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Abstract Given n sensors on an interval, each of which is equipped with an
adjustable sensing radius and a unit battery charge that drains in inverse linear
proportion to its radius, what schedule will maximize the lifetime of a network
that covers the entire interval? Trivially, any reasonable algorithm is at least
a 2-approximation for this Sensor Strip Cover problem, so we focus on
developing an efficient algorithm that maximizes the expected network lifetime
under a random uniform model of sensor distribution. We demonstrate one
such algorithm that achieves an expected network lifetime within 12% of the
theoretical maximum. Most of the algorithms that we consider come from
a particular family of RoundRobin coverage, in which sensors take turns
covering predefined areas until their battery runs out.
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1 Introduction

Suppose that we wish to cover a one-dimensional region (or interval) with a
wireless sensor network. Given the locations and initial battery charges of n
sensors deployed on that interval, we have the ability to set the sensing radius
of each sensor to an arbitrary length finitely many times. However, the battery
of each sensor drains in inverse linear proportion to its sensing radius, so that
the larger we make the radius, the faster the battery drains. Our goal is to
maximize the lifetime of the network, which is the length of time that the
entire interval is covered until all of the batteries run out. What schedule will
achieve this?

In the most general version of the problem, which we call Sensor Strip
Cover1, the initial battery charges are not necessarily the same, the scheduler
is free to change the radius of any sensor finitely many times, and there are no
restrictions on how many sensors may work together at one time or over the
lifetime of the network. In this paper, we focus on linear time approximation
algorithms with high average-case performance, under the additional assump-
tions: 1) the sensor locations are drawn at random from a uniform distribution;
and 2) each sensor has the same initial battery charge.2

1.1 Problem definition

Formally, let U = [0, 1] be a real interval to be covered, and suppose that n
sensors are deployed on U with locations X = {x1, ..., xn} such that x1 ≤ x2 ≤
· · · ≤ xn. Since each sensor has the same initial battery charge, we assume for
convenience that each initial charge is 1. An instance thus consists of the set
X, and a solution is an assignment of radii, activation times, and deactivation
times to sensors. More specifically a solution (or schedule) is a finite list S of
coverage assignments (i, ρ, τ, σ), each of which tells the ith sensor to activate
at time τ with a radius of ρ, and maintain that coverage until time σ. For a
list of length m, let Sj indicate the jth coverage assignment for 1 ≤ j ≤ m.

Since we allow the coverage assignment of each sensor to be changed only
finitely many times, any schedule can be visualized by a space-time diagram in
which each coverage assignment is represented by a rectangle. It is customary
in such diagrams to view the sensor locations as forming the horizontal axis,
with time extending upwards vertically. In this case, the coverage of a sensor
located at xij and assigned the radius ρj beginning at time τj and ending
at time σj is depicted by a rectangle with lower-left corner (xij − ρj , τj) and
upper-right corner (xij + ρj , σj). Let the set of all points contained in this
rectangle be denoted as Rect(Sj). A point (u, t) ∈ U × [0,∞) in space-time

1 We use the terms strip and interval interchangeably to refer to the one-dimensional
coverage region.

2 Please see Remark 1 and the Open Problems section for a discussion of conditions under
which the latter assumption can be lifted without loss of generality.
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Fig. 1 Graphical depictions of valid schedules for a randomly generated instance of 5 unit-
battery sensors. Here, X = (0.178, 0.275, 0.417, 0.532, 0.737). At left, the schedule produces
a lifetime of 7.55 time units, while on the right, a superior lifetime of 8.55 time units is
achieved by a different schedule. Neither schedule reaches the maximum theoretical lifetime
of 10 time units, although in this case the solution at right is the best possible.

is covered by a schedule S if (u, t) ∈
⋃
j Rect(Sj). Examples of two possible

schedules for a randomly generated instance are shown in Figure 1.

In addition to the coverage constraint described above, a solution to Sen-
sor Strip Cover must also satisfy a battery constraint. That is, no sensor i
can consume more than 1 battery unit. During the jth coverage assignment,
sensor ij consumes ρj · (σj − τj) battery units. Thus, a valid schedule must
have

∑
ij=i

ρj · (σj − τj) ≤ 1 for all 1 ≤ i ≤ n.

The lifetime of the network in a solution S is the maximum value T such
that every point (u, t) ∈ U × [0, T ] is covered, and no sensor i has consumed
more than 1 battery unit. Graphical depictions of valid schedules are shown
in Figures 1, 2, 4, 5, and 6.

1.2 Motivation

This type of scheduling problem arises in many applications, often in relation
to problems of barrier coverage (see [9,21] for surveys). Suppose that we have
a highway, supply line, or fence in territory that is either hostile or difficult
to navigate. While we want to monitor activity along this line, conditions
on the ground make it impossible to systematically place wireless sensors at
specific locations. However, it is feasible and inexpensive to deploy adjustable
range sensors along the line by, say, dropping them from an airplane flying
overhead (e.g. [8,19,20]). Once deployed, the sensors send us their locations via
GPS, which we then analyze and respond with a list of coverage assignments.
Replacing the battery in any sensor is infeasible. How do we construct a set
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of assignments that will keep this vital supply line completely monitored for
as long as possible?

While worst-case analysis of algorithms is certainly of interest, since (as
we will show) a 2-approximation for Sensor Strip Cover is trivial, we have
focused our efforts on finding simple, linear time algorithms with good average-
case performance against uniform random sensor deployments. If the sensors
are in fact dropped from an airplane overhead, then this is a reasonable model.
Furthermore, in this event average-case performance is likely to be of greater
practical importance than worst-case performance, which might occur in only
a few extremely unlikely instances.

1.3 Previous Research

Buchsbaum et al. [7] initiated this line of research by defining Restricted
Strip Cover (RSC) as a special case of a more general sensor cover problem.
In RSC, the locations, sensing radii, and battery charges of n sensors placed
on an interval are given, and the problem is to compute an optimal set of acti-
vation times, so as to maximize the network lifetime. By taking advantage of
the packing-covering duality, and using a reduction from Dynamic Storage
Allocation, they showed that this problem is NP-hard. They presented an
O(log log n)-approximation algorithm, which was later improved to a constant
factor approximation algorithm by Gibson and Varadarajan [15]. For the spe-
cial case of RSC in which the battery charges are all the same, Buchsbaum
et al. presented a simple greedy algorithm that yields an optimal solution in
polynomial time. However, they considered only the non-preemptive case, in
which a sensor cannot be reactivated once it is turned on and then off. In
some cases, such as the one we show in Figure 2, pre-emptive scheduling can
increase the achievable lifetime.

The problem of finding the optimal set of radial assignments for sensors
deployed on an interval, rather than the activation times, is more tractable.
Whereas Sensor Strip Cover requires area coverage (i.e. a requirement to
cover all points in an interval), Lev-Tov and Peleg [16] studied a similar prob-
lem with target coverage (i.e. a requirement to cover only a finite number of
specific points in an interval). In Minimum Sum of Radii Cover (MSRC),
the input is a set of n sensors and a finite set of m points on the interval
that are to be covered, and the goal is to find the radial assignments with the
minimum sum of radii, such that all m points are covered. They used dynamic
programming to devise a polynomial time algorithm for the one-dimensional
case, and a polynomial time approximation scheme for the two-dimensional
case. Note that the emphasis here is on energy conservation (through mini-
mizing the sum of radii), and not maximizing lifetime explicitly, since they
seek only a single coverage assignment. This is akin to a “one-shift” solution.
Bar-Noy et al. [4] found a polynomial time solution to the one-shift problem
with area coverage on an interval. In Observation 2 we show that a greedy
algorithm based on this criteria provides at best a 6

5 -approximation.
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Fig. 2 Illustration of the advantages of pre-emptive scheduling for X =
(
1
8
, 1
2
, 7
8

)
. At left,

pre-emptive scheduling is employed to reset the radial assignments of x1 and x3 after 4 time
units have passed. The resulting lifetime of 5 1

3
time units surpasses the best non-preemptive

solution, shown at right.

Bilò et al. [6] generalized MSRC to cases where the battery draining rate α
is not linear with respect to the radius, and showed NP-hardness for the case
where α ≥ 2. Alt et al. [1] found constant factor approximation algorithms
and extended the hardness result to α > 1. Gibson et al. found a polynomial
time solution to a related clustering problem using pinned disks [14].

Worst-case analysis of Sensor Strip Cover and several closely-related
variants was conducted by Bar-Noy et al. [2,4,3]. They showed the RoundRobin
algorithm we discuss in this paper has a tight 3

2 -approximation guarantee. The
instance that produces this lower bound produces the same bound for the best
one circle solution to the Connected Range Assignment (CRA) problem.
In this problem, studied by Chambers et al. [12], radii are assigned to points
in the plane in order to obtain a connected disk graph.

Working in the plane, Wu and Yang [23] introduced the notion of networks
that use sensors with adjustable ranges, and studied energy consumption un-
der a random deployment model. Cardei and Du [8] proposed the Disjoint
Set Covers problem, in which n sensors monitor m target points, and the
goal is find the maximum number of disjoint covers. They showed that this
problem is NP-complete, and that any polynomial-time algorithm is at best a
2-approximation. Heuristics were presented for solving a version of the prob-
lem that had been converted into a maximum-flow problem. In subsequent
work, Cardei et al. [10,11] extended this problem to the Adjustable Range
Set Cover problem by lifting the restriction that the covers be disjoint. An
important difference between our work and theirs is that they assumed that
the sensing ranges came from a finite discrete set, rather than a continuous
range, as we allow.
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Algorithm E[T̄ ] V ar[T̄ ] AC WClb WCub

RoundRobin 1.386 0.078 1.443 1.5 1.5 [4]
k-RoundRobin 1.386 0.078 1.443 1.5 1.5

log-RoundRobin 1.738 0.022 1.151
Optimized log-RoundRobin 1.791 1.117

Table 1 Summary of results for Sensor Strip Cover with unit batteries. E[T̄ ] is the
expected lifetime per sensor, if the sensors are deployed uniformly at random. AC is the
approximation ratio in the average case, while WClb and WCub are lower and upper bounds
for the worst-case approximation ratios, respectively.

Unlike the duty cycling approach taken by Cardei et al., Berman et al. [5,
13] sought to maximize the true lifetime in the Sensor Network Lifetime
Problem (SNLP), which seeks to cover m target points with n adjustable
range sensors. They propose a Linear Program that is exponential in n, but
achieve an O(log n)-approximation by using the Garg-Könemann algorithm
for solvings LPs. Sensing ranges are allowed to vary continuously up to a
maximum cutoff distance. Sensor Strip Cover differs from SNLP in that
it requires area coverage on a one-dimensional region.

1.4 Our Contribution

Our extension of Restricted Strip Cover is the first to consider the true
lifetime for area coverage on the line with adjustable sensing ranges. Since
any reasonable algorithm is at least a 2-approximation, most of our efforts
are focused on raising the approximation ratio in the average case, which in
an application scenario, is likely to be of greater value. Our main result is a
constructive proof that a linear time algorithm exists that achieves an approx-
imation ratio of 1.117 in the average case. We accomplish this by employing
RoundRobin coverage on a hierarchical system of pre-defined coverage ar-
eas. Although we allow pre-emptive scheduling, we do not explicitly use it in
our algorithms. Thus, our results are also valid for the special case in which
pre-emptive scheduling is not allowed. A summary of our results is shown in
Table 1.

2 Preliminaries

Much of our analysis is predicated on a particularly simple algorithm: RoundRobin,
which forces the sensors to take turns covering U . Namely it assigns, for every i,

ρi = max{xi, 1− xi}, τi =

i−1∑
j=1

1

ρj
. (1)

The lifetime of RoundRobin is thus

RR(X)
4
=

n∑
i=1

1

ρi
.
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Note that RoundRobin gives a valid solution for every variant of the Sensor
Strip Cover problem.

The best possible lifetime of any instance is contrained by the total battery
charge in the system, as well as the location of the sensors.

Lemma 1 The maximum lifetime of a unit battery instance X is at most 2n.

Proof Consider an optimal solution S for X with lifetime T . Due to the battery
constraint, the total area of space-time covered by sensor i is at most 2, for all
1 ≤ i ≤ n, since the width of each rectangle is twice the assigned radius. Due
to the coverage constraint, the lifetime T of the network is at most the total
area of space-time covered by the sensors, which is at most 2n.

For any set of sensor locations X, we assume that there exists some optimal
schedule that will produce the longest possible lifetime Opt.

Remark 1 Since the scheduler is allowed to change the sensing radius of each
sensor finitely many times, we contend that the assumption of uniform initial
battery charges can be made without loss of generality under mild regularity
conditions. Consider an instance (X,B) of Sensor Strip Cover with sensor
locations X and corresponding non-uniform battery charges B, where bi ∈ Z+

is the initial battery charge of the sensor located at xi, and not all of the bi’s are
the same. Then if the product XB is uniformly distributed, the performance
of most algorithms on this instance is roughly the same as it would be on a
unit battery instance, with bi sensors placed at xi.

Remark 2 It is natural to wonder whether an algorithm that successively
schedules the least wasteful coverage until a sensor runs out of battery life is
optimal. Here, we show a worst-case approximation bound for such a Greedy
algorithm.

Observation 2 The approximation ratio of Greedy is at best 6
5 .

Proof Consider X =
(
1
6 − ε,

1
2 ,

5
6

)
, for some ε > 0. Greedy chooses to activate

the middle sensor by itself on the entire interval first, since that is the only
perfect assignment possible. This produces a lifetime approaching 5 as ε→ 0,
but the optimal lifetime of 6 is achievable in the limit by scheduling all three
sensors together (see Figure 3).
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Fig. 3 Depiction of 6
5

lower bound for Greedy. For the instance X =
(
1
6
− ε, 1

2
, 5
6

)
, Opt

produces a lifetime that approaches 6 as ε → 0, but Greedy achieves a lifetime that only
approaches 5. In this example ε = 0.02, and the lifetime of Opt is 5.66 while the lifetime of
Greedy is 4.91.

Remark 3 In [2], a 3
2 lower bound on the performance of RoundRobin relative

to Opt was demonstrated using the example shown in Figure 4. This same
lower bound applies to each of the algorithms discussed in this paper, in fact
from the same example. Consequently for the remainder of this paper we
focus on bounds for the average-case performance of algorithms under the
assumption that sensor locations are distributed uniformly at random. That
is, we assume that X is a uniform random variable on [0, 1]. We will abuse
notation by allowing X to represent both the r.v. and a set of n observations
of that r.v.

3 Average-case analysis

For any solution, let T̄ = T/n ∈ [1, 2] be the average network lifetime per
sensor. For a group of sensors working simultaneously, it is often convenient to
discuss the normalized lifetime T̂ , which is the average lifetime of a particular
coverage group.

3.1 RoundRobin

Clearly, RoundRobin performs best when sensors are located close to 1/2,
where the lifetime is close to 2, and poorly for sensors near 0 and 1, where the
lifetime is 1. We analyze the average case by assuming that X is a uniform
random variable over [0, 1]. Then the function T0,1(X) = 1

max (X,1−X) yields a
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Fig. 4 Depiction of 3
2

lower bound for RoundRobin. The lifetime of the network is shown on
the vertical axis, while location is shown on the horizontal axis. Each sensor is indicated by
a red dot, and each rectangle represents a coverage assignment. The dashed arrows indicate
periods of activity. Note that the total area of space-time consumed by each sensor is exactly
2. For the instance X = ( 1

4
, 3
4

), Opt produces a lifetime of 4, but RoundRobin achieves a

lifetime of only 8
3

.

new r.v. giving the lifetime of an individual sensor3. It is easy to calculate its
mean

µT , E[T0,1(X)] =

∫ 1

0

dx

max(x, 1− x)
= 2

∫ 1

1
2

dx

x
= 2 lnx

∣∣∣∣1
1
2

= 2 ln 2 , (2)

and variance

σ2
T , E[T 2

0,1(X)]− µ2
T =

∫ 1

0

dx

(max(x, 1− x))2
− µ2

T = 2− 4 ln2 2 . (3)

We will develop algorithms that improve on this expected lifetime of µT .

Central Limit Theorem. Of course, with n sensors, we are more interested in
the distribution of T̄ , as opposed to that of T . Since we know µT and σ2

T , the
Central Limit Theorem implies that the distribution of T̄ approaches a normal
distribution with mean µT and variance σ2

T /n as n → ∞. For this reason we
report the variance but focus most of our attention on the expected average
lifetime of each algorithm.

Theorem 1 If the sensor locations are distributed uniformly at random over
[0, 1], then RoundRobin achieves an approximation ratio of 1/ ln 2 ≈ 1.443
in the average case.

Proof Since Opt(X) ≤ 2n by Lemma 1, the result follows from equation 2.

3 We will occasionally abuse notation by using T to refer to either the lifetime of the
system, or the random variable giving the lifetime of a sensor. The precise meaning should
be clear from context.
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3.2 k-RoundRobin

A natural extension of RoundRobin is to partition U into k equally-spaced
subintervals, and run it independently on each of those. Somewhat surpris-
ingly, the performance is no better in either the worst or the average case. A
generalized version of RoundRobin is shown in Algorithm 1.

Let k be a fixed positive integer, and let Uk(i) = [ i−1k , ik ] for i = 1, ..., k de-
fine a partition of U . We define k-RoundRobin to be the algorithm that runs
RoundRobin independently on each subinterval Uk(i); maintaining k parallel
queues. However, over any subinterval [a, b] ⊆ U , the r.v. giving the lifetime
of a sensor in Uk(i) is simply a rescaling of T from the original RoundRobin.

Algorithm 1 RoundRobin
Input: An ordered set of n sensor locations X
Optional Parameters: a start time t0, locations of the left and right edges of the coverage
interval
Output: A schedule S

1: if t0 is null then
2: t0 = 0
3: end if
4: if left is null then
5: left = 0
6: end if
7: if right is null then
8: right = 1
9: end if

10: if n > 0 then
11: τ1 = t0
12: ρ1 = max(x1 − left, right− x1) {Set the radius to touch the furthest endpoint}
13: σ1 = τ1 + 1/ρ1
14: if n > 1 then
15: for i from 2 to n do
16: τi = σi−1

17: ρi = max(xi − left, right− xi)
18: σi = τi + 1/ρi
19: end for
20: end if
21: return ([n], ρ, τ, σ)
22: else
23: return null
24: end if

Remark 4 For any interval [a, b] ⊆ U , the expected lifetime Ta,b(X) of a sensor
running RoundRobin on [a, b] is µT

b−a with variance ( σT

b−a )2.

With b− a = 1/k, the expected lifetime of each sensor in k-RoundRobin
is kµT , with a maximum lifetime of 2k. However, in order to cover the whole
line, we have to run k parallel queues, so that the expected normalized lifetime
of each sensor is E[T̂ ] = µT . For a set of n sensors, the total expected lifetime is
nµT , so the expected average network lifetime E[T̄ ] is µT . Similar calculations
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Algorithm 2 k-RoundRobin
Input: An ordered set of sensor locations X, an optional depth parameter k
Output: A schedule S

1: if k is null then
2: k ← bmax(1, n

3 lnn
)c

3: end if
4: for i from 1 to n do
5: qi = bk · xic {Determine to which of the k queues each sensor belongs}
6: end for
7: S = {}
8: for ` from 1 to k do
9: Q = {xi ∈ X : qi = `}

10: S = S ∪RoundRobin(Q, 0, `−1
k
, `
k

)
11: end for
12: return S

show that the variance of each sensor’s lifetime is (kσT )2, while the normalized
variance is σ2

T and the variance of the mean is V ar(T̄ ) = σ2
T /n.

Load Balancing. Since we are maintaining k parallel queues that must work
together to cover U , our calculations are sensitive to the requirement that the
lifetime be the same in each queue. Figure 5 illustrates the dangers of improper
load balancing.

Following [17], we can think of the observation of each sensor location as
an independent Poisson trial, and use a Chernoff bound to ensure that the
probability of a sub-interval Uk(i) getting too few sensors is o(1). Let Ni be a
r.v. denoting the number of sensors in Uk(i). Then for any k < n

3 lnn , we have
that

Pr

[∣∣∣Ni − n

k

∣∣∣ ≥√3n lnn

k

]
≤ 2 exp

{
−1

3

n

k

3k lnn

n

}
=

2

n
.

In our case, we need to bound the probability that some Uk(i) has too few
sensors in it, but using a union bound, the probability of this is at most 2k

n ,
which still goes to 0 as n → ∞ for a fixed k. This shows that with high
probability, the deviations from the mean number of sensors in each interval
are on the order of O(

√
n lnn) for a fixed k.

Set n = n1 + n2, where n1 = k ·min1≤i≤kNi. Our scheduler allows the n1
sensors to run k-RoundRobin on perfectly balanced stacks, and then throws
the n2 leftover sensors away. Thus, the actual expected average lifetime of the
algorithm is

E[T̄actual] =
n1
n
· E[T̄ ] +

n2
n
· 0→ E[T̄ ] = µT , as n→∞ ,

since n2 = O(
√
n lnn) and thus n2

n → 0 as n→∞.

Observation 3 k-RoundRobin provides the same worst-case and average-
case performance as RoundRobin.
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(b) 3-RoundRobin(X) = 29.50

Fig. 5 k-RoundRobin for k = 2, 3 against a random instance with 26 sensors. Even with
proper load balancing, there are many inefficient sensors. The resulting average lifetimes are
1.370 (left) and 1.135 (right).

3.3 log-RoundRobin

Nevertheless, clever applications of RoundRobin can yield efficient algo-
rithms. While the expected lifetime of a sensor in RoundRobin is independent
of the length of the interval it covers, it still performs better when it is near the
center of the interval. Specifically, the expected lifetime of a sensor covering an
interval [a, b], that is located within a subinterval Ua,b(δ) = [ b+a2 −δ,

b+a
2 +δ] ⊆

[a, b] for some 0 ≤ δ ≤ b−a
2 , is given by

E[Ta,b(X; δ)] =
1

2δ

∫ b+a
2 +δ

b+a
2 −δ

dx

max(x− a, b− x)
=

1

δ
ln

(
1 +

2δ

b− a

)
. (4)

Since the maximum lifetime is 2/(b − a), the expected normalized lifetime is

E[T̂a,b(X; δ)] = b−a
δ ln

(
1 + 2δ

b−a

)
, and the normalized variance is:

V ar(T̂a,b(X; δ)) = 4

[
1− 1

1 + b−a
2δ

−
(
b− a

2δ
· ln
(

1 +
2δ

b− a

))2
]
. (5)

Within the framework of using RoundRobin on subintervals [a, b], but
selecting only those sensors that are closest to the midpoints of those intervals,
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(b) log-RoundRobin with depth 3

Fig. 6 log-RoundRobin with depth 2 and 3 against a random instance with 26 sensors.
The depth parameter of 2 depicted at left offers better load balancing than the parameter
of 3 at right for 26 sensors. The schedule on the left achieves a lifetime of 36.66, while the
one on the right achieves only 27.0

an algorithm emerges naturally: partition U into subintervals, but employ
RoundRobin only on those sensors that are close to the midpoint of each
subinterval. To make efficient use of each sensor, we construct a hierarchical
series of such partitions. We call this algorithm log-RoundRobin, and it is
indexed by a depth parameter k, which indicates the number of partitions it
employs.

Formally, for a fixed positive integer k, we partition U into 2k + 1 subin-
tervals Uk(i) = [ i

2k
− 1

2k+1 ,
i
2k

+ 1
2k+1 ]∩U for i = 0, 1, ..., 2k. 4 Each sensor thus

belongs to one subinterval Uk(i). The collection of sensors belonging to the
same subinterval run RoundRobin over a wider coverage interval. To figure
out its width, note that every integer between 1 and 2k − 1 can be written as
2j times some odd integer between 1 and 2k − 1, for some j = 0, . . . , k. We
define

η(i) = max
0≤j≤k

{j : i = 2j · y, 1 ≤ y ≤ 2k − 1, y is odd},

4 Note that the first and last intervals, Uk(0) = [0, 2−k−1] and Uk(2k) = [1 − 2−k−1, 1],
respectively, are only half as wide as the others, all of which have width 2−k.
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Algorithm 3 log-RoundRobin
Input: An ordered set of sensor locations X, an optional depth parameter k
Output: A schedule S

1: if k is null then
2: k ← bmax(1, lnn)c
3: end if
4: for i from 1 to n do
5: qi = round(2k · xi) {Determine to which of the 2k + 1 queues each sensor belongs}
6: end for
7: for ` from 1 to 2k − 1 do
8: j` = k − η(`) {To which coverage group does this queue belong?}
9: parent` = {qi ∈ q : qi is the parent queue of q`} {Which queue runs immediately

before this one?}
10: left` = `

2k
− 2−j`

11: right` = `
2k

+ 2−j`

12: Q` = {xi ∈ X : qi = `}
13: S` = RoundRobin(Q`, 0, left`, right`)
14: T` = maxS`

σ
15: end for
16: for j from 1 to k do
17: for all ` such that j` = j do
18: if parent` is null then
19: t` = 0
20: else
21: t` = Tparent`
22: for all i listed in S` do
23: τi = τi + t`
24: σi = σi + t` {Push back each schedule by that of its parent}
25: end for
26: end if
27: T` = maxS`

σ {Reset the ending time of each queue}
28: end for
29: end for
30: S =

⋃
1≤`≤2k−1 S`

31: T = lifetime of S
32: S = S ∪RoundRobin({xi ∈ X : qi = {0, 2k}}, T, 0, 1)
33: return S

to be the largest such integer.5 If sensor x ∈ Uk(i), then x is responsible
for covering the interval around i/2k with radius 2η(i)−k. For example, the
middle interval occurs when i = 2k−1. Thus, since η(2k−1) = k−1, any sensor
that lies in Uk(2k−1) is assigned to cover all of U . Similarly, sensors within
2−k−1 of either 1

4 or 3
4 are assigned to cover the subintervals [0, 12 ] and [ 12 , 1],

respectively. In this manner all sensors are near the center of their coverage
intervals. A graphical depiction of the normalized sensor network lifetime as a
function of location is shown in Figure 7.

5 If the integers from 1 to 2k − 1 were placed in a binary tree, η(i) tell us how high up i
is in that tree.
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Fig. 7 Normalized sensor network lifetime for k = 1, 2, 3, 4 using the log-RoundRobin
algorithm. Each color represents the lifetime of the sensors in Γk(j). Note that while the
actual lifetime of a sensor in Γk(j) may reach 2j , it must run in parallel with 2j−1 partners,
so the normalized lifetime of the group is at most 2. The expected average lifetime of the
network approaches 1.737752 as k →∞.

For j = 1, ..., k, we define Γk(j) to the be the set of intervals that comprise
the jth level of the algorithm. Formally, we denote

Γk(j) =


2k−1⋃
i=1

Uk(i) : j = k − η(i)

 .

Note that Γk(j) consists of 2j−1 disjoint intervals, each of width 2−k.6 Thus
Γk(j) occupies 2j−k−1 of U . We can compute the expected normalized lifetime
for Γk(j) using Equation 4

E[T̂k(j)] = E[T̂0,2−j+1(X; 2−k−1)] = 2k−j+2 ln
(
1 + 2j−k−1

)
,

and the variance using Equation 5:

V ar(T̂k(j)) = 4

[
1− 1

1 + 2k−j+1
−
(
2k−j+1 · ln

(
1 + 2j−k−1

))2]
.

Summing over the Γk(j)’s to find the total expected normalized lifetime, we
obtain

E[T̂k] =
k∑
j=1

E[T̂k(j)]

2k−j+1
= 2 ln

k∏
j=1

(
1 + 2j−k−1

)
= 2 ln

k∏
`=1

(
1 + 2−`

)
. (6)

6 We let Γk(0) be the set of sensors assigned to Uk(0) or Uk(2k), and have those run
RoundRobin on U after all other sensors complete. Their contribution to the network life-
time becomes negligible as k →∞, so we omit it from our calculations.
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The analogous infinite product is a q-series [22], denoted here by
(
−1; 1

2

)
∞,

for which we can compute an approximate limiting value. This leads directly
to the expected average lifetime:

µ∗T , E[T̂ ] = lim
k→∞

E[T̂k] = 2 ln

( ∞∏
`=1

1 + 2−`

)
≈ 1.737752 .

The mean normalized variance satisfies

E[V ar(T̂k)] =

k∑
j=1

V ar(T̂k(j))

2k−j+1
= 4

[
k∑
`=1

1

1 + 2`
− 2` · ln2

(
1 + 2−`

)]
,

which has the approximate limit of 0.02202547 as k → ∞. Computation of
the total variance is omitted, since it requires extensive calculation that adds
little elucidation, but it will converge to the above as k →∞.

Furthermore, it is clear from Figure 7 that the worst-case lifetime occurs
when a sensor in Γk(k) lies near one of the endpoints of the interval on which it
is active. The normalized lifetime at this point is 4/3, a constant. This provides
the same worst-case performance as RoundRobin. Note that this result only
holds for balanced loads – if loads are unbalanced, the worst-case performance
of log-RoundRobin is unbounded.

Load Balancing, revisited. In log-RoundRobin, each set Γk(j) for j = 1, ..., k
maintains 2j−1 parallel queues. Proper functioning of our algorithm requires
balanced loads across these queues, but the hierarchical structure of log-
RoundRobin alleviates the load balancing issue, since the Γk(j)’s are sched-
uled in ascending order of j. To see this, suppose that the left half of Γk(2)
runs out, while the right half is still going. U remains covered if the left half
of Γk(3) starts running alongside the right half of Γk(2). In this manner load
imbalances are averaged out over the k levels of the algorithm.

Nevertheless, a Chernoff bound analogous to the one used above for k-
RoundRobin will show that for k < lnn, with high probability Ni will deviate
from its mean of n

2k
by O(

√
n lnn). Setting n1 = 2k ·min1≤i≤2k−1Ni yields

E[T̄actual] ≥
n1
n
· µ∗T +

n2
n
· 0→ µ∗T , as n→∞ .7

Theorem 2 For sufficiently large n, the log-RoundRobin algorithm achieves
an approximation ratio of 1.151 in the average case with high probability.

7 The inequality is justified by the preceding argument that in practice, the actual load
balancing will work at least this well.
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3.4 Optimizations of log-RoundRobin

Still, it is clear from Figure 7 that efficiency is highest in Γk(1) and lowest in
Γk(k). We can show that in fact, the relative efficiency of Γk(k) is the constant

1
2 ln 3

2

≈ 1.233. On the other hand, it is easy to see that the relative efficiency of

Γk(1) approaches 1 as k →∞. Therefore, we can improve the efficiency of log-
RoundRobin by shrinking the intervals over which Γk(k) is active. Note that
since every Γk(j) for j = 1, ..., k− 1 borders Γk(k) on both sides, we maintain
balanced loads across each Γk(j) even as we shrink the width of Γk(k). Let
0 ≤ ε = ε(k) ≤ 1 be a parameter measuring the inward shift of the boundaries
of Γk(k). Then using Equation 4, the expected normalized lifetime becomes

E[T̂k(j, ε)] = E
[
T̂0,2−j+1

(
X;

1 + ε

2k+1

)]
=

2k−j+2

1 + ε
ln
(
1 + (1 + ε)2j−k−1

)
for j = 1, ..., k − 1, and

E[T̂k(k, ε)] = E
[
T̂0,2−k+1

(
X;

1− ε
2k+1

)]
=

4

1− ε
ln

(
3− ε

2

)
.

Taking the weighted average again, we have a generalization of Equation 6
that can be expressed as another q-series:

E[T̂k(k, ε)] = 2 ln

(
3− ε

2

) ∞∏
i=2

1 + (1 + ε)2−i = 2 ln
(3− ε)

(
−(1 + ε); 1

2

)
∞

(ε+ 3)(ε+ 2)
.

We can find the optimal ε(k) using elementary calculus, but unfortunately a
general solution requires factoring a polynomial of degree k − 1:

T ′k(ε) = 0⇒ 1

3− ε
=

k−1∑
j=1

1

2j+1 + 1 + ε
. (7)

However, since T ′k(0) > 0 for k > 3, and T ′k(1) < 0 for k > 0, the derivative
has a root between 0 and 1 for k > 3 by the Intermediate Value Theorem.
Moreover the Second Derivative Test confirms that for k > 1, each of these
roots is a local maximum.

Numerical approximations of some relevant roots of this polynomial are
shown in Table 2, alongside the expected network lifetime of the optimized
algorithm. These optimizations improve the expected average network lifetime
by more than 3% above that of log-RoundRobin.

Theorem 3 For sufficiently large n, the optimized log-RoundRobin algo-
rithm achieves an approximation ratio of 1.117 in the average case with high
probability.

Convergence. The Ratio Test, combined with L’Hôpital’s Rule, will show that
both series Tk(ε) and T ′k(ε) converge as k →∞ for any fixed ε ∈ [0, 1]. As we
have not found a closed functional form for either limit, we cannot prove that
the optimal ε converges to a limit.
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k ε Tk(0) Tk(ε) Gain % |Uk(k; ε)|%
2 0 1.492783 1.492783 0 50.00
3 0 1.614033 1.614033 0 50.00
4 0.211103 1.675576 1.696157 1.23 39.44
5 0.371297 1.706584 1.743439 2.16 31.44
6 0.448178 1.722149 1.767123 2.61 27.59
7 0.485871 1.729946 1.778990 2.84 25.71
8 0.504537 1.733848 1.784931 2.95 24.77
10 0.518459 1.736777 1.789391 3.03 24.08
12 0.521929 1.737509 1.790506 3.05 23.90
15 0.522941 1.737723 1.790831 3.06 23.85
20 0.523081 1.737752 1.790876 3.06 23.85

Table 2 Numerical approximations for optimized log-RoundRobin. Note that T20(0) equals
T∞(0) = µ∗T to six digits. The rightmost column shows the percentage of U that is covered
by Γk(k; ε).

4 Summary

Our emphasis on the lifetime of a network addresses application considerations
more directly than previous attempts to maximize the number of covers, or
conserve energy in a single cover. Moreover, our study of the expected perfor-
mance of algorithms in the average case is likely to be more relevant in many
realistic applications.

4.1 Discussion and Open Problems

While it is known that RSC is NP-hard [7], and that Sensor Strip Cover
is NP-hard if each sensor’s radius is allowed to be set only once [4], it is not
known whether Sensor Strip Cover itself is NP-hard. Furthermore, both
of these hardness proofs require non-uniform initial battery charges, and thus
it is not clear whether Sensor Strip Cover with uniform batteries is NP-
hard, or even if a gap exists between it and the set-once restricted version.
Note that RSC is NP-hard in general, but admits a polynomial-time solution
in the uniform battery case [7].

In this paper we found the expected performance of several algorithms
under the assumptions that the sensor locations X were distributed uniformly
at random, and the initial battery charges B were the same. The assumption
of uniform battery charges was made without loss of generality, since we have
provided a rationale for translating a non-uniform battery instance into a
uniform battery instance on which most algorithms will have roughly the same
performance. However, this argument ignored the question of load-balancing
that is necessary for several of our algorithms to function properly. Thus, a
better assumption might be that the product XB is uniformly distributed.
In this event, we contend that our results will still hold for sufficiently large
n. On the other hand, it is not clear how our results would change under
radically different assumptions about the distribution of sensor locations or
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battery charges (e.g. a binomial distribution). This type of analysis could be
performed for any pair of probability distributions with finite support.

In this average-case analysis, we measured the quality of approximation
against the theoretical maximum determined by the total battery charge of
the system (2n). This is only an upper bound on the performance of Opt,
since it is clear that there are instances in which even Opt cannot achieve a
lifetime of 2n (e.g. X = ( 1

3 )). Thus, the expected performance of Opt against
uniform random deployment is unknown. It may be the case that the optimized
log-RoundRobin algorithm is in fact very close to being optimal.

This problem setting is rich, in that there are many variations in the setup
that can alter the resulting analysis dramatically. In this paper we have as-
sumed that the battery charges dissipate in direct inverse proportion to the
assigned sensing radius (e.g. τ = 1/ρ). It is natural to suppose that an ex-
ponent could factor into this relationship, so that, say, the radius drains in
quadratic inverse proportion to the sensing radius (e.g. τ = 1/ρ2). This may
correspond more closely to a realistic dissipation of power.

We have assumed that once deployed, the sensors cannot be moved. Phelan
et al. [18] have considered a variation of Sensor Strip Cover in which the
sensors are allowed to be moved, at a certain cost. This line of research could
have interesting connections with our findings.

Finally, while we have restricted our attention to a one-dimensional cov-
erage region, one could consider a variety of similar problems in higher di-
mensions. For example, one might keep the sensor locations restricted to the
line, but consider a two-dimensional coverage region (i.e. beach coverage). Con-
versely, the sensors could be located in the plane, while the coverage region
remains one-dimensional (i.e. road coverage). Of course, from an application
point-of-view the most important variation would allow both the sensor loca-
tions and the coverage region to be two-dimensional.
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