference between groups, power is greater when sam-
ple sizes are higher, allowing better estimation of differ-
ences in sample means.
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Figure 1
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Data on sex bias and trait variability. (a) Inclusion of male and female
animal research subjects was surveyed across 10 biological
disciplines (neuroscience shown here). Even when both sexes were
used, analyses typically did not consider subject sex. Analysis of data
from Ref. [3!!]. (b) Coefficients of variation were assessed in male and
female mice across >9900 measurements of traits. Variability was
similar in males and females, with more male-biased than female-
biased traits, and a mean variance ratio significantly lower than
0.5. Modified (with permission) from Ref. [22!!].
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Assumption 1: females are more variable than males
Even if females were more variable than males, it would
not alter the importance of studying both sexes, only the
difficulty. Fortunately, researchers do not have to con-
tend with that scenario, as recent empirical analyses of
variability in males and females show that unstaged
females are not more variable than males across diverse
traits, from gene expression to hormone levels in multi-
ple species [22!!,23!!,24!,25–27]. Indeed, male mice
appeared to exhibit slightly, but significantly, greater
mean variability than female mice (Figure 1b), with
substantially higher coefficients of variation (CVs) for
hormone measures, metabolism-related traits, and mor-
phology. Females did not have significantly greater
variability in any category [22!!]. Slightly greater male
variability was also found in analysis of microarray data-
sets in both mice and humans [25]. In rats no sex
difference in overall variability was found, but males
exhibited significantly higher variability on nervous sys-
tem measures including neurochemistry and electro-
physiology measures, while females exhibited higher
variability in the category of non-brain measures
[23!!]. In hamsters, no significant differences in variabil-
ity were found between male, female, and ovariecto-
mized (non-cycling) females [27].

Assumption 2: females must be tested across the
estrous cycle
Predictable variation in hormone circulation across the
estrous cycle contributes to some variation in physiology
and behavior, but how much? The similar variability
between males and unstaged females, described above,
suggests estrous variability is no greater than intrinsic
variability in males. But perhaps similar overall variability
comes from different sources: it is plausible that females
might exhibit consistent estrous-cycle dependent vari-
ability in several traits, while males exhibit variability on
different time-scales, or more variability between indi-
viduals. In-depth analysis of a particular trait (body tem-
perature in mice) revealed equivalent overall variability
in males and females, but different time-scales of vari-
ability [24!]. Analysis of a variety of traits tested over
2 consecutive estrous cycles in intact female, ovariecto-
mized female, and male hamsters, revealed no consistent
timing differences across traits. Furthermore, staging
results by phase of the estrous cycle offered no reduction
in variability, even for traits such as sucrose preference
where estrous cycle variation can be detected under
circumstances that are optimized to find it [27]. Thus,
testing across the estrous cycle can be considered a
specific tool for use in a small set of specific instances
rather than a necessary procedure in most studies [28].

While estrous cyclicity is not a major source of variability,
other documented factors may provide avenues for
researchers to reduce variability and increase statistical
power, including the number of animals/cage and rodent

strain [22!!,23!!]. Consideration of frequently overlooked
study details including bedding type [29], biological sex
of the experimenter [30], and overlap of animal shipment
(a stressor) with puberty [31,32], may also increase con-
sistency across studies. The existence of substantial dif-
ferences in findings between laboratories despite careful
efforts at duplication of conditions suggests that more
factors may be important than currently realized [33].

Assumption 3: use of both sexes reduces statistical
power and slows progress
Thus far we have considered variability of males and
females relative to each group. For traits in which a robust
sex difference exists, however, pooling males and females
in one group would increase the variability around a
combined mean. This gives rise to the concern that
sample sizes might need to be doubled to identify treat-
ment effects in studies using both females and males [8].
Factorial designs, however, can evaluate main effects of
treatment and subject sex with effectively the same
power as pair-wise tests, without increased sample size
[34]. Additional factors can also be added at the same
sample size with approximately the same power, provided
the effect sizes of each new factor are no smaller than the
effect sizes used to generate the original estimate of the
number of subjects needed [34,35].

Illustrations of the statistical ramifications of analyzing
results with subject sex as a factor are explored in greater
detail in Figure 2 and Box 1. The only circumstance in
which a notable reduction in power occurs is when there
is an interaction between treatment and sex — which is
to say that males and females respond very differently to
the treatment. In that case, follow-up testing that is
methodologically designed to capture sex differences
and their origins [28] will be biologically meaningful
and important. The factorial approach is powerful, but
not without potential weaknesses. ANOVA on sex*treat-
ment generates three F-values without compensation
for three tests, leading to higher type I error rate than one
t-test (explaining why the ‘treatment’ factor performs as
well as the t-test in scenario 1). This is important to keep
in mind if additional factors are added. Also, while
scenario 3 is extreme, more intermediate interactions
will be less easily detected. If assessing sex differences is
a primary rather than secondary goal, increased sample
size will improve detection of interactions. Larger sam-
ples always provide better potential for analysis, and
many have called for fewer studies performed on more
individuals, particularly in neuroscience [36]. Sub-divi-
sion of this sample into males and females and use of
factorial designs is an effective method of analysis both
in theory and in practice [37].

Much ado about sex
Sex differences can be small or large, insignificant or
critical. One concern about the reporting of sex
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Box 1 Including females does not necessitate larger sample sizes

Some researchers are concerned that use of males and females will result in increased variance, reduced power, and the need to test more animals
[8]. Fortunately, factorial analysis methods result in little to no loss of statistical power [34,35], except when there is a sizable interaction between
sex and treatment. In that case, it is especially important to study both sexes initially, and subsequent, sex-specific analysis or studies may be
needed.

For illustration, simulated outcomes of 2-group and factorial tests are presented. Consider an experiment with treatments ‘A’ and ‘B’ (e.g. hot vs.
cold room temperature) and an outcome measure (e.g. distance traveled). Results are shown for tests using samples of 12 females (f), 12 males
(m), or 6f and 6m — in the presence and absence of sex differences and interaction effects. In each scenario there is a #5% change in mean and
SD in each sex.

In scenario 1 there is no sex difference (Figure 2a). This is common, and results in no cost to mixing sexes. All analyses yield equivalent effects of
treatment, and 2-way ANOVA on sex*treatment indicates no interaction. In scenario 2 there is a large sex difference and a moderate treatment
difference (Figure 2b). This is an oft-feared scenario in which pooling males and females reduces statistical power in t-tests across treatments. 2-
way ANOVA results in no loss of power to detect treatment effects, however, as the test detects treatment effects within each sub-group. Finally,
scenario 3 (Figure 2c) represents a possible ‘worst-case scenario’ with a large treatment effect in females and an equally sizable but opposite
effect in males. This results in the eradication of a treatment difference, but the presence of a strong ANOVA interaction effect signals that sex-
specific follow-up is strongly indicated. R code for these simulations is available at https://osf.io/6q73b/.

Figure 2
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p-value distributions for simulated group compositions and treatment effects. Left panels: mean # SD of each group, used to generate
10 000 normally distributed samples of subjects (12f, 12m, or 6f and 6m) in each treatment. Coefficients of variation (SD/mean) were matched
for each sex/treatment combination, as were effect sizes for treatment comparisons in all-male or female groups (Cohen’s d = 1 using SD of
lower group; .97–.99 using pooled SD). Right panels: violin plots of p-values from t-tests between single- and mixed-sex groups in treatments
A versus B, or from the treatment factor from 2-way sex*treatment ANOVA on mixed-sex groups. The fifth distribution consists of p-values
from the ANOVA’s interaction term across runs. Even with a large sex difference, there is no loss from testing half males and half females
when a factorial analysis is used, as long as there is no interaction. When a strong interaction is present, factorial analysis cannot detect a
unified treatment effect, but the interaction effect indicates that subgroup analysis by sex and possible follow-up experiments are merited.
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differences in animal studies is that it may lead to
overestimation of human sex/gender differences, espe-
cially in brain and behavior [9]. One action researchers
can take to address this concern is to indicate the effect
size of any sex difference that is reported [5]. It is also
critical that in translating findings to humans, we consider
that rodents share only some traits with people, and that
both sex and gender play a role in differences between
women and men.

On the other hand, we should not underestimate the
potential importance of sex differences. In some cases,
small phenotypic differences stem from fundamental
differences in underlying mechanisms. For example,
male and female mice exhibit significant differences in
pain sensitivity but have largely overlapping distribu-
tions. These ‘small but significant’ differences may arise
in part based on pain modulatory pathways that differ
with subject sex and hormone exposure [1,2!!]. Sex-
specific mechanisms of synaptic inhibition have been
discovered in the hippocampus, demonstrating that even
basic mechanisms of neuromodulation can vary with sex
[38]. Multiple sex differences in the pathways underlying
social behaviors in males and females have been docu-
mented, even when males and females exhibit similar
behaviors, such as pair-bonding with a mate. One conse-
quence of pathway differences underlying similar beha-
viors is that the same perturbations of neurochemicals or
environmental factors can have opposing effects in males
and females [39–41]. Recent work on parental behavior
reveals that some pathways contribute similarly to both
maternal and paternal behaviors in mice [42,43], while
other circuits and neuropeptide expression patterns differ
in important ways [44]. Perhaps a more important view is
that studies assessing mechanisms underlying behavior in
both sexes are so rare that we often have little idea of the
magnitude and relevance of differences [45]. There are
likely many more sex-specific differences in fundamental
physiological processes we have missed.

Another concern is that preclinical research on sex differ-
ences may not be beneficial enough to humans to merit
study, as some differences between men and women may
be based on factors related more to culture and gender
than to biological sex [9]. The concern here is that if there
is a statistical or conceptual cost to including females,
there needs to be a clear benefit [9]. While others have
discussed benefits at length [5], this article seeks to
mitigate the issue of cost. And many basic sex differences
have already been discovered in humans. For instance,
rodent research on sex differences in dopamine fiber
densities and modulation of dopamine circuitry by estra-
diol [46] inspired research that discovered effects of
endogenous fluctuation in estradiol in women on prefron-
tal cortex-dependent cognitive tasks [47]. The role of
melanocortin receptor 1 in pain processing in female but
not male mice was also recapitulated in humans, in whom

only females with melanocortin 1 receptor mutations
exhibit altered pain processing [1].

The discovery of differences such as these, despite lim-
itations in the ability to assess mechanistic variation in
humans in vivo, suggests that many more human sex
differences in underlying mechanisms will ultimately
be detected. While there is no guarantee that specific
animal research findings or specific sex differences will
translate to humans, this can be improved by conducting
comparative research across species, as well as corre-
sponding research in humans. The unacceptable alterna-
tive is that we adopt the rodent equivalent of considering
‘man’ to stand for ‘human.’
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