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Abstract

We present a method whereby social network ties are used to identify behavioral leaders who are 

situated in the network such that these individuals are: 1) able to influence other individuals who 

are in need of and most receptive to intervention, thereby maximizing the impact of the 

intervention; and 2) not embedded with ties that are likely to be behaviorally antagonistic to the 

intervention or that would compromise the optimal evaluation of intervention efficacy. In this 

study we developed a novel method which we call Strategic Players, which is a solution for 

identifying a set of players who are close to a target subset of the network (i.e., the targeted 

group), and far away from the subset we wish to avoid (i.e. the avoidance group). This solution 

seeks to maximize the diffusion of the behavior to the targeted group while minimizing contact 

and influence from the avoidance group. We apply this method to two different social networks.

Keywords

Social Networks; diffusion of influence; centrality; key players; strategic players

Introduction

Social network interventions (SNIs) target individuals who, by virtue of their status in the 

network, are influential in the behavior of others. Such interventions are specifically 

designed to consider social connections when attempting to change health behaviors, in 

large part because social networks provide a way to spread information and healthy behavior 

(Centola, 2010; Latkin, Donnell, et al., 2013; Latkin, German, Vlahov, & Galea, 2013; 

Pilowsky et al., 2007; Smith & Christakis, 2008; Tobin & Latkin, 2008; Valente, 2012). One 

common SNI approach involves engaging peer educators or influential individuals 

(commonly called “opinion leaders”) who communicate within their communities and serve 

as role models, thus conveying behavior change goals to others. HIV prevention is one area 

in which the efficacy of SNIs has been established (Amirkhanian et al., 2005; Broadhead et 
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al., 1998; Latkin, Davey-Rothwell, et al., 2013), and there is evidence that greater behavior 

change occurs among those with close proximity to the peer model (Li, Weeks, Borgatti, 

Clair, & Dickson-Gomez, 2012).

SNIs rely on diffusion of innovation theory (Rogers, 2002). According to this theory, 

individuals are more likely to adopt innovative methods, products, or ideas when they see 

them adopted by others with whom they have close, credibility-enhancing relationships. 

There is evidence that health-enhancing behaviors spread through networks via similar 

mechanisms, such that individuals are more likely to adopt health-enhancing behaviors when 

their close associates have adopted similar behaviors (Smith & Christakis, 2008; Valente, 

2010). Close connections are therefore typically assumed to be central to the efficacy of 

network interventions (Fujimoto & Valente, 2012).

Borgatti uses social network metrics to identify network members who have the “most 

important” positions in the network, which he refers to as the set of key players (KPP-Pos; 

Borgatti, 2006). The approach to identifying a KPP-Pos set differs from, for instance, 

centrality scores (e.g. Bonacich, 1972; Freeman, 1979) by its focus on the importance of 

nodes to network cohesion, where cohesion is measured by some variant of path length or 

reachability in the network as a whole. For example, it is easy to construct networks where 

the most central nodes can be removed without much effect on average path lengths. By 

shifting the criterion from centrality to cohesion, the KPP-POS approach identifies a 

minimal set of nodes that serve as the most important members of the network in terms of 

linking nodes to each other through the shortest average paths (though other definitions of 

cohesion apply as well).

The KPP-POS approach is arguably an improvement over centrality measures for identifying 

sets of influential network members. Influential network members are arbiters of important 

resources (information, support, etc.) which are assumed to flow through network linkages, 

for example, by behavioral modeling or interpersonal interaction. However, KPP-POS does 

not take into account non-linkage-related node characteristics that may affect inclusion in 

the KPP-POS set. An example of such a situation, for purposes of this paper, is a behavioral 

intervention, where a primary at-risk subset of the members of some network (e.g., a 

community or organization) is targeted for the intervention in such a way that other 

secondary at-risk members will be maximally exposed to the primary at-risk intervention 

recipients, and thus be helped indirectly. Such contagion effects are of interest because 

maximizing them can dramatically amplify the effect of the original intervention (e.g., Aral 

& Walker, 2011).

The foregoing discussion suggests a need to broaden the goal of methods like KPP-POS. 

Not only do we need to identify opinion leaders who optimally reach those individuals in the 

network who would be targeted for intervention, but we may also want to avoid exposing 

other individuals to the intervention. For example, an intervention designed to reduce 

smoking risk among susceptible adolescents (e.g., who had begun an intermittent pattern of 

smoking) would need to include or exclude potential opinion leaders and secondary targets 

of the intervention based on whether they show the target behavioral pattern. Another 

example is an intervention in which one wishes to avoid targeting members who are unlikely 
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to be responsive to the intervention, or could even be openly antagonistic, in order to avoid 

reducing the overall efficacy of the intervention within the network. Current methods do not 

address this important objective to avoid wasting resources on network members who are 

known a priori to be at little or no risk or are not likely to be responsive to the intervention.

An additional circumstance that requires a modification to the methods for identifying key 

players refers to an intervention design feature (as opposed to a participant characteristic as 

above) in which an intervention is being tested within a community of smaller networks. For 

example, consider a social network intervention at an elementary school in which one class 

is identified as the control group, and another class is identified as the intervention group. 

While social connections will primarily be formed within the classes, there will also be the 

potential for across-class social ties. For optimal internal validity and to provide the best test 

of an intervention relative to a control, it is important to (a) avoid the transmission of 

intervention effects to the control group, and (b) avoid suppression of the intervention effects 

from contact with the (presumably less effective) control condition (called leakage and 

contamination, respectively in some contexts; Aral & Walker, 2011; 2012). This 

circumstance requires similar optimization of the identification of key players referred to 

above, but also requires attending to ties between sub-networks, such that we may avoid 

transmission or suppression of effects.

In summary, there is a need to extend the Key Player identification whereby social network 

ties are used to identify individuals who are situated in the network such that these opinion 

leaders are 1) able to influence those individuals who are in need of and most receptive to 

intervention; and 2) are not embedded with ties that are likely to be behaviorally antagonistic 

to the intervention or that would compromise the optimal evaluation of intervention efficacy.

Method: Strategic Players

The objective of this study was to develop a solution for identifying a set of players who are 

close to a target subset of the network (i.e., targeted group), and far away from the non-

targeted subset (i.e., avoidance group). Under the assumption that the directness of 

relationships predicts amount of influence transmission (Mundt, 2011; Rosenquist, 

Murabito, Fowler, & Christakis, 2010; Valente, Hoffman, Ritt-Olson, Lichtman, & Johnson, 

2003), this solution should maximize the diffusion of the behavior to the targeted group 

while minimizing contact and influence from the avoidance group.

In the KPP-POS method, where there are n members of the network, the set K of key players 

(with pre-specified size |K|) is identified as the set of network members for which the 

average of the inverse minimum distance dKj for all network nodes j to any member of the 

set K is maximized. Thus, this method seeks to maximize:

D =
∑ j

1
dK j

n
(Eq 1)

which is equation 14 in the original Key Players paper (KP-Pos; Borgatti, 2006). KPP-POS 

is an excellent way to identify a subset of network members to intervene upon in the absence 
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of other covariate information, in the sense that the KPP-POS set optimally “connects” the 

network.

If we know the subset T of the network who are the targets we want maximum diffusion to, 

and the subset A of the network who we seek to minimize diffusion to, then, by extending 

the KPP-POS method (Eq 1), we identify the Strategic Player set or SP set as the set of the 

members of T we should provide the intervention to so that we maximize:

D = θ
∑ j

1
dT j
t − (1 − θ)

∑ j
1

dA j
a

(Eq 2)

Where t is the number in the targeted group, a is the number of individuals in the avoidance 

group, and θ is a user-supplied parameter quantifying the tradeoff between maximizing 

reachability to the target population, and minimizing reachability to the avoidance 

population. When θ =1, reaching all the targets is the only priority, the avoidance group does 

not affect the selection of players. When θ =0, reaching the target population does not affect 

the selection of players, and maximizing the distance to the avoidance group is the sole 

priority.

The path definition on which the distance metric is calculated is flexible and may be defined 

to refer to distance across directed or undirected ties. The choice of which path definition to 

use will depend on the situation at hand. For example, in the case in which the researchers 

believe influence will only spread through reciprocated relationships (such as close 

friendships), the path definition should be calculated over the undirected network of 

reciprocated ties. However, if the intervention will spread from influential individuals, such 

as individuals that others look up to, the path definition should allow for these directed 

relationships.

Implementation: Strategic Players

As with other methods of selecting an optimal subset of players, the process of finding the 

solution can be computationally intensive. For example, if there were 200 targets and 50 

players to be identified, Equation 2 would have to be evaluated approximately 4.5 × 10^47 

times to be certain that an optimal set was found, which is not tractable with current 

computing capabilities. However, an optimization technique such as gradient descent or a 

greedy optimization (Cormen, Leiserson, Rivest, & Stein, 2001) can be used so that the 

method of selecting strategic players (SP) can be tractably implemented. Following the 

optimization method suggested for Key Players (KP; Borgatti, 2006), we have utilized the 

greedy optimization as follows:

a. A random sample of s network members is randomly chosen from the target 

group, and is the initial SP set.

b. The distance measure is calculated (Equation 2). Recall this process balances 

minimizing the distance between the SP set and other targeted network members 

while also maximizing the distance between the SP set and the network members 
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who are to be avoided, while ignoring those who are neither targeted members 

nor those who are to be avoided.

c. For every combination of the s members of the SP set, and (t-s) remaining 

members of the target group, the pair is swapped and the distance measure is 

recalculated.

d. If all of the distances from step c are not an improvement over the distances for 

the previous set, we stop. Otherwise, the swap from step c that results in the 

biggest increase in the distance measure is retained.

e. We repeat steps c and d until there is no improvement from swapping.

Because the final SP set identified in the above algorithm depends on the initial set of 

players that are randomly selected, we recommend completing the above procedure many 

times, to ensure that the solution is not merely a local maximum. The number of times to 

complete the above procedure will depend on the size of the target group and number of 

players. If there are few players, or a small target group, then a smaller number of iterations 

will be sufficient to find the optimal SP set. However, if there are many players, or a large 

target group, then a larger number of iterations will be necessary. An R package that 

implements strategic players can be found on CRAN (Ott, 2016).

Example 1: A simple network

Consider an illustrative example in which we have 13 individuals in our network, six of 

whom are targets by virtue of some characteristic (e.g., tobacco users who would like to quit 

using tobacco) (Figure 1; t=6, IDs=1,2,5,7,8,12), two are individuals we want to avoid (i.e., 

tobacco users who are strongly opposed to quitting the use of tobacco) (a=2, IDs=3,10), and 

the other five are neutral (i.e., non-smokers). While we do not seek to either target or avoid 

neutral group members, they nevertheless may serve as bridges from one target group 

member to another (or from an avoidance group member to a target group member). For 

example, consider node 6, a member of the neutral group, and for the purposes of this 

example a non-smoker who will not directly benefit from the intervention. If node 5 is given 

the intervention, node 6 could tell other smokers they are connected to (such as node 7) 

about the intervention, thereby potentially transmitting the effect of the intervention. 

Avoidance group members could actively work against the goals of the intervention, thereby 

restricting the transmission of the intervention. For example, if node 2 were to be given the 

anti-tobacco intervention, node 3 might actively work against the goals of the intervention, 

thus preventing the effect of the intervention to be transmitted to other targets connected to 

node 2.

We want to identify an SP set of size 3 (s=3) from the 6 targets such that the members of the 

SP set are as close as possible to the other targets, and as far as possible from the avoidance 

group, with θ dictating the extent to which we prioritize being near the other targets as 

opposed to being far from the avoidance group.

First we use the KPP-POS method to identify the set of size three from this network. Due to 

the symmetry in the network, there are multiple sets that are equally optimal for a 3-set of 

KPP-POS. These sets are: {(2,6,11), (2,7,11), (3,6,11), (3,7,11), (3,7,12), (3,8,11), (3,8,12)}.

Ott et al. Page 5

Soc Networks. Author manuscript; available in PMC 2020 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, we use the SP method to identify a set of size three, but treat the avoidance group 

(3,10) as members of the neutral group. Since there is no avoidance group, the value of θ 
will not impact the choice of the SP set. In this situation when the target group is equal to 

those with IDs (1,2,5,7,8,12), and all other members of the network are deemed neutral, the 

strategic players algorithm identifies the SP set as (1,7,12).

Next we use the SP method to identify a set of size three, taking into account membership in 

the target group and the avoidance group. In this example, we use the values 0.5 and 0.9 for 

θ. The strategic players algorithm identifies the optimal SP set as (1,5,7), when θ =.5, and 

(1,7,12) when θ =.9. It is not surprising that we identify the same SP set when treating the 

avoid group as neutral, and when we use θ =.9. In effect, the closer that θ is to one, the less 

emphasis is placed on limiting reachability to the avoid group, and when θ =1, the avoid 

group is, in effect, considered neutral. It is evident that members 1, 7, and 12 as a set 

maximize access to other nodes if distances to the avoid set are not weighted heavily. In 

other words, when the priority is to improve proximity in the network to the target set, and 

there is little concern of decreasing proximity to the avoid set, more central members (such 

as 1,7,12 in this network) will be chosen. Whereas members 1, 5, and 7 achieve more 

separation from the avoid set by being much further, on average, from network member 10.

We can contrast these results to the KPP-POS sets for this network. Notice that the sets 

identified by SP were not identified by the KPP-POS method because KPP-POS only 

considers position in the network, and is not designed to account for any other 

characteristics of the network members. In this example, we wish to avoid choosing network 

members 3, 10 as well as those who are in close proximity to network members 3 and 10; 

KPP-POS does not take this into account, and in fact considers it optimal to include ID 3. 

Likewise, although we want to prioritize choosing network members near those with IDs 

(1,2,5,7,8,12), KPP-POS again does not account for this preference and instead finds the 

set(s) of nodes to optimize proximity to all members of the network, rather than just the 

members of the network that we wish to target.

Demonstration

Example 2: Zachary’s karate club network

In another example with a slightly larger and more complicated network, we identify both 

the KPP-POS and SP sets of size 3 in Zachary’s karate club network (Zachary, 1977). This 

network represents social interactions among 34 members of a karate club with two factions 

(Figure 2) labeled for our purposes as the target and avoid groups. For the purposes of this 

example we also identified network members labelled 11, 8, 29, 33, and 34 as neutral.

For the KPP-POS set of size 3, there are two equally optimal KPP-POS sets: {(1,26,34), 

(1,25,34)}. For the purposes of this example, we will use (1,26,34) as the KPP-POS set. For 

the SP set of size 3, we specify that θ =.3, which prioritizes choosing target network 

members who are far away from avoidance network members. There are two equally 

optimal SP sets: {(7,13,18), (7,13,22)}. Notice that the network members labelled 18 and 22 

have identical positions in the network in that they both only have ties with the network 

members labelled 1 and 2. We proceed to use (7,13,18) as the SP set for simplicity.
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Both the SP and KPP-POS sets are displayed in Figure 3. As noted, the KPP-POS set is 

more likely to include network members that the SP set is designed to avoid. In this 

example, the KPP-POS set includes network member 25, which is in the “avoid” group. 

Further the KPP-POS set does not prioritize proximity to the target groups, as the SP set 

does.

In order to gain further insight in the differences between the KPP-POS and SP methods, we 

contrast betweenness centrality and degree for the SP and KPP-POS sets from Karate club 

example. In the KPP-POS set (1,25,34) we find that 1 and 34 have the first and second 

highest levels of betweenness in the network, while 25 has the median level of betweenness. 

This is in sharp contrast to the betweenness centrality of the SP set (7,13,18), in which 13 

and 18 are tied for the lowest level of betweenness, and 7 has a betweenness that is just 

above the median. Next we compare the degrees of the members of the KPP-POS and SP 

sets. Members of the KPP-POS set have much higher degree than members of the SP set. 

For the KPP-POS set, the degrees are 16, 3, and 17, whereas for the SP set, the degrees are 

4, 2, and 2. In general, we conclude that the KPP-POS set will tend to maximize reach to the 

entire network that is being considered, while the SP set will strategically maximize reach to 

the target members (balanced with minimizing reach to the avoidance members) of the 

network. Consequently, the KPP-POS set will often choose members of the network that 

have higher degree and higher betweenness centrality than the SP set, especially when the 

target group for the SP set is a small subset of the entire network. Importantly, in the event 

that the target group includes every member of the network, the KPP-POS and SP sets will 

be identical.

Example 3: The UrWeb Network

The UrWeb sample is composed of residents of two university dormitories that are 

physically connected to each other, but are separate entities (Barnett et al., 2014). Here we 

use a subset (n=44) of the full dataset (N=129) to provide a simple demonstration of the SP 

method. Participants are categorized as being a member of Dorm 1 or Dorm 2, and are 

further categorized as being a heavy drinker (reported drinking 5 or more drinks on two or 

more occasions in the last month). There are 14 residents in Dorm 1, of whom 7 are heavy 

drinkers, and 30 residents of Dorm 2, of whom 18 are heavy drinkers (Figure 4).

We wish to target the heavy drinkers in Dorm 1 for an intervention, with the heavy drinkers 

in Dorm 2 as controls. For this reason, we want to choose for the SP set (i.e., those 

responsible for conveying behavior change) a subset of the heavy drinkers in Dorm 1 who 

are maximally connected to other heavy drinkers in Dorm 1, while minimally connected to 

the heavy drinkers in Dorm 2.

We apply the SP method and report the proportion of the targets (i.e., heavy drinkers in 

Dorm 1) and the proportion of the avoidance group (heavy drinkers in Dorm 2) reached in 

one, two, or three steps for varying the size of the SP set (s), and varying levels of θ (0, .25, .

5, .75, 1) in Figure 5. Here “step” applies to the number of social network ties that are 

traversed from someone identified in the SP set to others in the target group or avoidance 

group. Figure 5a and 5b presents the results for one step, 5c and 5d for two steps, and Figure 

5e and 5f for three steps to the target group and the avoidance group respectively.
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We can see in Figure 5, that for that any given value of s, as θ increases (rows), so too does 

the percent of the targets reached in the given number of steps; however, as θ increases, the 

percent of avoids reached (see maps b,d,f) also increases. Of course this is because as θ 
increases there is a higher priority on having the members of the SP set near to the targets 

and a lower priority on having members of the SP set far from the avoidance group. 

Additionally, for a given value of θ, as s increases (columns), the percent of targets reached 

in a given number of steps also increases.

This example shows how the choice of θ and the choice of s (the size of the SP set) will 

impact the reach to the targets as well as the reach to avoiders. In this specific example, there 

is a large degree of separation between the targets and avoiders in the network, so when θ 
<1, the one step reach to avoiders is 0% (Figure 5). If the researcher is only concerned with 

contamination that travels at most one step, a θ of .75 with s=4 should be chosen to 

maximize reach to the targets and minimize reach to avoiders, since 100% of the target 

group is reached, and 0% of the avoidance group is reached within one step. However, by 

examining Tables 2 and 3, we can see how the choice of θ affects the two- and three-step 

reach to avoiders. If the researcher is concerned with contamination that travels further than 

one step, the choice of θ would depend on the researcher’s priorities of maximizing 

reachability to the target group while minimizing reachability to the avoid group.

Discussion

We introduce the Strategic Player (SP) method for identifying an optimal subset of 

individuals to use for targeted interventions on social networks. We first demonstrate the SP 

method on two social networks and show how prioritizing reachability to the target group 

versus minimizing reachability to the avoidance group through the choice of the θ parameter 

will result in different SP sets. We also demonstrate this method on a social network of 

college students living in two dormitories, showing that choice of the size of the SP set and 

the choice of the θ parameter impacts reachability to the target and avoidance groups within 

this social network. Researchers using the SP method should carefully consider what levels 

of reachability to the target and avoidance groups are required for their intervention, and be 

aware that the best choice of the θ parameter and the size of the SP set will depend upon 

both of these considerations, as well as to the specific structure of the social network to 

which they are applying their intervention.

The SP method is an extension of the KPP-POS method in three important ways. First, the 

SP method allows researchers to identify the group of individuals in the network to which 

they want their intervention to spread (targets), whereas the KPP-POS addresses the 

situation in which all members of the network are targets. For example, in an intervention to 

reduce tobacco use in a network, the SP method would allow researchers to prioritize the 

intervention spreading to tobacco users, while the KPP-POS approach would be appropriate 

to maximize diffusion to tobacco users if the network was solely composed of tobacco users. 

Secondly, the SP method allows researchers to identify a group of individuals to which they 

do not want their intervention to spread (avoidance group), whereas the KPP-POS method is 

designed to maximize diffusion to all members of the network. For example, in a cluster-

randomized controlled trial on a network, contagion of the intervention to the control group 
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should be minimized. The KPP-POS method was not designed for such situations, whereas 

the SP method allows for researchers to identify which members of the network the 

intervention should not be spread to. Lastly, the SP method is flexible in that it allows 

researchers to decide the level to which they prioritize the diffusion of the intervention to the 

targets over the minimization of contagion to the avoidance group through the θ parameter. 

It is important to note that using the SP method, if the target group is defined as every 

member of the network (which implies that there are no members of an avoidance group) the 

SP method reduces to the KPP-POS method, and will produce identical results.

The SP method will most readily achieve the goal of identifying the set of network members 

that maximizes diffusion to the target group and minimizes contagion to the avoidance group 

when these two groups are structurally separated in the network. In the situation that the 

members of the avoidance set are in close proximity to the members of the target set, we 

would not expect the SP set to perform well.

As yet, the SP approach has not been tested in prospectively collected network data; our 

presentation here provides proof-of-concept using selected secondary data sources. This 

approach therefore requires validation and further evaluation with larger and more complex 

networks. The SP approach could be particularly useful for applications involving behavioral 

health (e.g., for supporting behavior change in at-risk subgroups), and for other applications 

in which separation of subgroups is advantageous for information diffusion goals.
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Highlights:

• A method to identify influential behavioral leaders is proposed

• The method balances proximity to targets for the innovation and distance 

from those who are antagonistic or need to be avoided for other reasons.

• This method may be used for identifying social network members for 

intervention studies
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Figure 1. 
Example of a simple social network with thirteen nodes, including six target nodes, two 

avoid nodes.

Ott et al. Page 12

Soc Networks. Author manuscript; available in PMC 2020 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Zachary’s Karate club network with target and avoid groups.
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Figure 3. 
Zachary’s Karate club network when set size = 3 and theta=0.3 for SP
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Figure 4. 
Partial UrWeb Social Network
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Figure 5. 
Heatmaps of the proportion of the target group (a, c, e) and the avoidance group (b,d,f) 

reachable from the SP set within one step (a,b), two steps (c,d), and three steps (e,f) for 

varying θ, and size of the SP set (s).
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