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Common Edge-Unzippings for Tetrahedra

Joseph O’Rourke∗

June 9, 2011

Abstract

It is shown that there are examples of distinct polyhedra, each with
a Hamiltonian path of edges, which when cut, unfolds the surfaces to a
common net. In particular, it is established for infinite classes of triples
of tetrahedra.

1 Introduction

The limited focus of this note is to establish that there are an infinite collec-
tion of “edge-unfolding zipper pairs” of convex polyhedra. A net for a convex
polyhedron P is an unfolding of its surface to a planar simple (nonoverlapping)
polygon, obtained by cutting a spanning tree of its edges (i.e., of its 1-skeleton);
see [DO07, Sec. 22.1]. Shephard explored in the 1970’s the special case where the
spanning tree is a Hamiltonian path of edges on P [She75]. Such Hamiltonian
unfoldings were futher studied in [DDLO02] (see [DO07, Fig. 25.59 ]), and most
recently in [LDD+10], where the natural term zipper unfolding was introduced.
Define two polyhedra to be an edge-unfolding zipper pair if they have a zipper
unfolding to a common net. Here we emphasize edge-unfolding, as opposed to
an arbitrary zipper path that may cut through the interior of faces, which are
easier to identify. Thus we are considering a special case of more general net
pairs: pairs of polyhedra that may be cut open to a common net.

In general there is little understanding of which polyhedra form net pairs un-
der any definition. See, for example, Open Problem 25.6 in [DO07], and [O’R10]
for an exploration of Platonic solids. Here we establish that there are infinite
classes of convex polyhedra that form edge-unfolding zipper pairs. Thus one of
these polyhedra can be cut open along an edge zipper path, and rezipped to
form a different polyhedron with the same property. In particular, we prove this
theorem:

Theorem 1 Every equilateral convex hexagon, with each angle in the range
(π/3, π), and each pair of angles linearly independent over Q, is the common
edge-unzipping of three incongruent tetrahedra.
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The angle restrictions in the statement of the theorem are, in some sense,
incidental, included to match the proof techniques. The result is quite narrow,
and although certainly generalizations hold, there are impediments to proving
them formally. This issue will be discussed in Section 6.

2 Example

An example is shown in Figure 1. The equilateral hexagon is folded via a
perimeter halving folding [DO07, Sec. 25.1.2]: half the perimeter determined
by opposite vertices is glued (“zipped”) to the other half, matching the other
four vertices in two pairs. Because the hexagon is equilateral, the corresponding
edge lengths match.

The resulting shape is a convex polyhedron by Alexandrov’s theorem ([DO07,
Sec. 23.3]), and a tetrahedron because it has four points at which the curvature
is nonzero. Choosing to halve the perimeter at each of the three pairs of opposite
vertices leads to the three tetrahedra illustrated. Note that each has three unit-
length edges that form a Hamiltonian zipper path, as claimed in the theorem.

The main challenge is to show that the edges of the hexagon glued together
in pairs become edges of the polyhedron, and so the unzipping is an edge-
unzipping.

3 Distinct Tetrahedra

First we show that the linear independence condition in Theorem 1 ensures
the tetrahedra will be distinct. We define two angles x and y to be linearly
independent over Q if there are no rationals a and b such that y = aπ+ bx. We
will abbreviate this condition to “linear independence” below.

We will show that the curvatures (2π minus the incident face angle) at the
vertices of the tetrahedra differ at one vertex or more, which ensures that the
tetrahedra are not congruent to one another. Let the vertices of the hexagon
be v0, . . . , v5, with vertex angles α0, . . . , α5.

We identify the three tetrahedra by their halving diagonals, and name them
T03, T14, T25. We name the curvatures at the four vertices of the tetrahedra
ω1, ω2, ω3, ω4. These curvatures for the three tetrahedra (see Figure 1) are as
follows:

Tetrahedron Vertex Curvatures
halving diagonal ω1 ω2 ω3 ω4

T03 : v0v3
1
2 (2π − α0) 1

2 (2π − α3) 2π − (α1 + α5) 2π − (α2 + α4)
T14 : v1v4

1
2 (2π − α1) 1

2 (2π − α4) 2π − (α0 + α2) 2π − (α3 + α5)
T25 : v2v5

1
2 (2π − α2) 1

2 (2π − α5) 2π − (α0 + α1) 2π − (α3 + α4)

Now we explore under what conditions could the four curvatures of T03 be
identical to the four curvatures of T14. (There is no need to explore other pos-
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Figure 1: Three tetrahedra that edge-unzip (via the dashed Hamiltonian path)
to a common equilateral hexagon.
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sibilies, as they are all equivalent to this situation by relabeling the hexagons.)
Let us label the curvatures of T03 without primes, and those of T14 with primes.
First note that we cannot have ω1 = ω′1 or ω1 = ω′2, for then two angles must
be equal: α0 = a1 or α0 = α4 respectively. And equal angles are not linearly
independent.

So we are left with these possibilities: ω1 = ω′3, or ω1 = ω′4. The first leads
to the relationship α2 = π− 1

2α0, a violation of linear independence. The second
possibility, ω1 = ω′4, requires further analysis.

It is easy to eliminate all but these two possibilities, which map indices
(1, 2, 3, 4) to either (4′, 3′, 1′, 2′) or (4′, 3′, 2′, 1′):

ω1 = ω′4 , ω2 = ω′3 , ω3 = ω′1 , ω4 = ω′2

and
ω1 = ω′4 , ω2 = ω′3 , ω3 = ω′2 , ω4 = ω′1

Explicit calculation shows that the first set implies that α4 = 2π−2α2, and the
second implies that α1 = 3

4π − α0.
Thus we have reached the desired conclusion:

Lemma 1 Linear independence over Q of pairs of angles of the hexagon (as
stated in Theorem 1) implies that the three tetrahedra have distinct vertex cur-
vatures, and therefore are incongruent polyhedra.

We have phrased the condition as linear independence of pairs of angles for
simplicity, but in fact a collection of linear relationships must hold for the four
curvatures to be equal. So the restriction could be phrased more narrowly. Note
also we have not used in the proof of Lemma 1 the restriction that the angles
all be “fat”, αi > π/3. This will be used only in Lemma 3 below.

It would be equally possible to rely on edge lengths rather than angles to
force distinctness of the tetrahedra. For example, we could demand that no two
diagonals of the hexagon have the same length (but that would leave further
work). Another alternative is to avoid angle restrictions, permitting all equi-
lateral hexagons, but only conclude that “generally” the three tetrahedra are
distinct. Obviously a regular hexagon leads to three identical tetrahedra.

The form of Theorem 1 as stated has the advantage of easily implying that
an uncountable number of hexagons satisfy its conditions (see Corollary 1).

4 Shortest Paths are Edges

Now we know that the hexagons fold to three distinct tetrahedra. So there is a
zipper path on each tetrahedron that unfolds it to that common hexagon. All
the remaining work is to show that the zipper path is an edge path—composed
of polyhedron edges. This seems to be less straightforward than one might
expect, largely because there are not many tools available beyond Alexandrov’s
existence theorem.

It is easy to see that every edge of a polyhedron P is a shortest path between
its endpoints. The reverse is far from true in general, but it holds for tetrahedra:

4



Lemma 2 Each shortest path between vertices of a tetrahedron is realized by
an edge of the tetrahedron.

Proof: Note that there are
(
4
2

)
= 6 shortest paths between the four vertices,

and six edges in a tetrahedron, so the combinatorics are correct.
Suppose a path ρ = xy is a shortest path between vertices x and y of

a tetrahedron T , but not an edge of T . Because each pair of vertices of a
tetrahedron is connected by an edge, there is an edge e = xy of T . Because ρ is
not an edge of T , it cannot be realized as a straight segment in R3, because all
of those vertex-vertex segments are edges of T . However, e is a straight segment
in R3, and so |e| < |ρ|, contradicting the assumption that ρ is a shortest path.

The reason this proof works for tetrahedra but can fail for a polyhedron of
n > 4 vertices is that the condition that every pair of vertices are connected by
an edge fails in general. The polyhedra for which that holds are the “neighborly
polyhedra” (more precisely, the 2-neighborly 3-polytopes).

5 Hexagon Edges are Tetrahedron Edges

With Lemma 2 in hand, it only remains to show that the pairs of matched unit-
length hexagon edges are shortest paths on the manifold M obtained by zipping
the hexagon. We use the labeling and folding shown in Figure 2(a), where v1
and v′1 are identified, as are v2 and v′2. We need to show that both v0v1 and
v1v2 are shortest paths (v2v3 is symmetric to v0v1 and follows by relabeling).

Let Di be the geodesic disk of unit radius centered on vi, on the zipped
manifold M . If the disks D0 and D1, illustrated in Figure 2(a), are empty of
other vertices, then the desired shortest paths are established. It is here that
we will employ the assumption that the hexagon angles are greater than π/3.

First, for any unit-equilateral convex hexagon, without constraints on the
angles, diagonals connecting opposite vertices are at least length 1: |v0v3| ≥ 1,
|v1v′2| ≥ 1, and |v2v′1| ≥ 1. We now argue for this elementary fact (which is
likely known in some guise in the literature).

Concentrating on D0 and v0v3 (all others are equivalent by relabeling), con-
sider the quadrilateral (v0, v1, v2, v3). Because the hexagon is unit-equilateral,
|v0v1| = 1, |v1v2| = 1, and |v2v3| = 1. Assume for a contradiction that
the diagonal is short: |v0v3| < 1. Then it is not difficult to prove that the
sum of the quadrilateral angles at the endpoints of this shorter side exceed π:
∠v3v0v1+∠v2v3v0 > π. Applying the same logic to the other half of the hexagon
sharing diagonal v0v3, the quadrilateral (v3, v

′
2, v
′
1, v0), we reach the conclusion

that the sum of the hexagon angles at v0 and v3 exceeds 2π. Thus one of those
angles exceeds π, contradicting the fact that the hexagon is convex.1

We may conclude from this analysis is that v3 cannot lie inside D0.
Suppose now that v′2 is inside D0, as in Figure 2(b). Then, the angle α′1

at v′1 must be smaller than π/3, contradicting the angle minimum assumed in

1 I thank Mirela Damian for this argument, which is simpler than my original proof.
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Figure 2: (a) Labels for the zipping of a hexagon. The dashed edge shows the
perimeter halving line, but there is no assumption that diagonal is a crease that
becomes an edge of the tetrahedron. (b) When D0 is not empty, some angle
(here, α′1) is smaller than π/3. (c) A “degenerate” hexagon, with two angles π,
which folds to a doubly covered square.
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the theorem. The same clearly holds for v2 inside D0, as well as the other
combinations. So the assumption that the hexagon is “fat” in the sense that
none of its angles are small, guarantees that the disks D0 and D1 (and by
symmetry, D2 and D3) are empty of vertices of the hexagon.

As is evident from Figure 2(b), however, even when no vertex is inside D0,
a portion of D0 can fall outside the hexagon, which, because it is all zipped
to a closed manifold M , means it re-enters the hexagon at the other copy of
that edge. However, three facts are easily established. First, the “overhang”
has width at most h = 1−

√
3/2; see Figure 3. Second, no vertex of the “next”

hexagon copy can lie inside that overhang (without violating convexity of the
hexagon). Third, to even have a hexagon edge be partially interior (and so
overhanging the disk into a third hexagon copy) requires some angle (β in the
figure) to be very small, violating the π/3 minimum angle. Thus the overhang
of a Di disk beyond the original hexagon cannot encompass a vertex.

1 1

1

β
h

Figure 3: A disk Di “overhangs” the original hexagon and enters another copy.
Here β = 2 sin−1(h/2) < 8◦.

We may conclude:

Lemma 3 The three unit-length edges of the hexagon, {v0v1, v1v2, v2v3} are
each shortest paths on the folded manifold M between their endpoint vertices.

I have firm empirical evidence (via explorations in Cinderella) that Lemma 3
holds just as stated without any assumption that the hexagon is fat. But proving
this formally seems difficult. Figure 4 illustrates a path ρ that spirals around the
manifold from v0 to v1. Each such geodesic path candidate must be established
to be at least length 1.

6 Discussion

We have now proved Theorem 1: Lemma 3 shows that the three unit-length
edges forming a Hamiltonian path are shortest paths, Lemma 2 then implies
that they are edges of the tetrahedron, and Lemma 1 establishes that the three
tetrahedra are distinct.

Corollary 1 There are an uncountable number of hexagons that satisfy the
conditions of Theorem 1.

7



v
1

v'
1x

v
2

v'
2

v
3

v
0v

3

v
1

v
0

v
1

v'
1

v
2

v'
2

v
0v

3

xx

(a) (b)

ρ

Figure 4: (a) A “spiral” path from v0 to v1. (b) The path flattened, crossing
several copies of the hexagon.

Proof: The constraints that
∑
αi = 4π and π/3 < αi < π clearly leave an

uncountable number of solutions, in fact a 5-dimensional open set in R5 (the
sixth angle is determined by the other five). (For example, a small 5-ball around

(α0, α1, α2, α3, α4) = (π − 1
2 , π −

1
2 , π −

1
2 ,

π
3 + 1

4 ,
π
3 + 1

4 )

with α5 = π
3 + 1, is inside this set.) The constraint requiring independence

over Q only excludes a countable number of 4-dimensional hyperplanes (e.g.,
α2 = π − 1

2α0). These hyperplanes have zero measure in R5, and a countable
union of sets of zero measure has zero measure,2 leaving an uncountable number
of solutions after excluding the hyperplanes.

The construction considered here generalizes to arbitary even n, although I
do not see how to prove that the zipper path follows edges of the polyhedron:

Proposition 1 For any even n ≥ 4, an equilateral convex n-gon is the common
zipper-unfolding of n/2 generally distinct polyhedra of (n− 2) vertices each.

The regular-polygon version of this construction folds to what were called
“pita polyhedra” in [DO07, Sec. 25.7.2].

I conjecture that all the zipper-paths in Proposition 1, for strictly convex
equilateral convex n-gons, in fact follow polyhedron edges. Resolving this con-
jecture would require tools to determine when particular geodesic paths on an
Alexandrov-glued manifold are edges of the resulting convex polyhedron.

References

[DDLO00] Erik D. Demaine, Martin L. Demaine, Anna Lubiw, and Joseph
O’Rourke. Examples, counterexamples, and enumeration re-
sults for foldings and unfoldings between polygons and polytopes.

2 I thank Qiaochu Yuan and Theo Buehler for guidance here, http://math.stackexchange.
com/questions/41494/.

8

http://math.stackexchange.com/questions/41494/
http://math.stackexchange.com/questions/41494/


Technical Report 069, Smith College, Northampton, July 2000.
arXiv:cs.CG/0007019.

[DDLO02] Erik D. Demaine, Martin L. Demaine, Anna Lubiw, and Joseph
O’Rourke. Enumerating foldings and unfoldings between polygons
and polytopes. Graphs and Combin., 18(1):93–104, 2002. See
also [DDLO00].

[DO07] Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algo-
rithms: Linkages, Origami, Polyhedra. Cambridge University Press,
July 2007. http://www.gfalop.org.

[LDD+10] Anna Lubiw, Erik Demaine, Martin Demaine, Arlo Shallit, and
Jonah Shallit. Zipper unfoldings of polyhedral complexes. In Proc.
22nd Canad. Conf. Comput. Geom., pages 219–222, August 2010.

[O’R10] Joseph O’Rourke. Flat zipper-unfolding pairs for platonic solids.
http://arxiv.org/abs/1010.2450, October 2010.

[She75] Geoffrey C. Shephard. Convex polytopes with convex nets. Math.
Proc. Camb. Phil. Soc., 78:389–403, 1975.

9

http://www.gfalop.org
http://arxiv.org/abs/1010.2450

	Smith ScholarWorks
	6-8-2011

	Common Edge-Unzippings for Tetrahedra
	Joseph O'Rourke
	Recommended Citation


	1 Introduction
	2 Example
	3 Distinct Tetrahedra
	4 Shortest Paths are Edges
	5 Hexagon Edges are Tetrahedron Edges
	6 Discussion

