
Smith ScholarWorks Smith ScholarWorks 

Astronomy: Faculty Publications Astronomy 

6-1-2011 

The VLT LBG Redshift Survey I: Clustering and Dynamics of ≈ The VLT LBG Redshift Survey I: Clustering and Dynamics of  

1000 Galaxies at z ≈ 3⋆ 1000 Galaxies at z  3  

R. M. Bielby 
Durham University 

T. Shanks 
Durham University 

P. M. Weilbacher 
Leibniz Institute for Astrophysics Potsdam 

L. Infante 
Pontificia Universidad Católica de Chile 

N. H.M. Crighton 
Durham University 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.smith.edu/ast_facpubs 

 Part of the Astrophysics and Astronomy Commons 

Recommended Citation Recommended Citation 
Bielby, R. M.; Shanks, T.; Weilbacher, P. M.; Infante, L.; Crighton, N. H.M.; Bornancini, C.; Bouché, N.; 
Héraudeau, P.; Lambas, D. G.; Lowenthal, James D.; Minniti, D.; Padilla, N.; Petitjean, P.; and Theuns, T., "The 
VLT LBG Redshift Survey I: Clustering and Dynamics of ≈ 1000 Galaxies at z ≈ 3⋆" (2011). Astronomy: 
Faculty Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/ast_facpubs/29 

This Article has been accepted for inclusion in Astronomy: Faculty Publications by an authorized administrator of 
Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/ast_facpubs
https://scholarworks.smith.edu/ast
https://scholarworks.smith.edu/ast_facpubs?utm_source=scholarworks.smith.edu%2Fast_facpubs%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=scholarworks.smith.edu%2Fast_facpubs%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/ast_facpubs/29?utm_source=scholarworks.smith.edu%2Fast_facpubs%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Authors Authors 
R. M. Bielby, T. Shanks, P. M. Weilbacher, L. Infante, N. H.M. Crighton, C. Bornancini, N. Bouché, P. 
Héraudeau, D. G. Lambas, James D. Lowenthal, D. Minniti, N. Padilla, P. Petitjean, and T. Theuns 

This article is available at Smith ScholarWorks: https://scholarworks.smith.edu/ast_facpubs/29 

https://scholarworks.smith.edu/ast_facpubs/29


ar
X

iv
:1

00
5.

30
28

v2
  [

as
tr

o-
ph

.C
O

]  
4 

A
pr

 2
01

1

Mon. Not. R. Astron. Soc.000, 1–27 (2010) Printed 5 April 2011 (MN LATEX style file v2.2)

The VLT LBG Redshift Survey I: Clustering and Dynamics of
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ABSTRACT
We present the initial imaging and spectroscopic data acquired as part of the VLT VIMOS
Lyman-break galaxy Survey.UBR (orUBV I) imaging covers five≈ 36′×36′ fields centred
on brightz > 3 QSOs, allowing≈ 21, 000 2 < z < 3.5 galaxy candidates to be selected
using the Lyman-break technique. We performed spectroscopic follow-up using VLT VIMOS,
measuring redshifts for 1020z > 2 Lyman-break galaxies and 10z > 2 QSOs from a total
of 19 VIMOS pointings. From the galaxy spectra, we observe a625 ± 510 kms−1 velocity
offset between the interstellar absorption and Lyα emission line redshifts, consistent with
previous results. Using the photometric and spectroscopiccatalogues, we have analysed the
galaxy clustering atz ≈ 3. The angular correlation function,w(θ), is well fit by a double
power-law with clustering scale-length,r0 = 3.19+0.32

−0.54 h−1Mpc and slopeγ = 2.45 for
r < 1 h−1Mpc andr0 = 4.37+0.43

−0.55 h
−1Mpc with γ = 1.61± 0.15 at larger scales. Using the

redshift sample we estimate the semi-projected correlation function,wp(σ) and, for aγ = 1.8

power-law, findr0 = 3.67+0.23

−0.24 h−1Mpc for the VLT sample andr0 = 3.98+0.14

−0.15 h−1Mpc
for a combined VLT+Keck sample. Fromξ(s) and ξ(σ, π), and assuming the aboveξ(r)
models, we find that the combined VLT and Keck surveys requirea galaxy pairwise velocity
dispersion of≈ 700 kms−1, higher than the≈ 400 kms−1 assumed by previous authors. We
also measure a value for the gravitational growth rate parameter ofβ(z = 3) = 0.48± 0.17,
again higher than previously found and implying a low value for the bias ofb = 2.06+1.1

−0.5.
This value is consistent with the galaxy clustering amplitude which givesb = 2.22 ± 0.16,
assuming the standard cosmology, implying that the evolution of the gravitational growth rate
is also consistent with Einstein gravity. Finally, we have compared our Lyman-break galaxy
clustering amplitudes with lower redshift measurements and find that the clustering strength
is not inconsistent with that of low-redshiftL∗ spirals for simple ‘long-lived’ galaxy models.

Key words: galaxies: intergalactic medium - kinematics and dynamics -cosmology: obser-
vations - large-scale structure of Universe

⋆ Based on data obtained with the NOAO Mayall 4m Telescope at Kitt Peak National Observatory, USA (programme ID: 06A-0133), the NOAO
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1 INTRODUCTION

Observations of thez ∼ 3 galaxy population present a valuable tool
for studying cosmology and galaxy formation and evolution.For
cosmology, the interest is in measuring the galaxy clustering am-
plitudes and redshift space distortions at high redshift. They both
lead to virtually independent estimates of the bias whose consis-
tency leads to a test of the standard cosmological model. Forthe-
ories of galaxy formation and evolution, this is a key periodin the
history of the Universe in which significant levels of star formation
shape both galaxies and the inter-galactic medium (IGM) around
them. An especially vital direction of study is the effect ofgalac-
tic winds at this epoch. Such winds have been directly observed at
low (Heckman et al. 1990; Lehnert et al. 1999; Martin 2005, 2006)
and high (Pettini et al. 2001; Adelberger et al. 2003; Wilmanet al.
2005; Adelberger et al. 2005a) redshift and are invoked to explain
a range of astrophysical phenomena.

A basic item of cosmological interest is the spatial cluster-
ing of the z ≈ 3 galaxy population itself. InΛCDM, structure
in the Universe is known to grow hierarchically through grav-
itational instability (e.g. Mo & White 1996; Jenkins et al. 1998;
Springel et al. 2006) and testing this model requires the measure-
ment of the clustering of matter in the Universe across cosmic
time (e.g. Springel et al. 2005; Orsi et al. 2008; Kim et al. 2009).
Surveys of matter atz ≈ 3 currently focus on two main popu-
lations, LBGs and Lyman-α emitters (LAEs). A number of mea-
surements of galaxy clustering are available atz ≈ 3. For ex-
ample, Adelberger et al. (2003) and daÂngela et al. (2005a) use
the Keck LBG sample with spectroscopic redshfits of Steidel et al.
(2003) to measure LBG clustering clustering lengths ofr0 =
3.96 ± 0.29 h−1Mpc andr0 = 4.48+0.17

−0.18 h−1Mpc respectively.
Further surveys of LBGs atz ≈ 3 have produced a range of results
with, for example, Foucaud et al. (2003) measuring a clustering
length for a photometric sample selected from the CFHT Legacy
Survey ofr0 = 5.9±0.5 h−1Mpc, Adelberger et al. (2005b) mea-
suredr0 = 4.0±0.6 h−1Mpc at〈z〉 = 2.9 using a different photo-
metric sample whilst Hildebrandt et al. (2007) measured a value of
r0 = 4.8±0.3 h−1Mpc from an LBG sample taken from GaBoDS
data.

daÂngela et al. (2005a) go on to use the Keck LBG sam-
ple to investigate, via redshift space distortions, the gravitational
growth rate of the galaxy population atz ≈ 3, measuring an in-
fall parameter ofβ(z = 3) = 0.25+0.05

−0.06 . The infall parameter,
β, quantifies the large-scale infall towards density inhomogeneities
(Hamilton 1992; Hawkins et al. 2003) and is defined asβ(z) =
Ωm(z)0.6/b(z), whereΩm(z) is the matter density andb(z) is
the bias of the galaxy population. The 2dF Galaxy Redshift Survey
(2dFGRS) measurement of the infall parameter nearer the present
epoch gaveβ(z ≈ 0.1) = 0.49 ± 0.09 (Hawkins et al. 2003),
similar to values obtained by previous local measurements (e.g.
Ratcliffe et al. 1998). There have also been dynamical measure-
ments ofβ at intermediate redshifts using Luminous Red Galax-
ies where Ross et al. (2007) foundβ(z = 0.55) = 0.4 ± 0.05.
daÂngela et al. (2005b) used the combined 2dF and 2SLAQ QSO
redshift surveys to findβ(z = 1.5) = 0.60 ± 0.14. Finally,
Guzzo et al. (2008) used the VVDS galaxy redshift survey to mea-
sureβ(z = 0.77) = 0.70 ± 0.26. As emphasised by Guzzo et al.

Blanco 4m Telescope at Cerro Tololo Inter-American Observatory, Chile
(programme IDs: 03B-0162, 04B-0022) and the ESO VLT, Chile (pro-
gramme IDs: 075.A-0683, 077.A-0612, 079.A-0442).
† E-mail:rmbielby@gmail.com (RMB)

(2008), if there are independent estimates ofb(z) for each red-
shift sample, then the standard model prediction for the evolution
with redshift of the gravitational growth rate off = Ωm(z)0.6 can
be tested against alternative gravity models. Here, we shall follow
daÂngela et al. (2005a,b); Hoyle et al. (2002) in making their ver-
sion of the redshift-space distortion cosmological test which also
incorporates the Alcock & Paczynski (1979) geometric cosmolog-
ical test.

From redshift-space distortions, we can also determine the
small-scale dynamics of the galaxy population which are usually
simply modelled as a Gaussian velocity dispersion, measured from
the length of the ‘fingers-of-God’ (Jackson 1972; Kaiser 1987)
in redshift space clustering. This velocity dispersion will gener-
ally also include the effects of velocity measurement error. Al-
though daÂngela et al. (2005a) had to assume a fixed value of
< w2

z >1/2= 400 kms−1 for the mean pairwise velocity disper-
sion when making their LBG measurement ofβ(z = 3), in bigger
surveys it is possble to fit for< w2

z >1/2 andβ simultaneously.
Thus in 2dFGRS atz ≈ 0.1, Hawkins et al. (2003) measured a
pairwise velocity dispersion of< w2

z >1/2≈ 500 kms−1. As well
as being of interest cosmologically, the intrinsic galaxy-galaxy ve-
locity dispersion is interesting in terms of establishing the group en-
vironment for galaxy formation. Furthermore, these randompecu-
liar velocities dominate at the smallest spatial scales, significantly
affecting clustering measurements on scalesr . 5 h−1Mpc. They
influence both the observed galaxy-galaxy clustering and the ob-
served correlation between galaxy positions and nearby Lyα forest
absorption from the IGM (as measured in Adelberger et al. 2003,
2005a and Crighton et al. 2010). To interpret galaxy-IGM cluster-
ing results we shall see that measurements of the small scaledy-
namical velocity dispersion of the galaxy population are very im-
portant.

Galactic winds powered by supernovae are a crucial ingredient
in models of galaxy formation (Dekel & Silk 1986; White & Frenk
1991). Such negative feedback is required to quench the forma-
tion of small galaxies and make the observed faint-end of the
galaxy luminosity function much flatter than the low-mass end of
the dark-matter mass function, see for example the semi-analytical
model of Cole et al. (2000). Simulations without such strongfeed-
back tend to produce galaxies with too massive a bulge, which
consequently do not lie on the observed Tully-Fisher relation
(Steinmetz & Navarro 1999; Governato et al. 2010). Such winds
can also remove a significant fraction of baryons from the forming
galaxy, thereby explaining why galaxies are missing most oftheir
baryons (Bregman et al. 2009), and hence are much fainter in X-ray
emission than expected (Crain et al. 2010). In addition, observa-
tions of the IGM as probed with QSO sightlines reveal the presence
of metals even in the low density regions producing Lyα forest ab-
sorption (Songaila & Cowie 1996; Pettini et al. 2003; Aguirre et al.
2004; Aracil et al. 2004). Other than enrichment from galactic scale
winds, it is difficult to see from where these metals originate and
this is confirmed by simulations (e.g. Wiersma et al. 2009).

Direct evidence for outflows in high redshift galaxies came
from the Keck LBG survey spectra analysed by Adelberger et al.
(2003) and Shapley et al. (2003) who found evidence for offsets
in the positions of ISM absorption lines, Lyα emission and rest-
frame optical emission lines (see also Pettini et al. 2000, 2002).
Shapley et al. (2003) present a model in which the optical emis-
sion lines arise in nebular star-forming HII regions, giving the in-
trinsic galaxy redshift, whilst the ISM absorption lines originate
from outflowing material surrounding the stellar/nebular compo-
nent. Lyα emission arises in the stellar component, but outflowing
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neutral material scatters and absorbs the blue Lyα wing, leaving
a peak redshifted with respect to the intrisic galaxy redshift (e.g.
Steidel et al. 2010). One of our prime aims here is to test the ob-
servations underpinning this model in an independent sample of
LBGs.

In this paper, we present the first instalment of data of az ∼ 3
survey of LBGs within wide (≈ 30′) fields centred on brightz ∼ 3
QSOs. We discuss the imaging and spectroscopic observations, the
latter including a search for redshift offsets in the LBG spectra,
followed by an analysis of the clustering and dynamics of theLBG
galaxy populations in our fields. In a further paper (Crighton et al.
2010), we present the analysis of the relationship between LBGs
and the surrounding IGM via QSO sight-lines, with the intentof
further investigating the extent and impact of galactic winds on the
IGM.

The structure of this paper is as follows. We provide the details
of our imaging survey in section 2, covering observations and data
reduction. In section 3, we present VLT VIMOS spectroscopicob-
servations, describing the data reduction and object identification
processes. Section 4 presents a clustering analysis of the photomet-
rically and spectroscopically identified objects and we finish with
our conclusions and summary in section 5. Unless stated otherwise,
we use anΩm = 0.3, ΩΛ = 0.7, H0 = 100h kms−1Mpc−1 flat
ΛCDM cosmology, whilst all magnitudes are quoted in the Vega
system.

2 IMAGING

2.1 Target fields

The full VLT survey comprises 45 VIMOS pointings across nine
quasar fields. In this paper we analyse an initial sample of 19point-
ings across 5 fields, where we have reduced and identified LBG
spectra. The remaining LBG observations will be presented in a fu-
ture paper. High-resolution optical spectra are availablefor all of
the QSOs, which are at declinations appropriate for observations
from the VLT at Cerro Paranal. The selected quasars for this paper
are Q0042-2627 (z=3.29), SDSS J0124+0044 (z=3.84), HE0940-
1050 (z=3.05), SDSS J1201+0116 (z=3.23) and PKS2126-158
(z=3.28). Q0042-2627 has been observed by Williger et al. (1996)
using the Argus multifibre spectrograph on the Blanco 4m tele-
scope at Cerro Tololo Inter-American Observatory (CTIO) and as
part of the Large Bright QSO Survey (LBQS) using Keck/HIRES
(Hewett et al. 1995). Pichon et al. (2003) observed HE0940-1050
and PKS2126-158 using the Ultraviolet and Visual Echelle Spec-
trograph (UVES) on the VLT and SDSS J0124+0044 has been ob-
served by Péroux et al. (2005) also using UVES. Finally, SDSS
J1201+0116 has been observed by the SDSS team using the
SLOAN spectrograph and by O’Meara et al. (2007) using the Mag-
ellan Inamori Kyocera Echelle (MIKE) high resolution spectro-
graph on the Magellan 6.5m telescope at Las Campanas Observa-
tory.

2.2 Observations

The imaging for our 5 selected fields was obtained using a com-
bination of the MOSAIC Imager on the Mayall 4-m telescope at
KPNO, the MOSAIC-II Imager on the Blanco 4-m at CTIO and
VLT VIMOS in imaging mode. Q0042-2627, HE0940-1050 and
PKS2126-158 were all observed at CTIO between January 2004
and April 2005. J0124+0044 and J1201+0116 were observed at

KPNO in September 2001 and April 2006 respectively. All of these
fields were observed with the broadband JohnsonU (c6001) filter
and the HarrisB andR filters, except for J0124+0044, which was
observed with the HarrisB, V andI broadband filters but not the
HarrisR. A full description of the observations is given in Table 1.

We note that during the observations of the HE0940-1050
field, there was a malfunction of one of the 8 CCDs leaving a gap
of ≈ 8′ × 18′ in the field of view. The remaining CCDs provided
unaffected data however, which we use here.

The MOSAIC Imagers each have a field of view of36′ × 36′,
covered by 82048 × 4092 CCDs. Adjacent chips are separated
by a gap of up to12′′ and we have therefore performed a dithered
observing strategy for the acquisition of all our imaging data. For
all observations we took bias frames, sky flats (during twilight pe-
riods), dome flats and also observed Landolt (1992) standard-star
fields with each filter on each night of observation for the calibra-
tion process.

In the Q0042-2627 and J1201+0116 fields, we also use imag-
ing from the VLT VIMOS instrument with the broadband R filter.
VIMOS consists of 4 CCDs each covering an area of7′ × 8′, with
gaps of2′ between adjacent chips. The fields were observed with 4
separate pointings, with< 1′ overlap between adjacent pointings.

2.3 Data Reduction

All data taken using the MOSAIC Imagers were reduced using the
MSCREDpackage withinIRAF, in accordance with the NOAO Deep
Wide-Field Survey guidelines of Januzzi et al. (2003). Biasimages
were created usingZEROCOMBINE and dome and sky-flats were
processed usingCCDPROC. Removal of the “pupil-ghost” artifact
was performed for theU -band calibration and science images using
MSCPUPIL.

The science images were processed usingCCDPROC. Cosmic
ray rejection was performed withCRAVERAGE in the early data-
reductions (HE0940-1050 and PS2126-158), whilst in the later re-
ductions,CRREJECTwas used. TheFIXPIX task was used to re-
move marked bad-pixels and cosmic-rays from the images, using
the interpolation setting.

Deprojection of the images was performed using theMSCIM-
AGE task, with optimization of the astrometry conducted using
MSCCMATCH. Large-scale sky-variations were removed from sci-
ence images usingMSCSKYSUBand the resultant final images were
combined usingMSCIMATCH andMSCSTACK.

For the HE0940-1050 and PKS 2126-158, short exposure
imaging was obtained. These were used in the selection of QSO
candidates (at brighter magnitudes than the LBG candidates) in
these fields and were reduced and combined in the same way as
the long exposure images described above. As there are typically
only one or two short exposures per filter, the gaps between the
CCDs still exist in the final short images, and no extra effortwas
made to remove blemishes by hand.

The data reduction for theR-band imaging from VLT VIMOS
was performed using the VIMOS pipeline. Again bias frames were
subtracted and the images were flat fielded using dome flats ac-
quired on the night of observation. Individual exposures were then
deprojected and stacked using theSWARP software (Bertin et al.
2002).

2.4 Photometry

We performed object extraction usingSEXTRACTOR, with a detec-
tion threshold of 1.2σ and a minimum object size of 5 pixels. Object
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Table 1.Details of the imaging data acquired in each of our five targetfields. Coordinates are given for the imaging centre, which is not necessarily the same
as the position of the bright corresponding QSO.

Field α δ Facility Band Exp time Seeing Depth
(J2000) (s) 50% comp. 3σ

Q0042-2627 00:46:45 -25:42:35 CTIO/MOSAIC2 U 12,600 1.8′′ 24.09 26.16
B 3,300 1.8′′ 25.15 26.93

VLT/VIMOS R 235 1.1′′ 24.72 25.79

J0124+0044 01:24:03 +00:44:32 KPNO/MOSAIC U 13,400 1.5′′ ... 25.60
B 2,800 1.5′′ ... 26.44
V 3,100 1.4′′ ... 26.14
I 7,500 1.1′′ 24.48 25.75

HE0940-1050 09:42:53 -11:04:25 CTIO/MOSAIC2 U 29,000 1.3′′ 25.69 26.75
B 4,800 1.3′′ 25.62 26.66
R 2,250 1.0′′ 25.44 26.24

J1201+0116 12:01:43 +01:16:05 KPNO/MOSAIC U 9,900 1.6′′ 24.50 26.11
B 6,000 2.4′′ 24.43 26.56

VLT/VIMOS R 235 0.7′′ 25.47 26.24

PKS2126-158 21:29:12 -15:38:42 CTIO/MOSAIC2 U 26,400 1.3′′ 25.08 26.97
B 7,800 1.6′′ 24.94 27.49
R 6,400 1.5′′ 24.65 26.79

detection was performed on theR-band images and fluxes were
calculated in all bands using Kron, fixed-width (with a diameter
of twice the image seeing FWHM) and isophotal width apertures.
Zeropoints for each of the observations were calculated from the
Landolt standard-star field observations made during the observing
runs and we correct the photometry for galactic extinction using the
dust maps of Schlegel et al. (1998). Each of the standard-star field
images were processed using the same method as for the science
frames. The depths reached in theU , B andR bands for each field
are given in table 1. We quote the3σ depths, which give the limit
for detecting an object 5 pixels in size with a signal of3× the back-
ground RMS detection, and the50% completeness level. The50%
completeness levels are calculated by systematically placing sim-
ulated point-source objects in the final stacked images at different
magnitudes. The50% level is then the magnitude at which we are
able to recover50% of simulated sources.

TheU , B andR number counts from the 4 fields are plotted
in Figs. 1 to 3. In general the counts turnover at∼ 0.5mag brighter
than the 50% completeness limits, consistent with the counts being
dominated by extended sources (whilst the completeness limits are
estimated using simulated point-sources). We plot for comparison
the number counts of Metcalfe et al. (2001). All counts are from
our MOSAIC data except for the R band counts of Q0042-2627
and J1201+0116, which are from the VLT VIMOS. The imaging
in the J1201+0116 field was taken during relatively poor seeing
conditions during observations at CTIO and so reaches shallower
depths than the other fields. For these plots, stars have beenre-
moved using theSEXTRACTOR CLASSSTARestimator with a limit
of CLASS STAR< 0.8.

2.5 Selection Criteria

We perform a photometric selection based on that of Steidel et al.
(1996, 2003), but applied to theU , B andR band imaging avail-
able from our imaging survey. As in Steidel et al. (2003) our selec-
tion takes advantage of the Lyman-Break at 912Å and the Lyα-

Figure 1. U -band number counts from the four fields Q0042-2627 (black
crosses), HE0940-1050 (diamonds), J1201+0116 (triangles) and PKS2126-
158 (squares). The counts of Metcalfe et al. (2001) from the William Her-
schel Deep Field are shown for comparison (red crosses).

forest passing through theU -band and into theB-band in the
redshift range2.0 < z < 3.5. To establish the selection in the
VegaUBR system, we convert from the Steidel et al. (2003) selec-
tions using the photometric transformations of Steidel & Hamilton
(1993), moving from theUnGR AB system to the Johnson-
Morgan/Kron-Cousins Vega photometry. The approximate trans-
formations (Steidel & Hamilton 1993) are as follows:Un = U +
0.75, G = B − 0.17 and R = R + 0.14 and transform the
Steidel et al. (2003) selection to(B − R) 6 1.51 and(U − B) >
(B −R)− 0.23.
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Figure 2. B-band number counts from the four fields Q0042-2627 (black
crosses), HE0940-1050 (diamonds), J1201+0116 (triangles) and PKS2126-
158 (squares). The counts of Metcalfe et al. (2001) from the William Her-
schel Deep Field are shown for comparison (red crosses).

Figure 3. R-band number counts from the four fields Q0042-2627 (black
crosses), HE0940-1050 (diamonds), J1201+0116 (triangles) and PKS2126-
158 (squares). The counts of Metcalfe et al. (2001) from the William Her-
schel Deep Field are shown for comparison (red crosses).

We also take into account model colour tracks calculated us-
ing GALAXEV (Bruzual & Charlot 2003). The tracks are shown
in Figs. 4 and 5 (solid black curves). We use a Salpeter initial
mass-function, assuming solar metallicity with a galaxy formed at
z = 6.2 (i.e. with an age of 12.6 Gyr atz = 0) and aτ = 9 Gyr
exponential SFR. The three different curves show the effectof dust
extinction with a model given by (left to right)τν = 0.5, τν = 1.0
andτν = 2.0, whereτν = 2.0, whereτν is the effective absorption

(Charlot & Fall 2000). The models agree well with the transfor-
mation of the Steidel et al. (2003) selection criteria, although the
dustier models do suggest a greater extension of thez > 3 pop-
ulation to higher values of(B − R) than the Steidel et al. (2003)
criteria.

Based on the models and the Steidel et al. (2003) criteria, we
develop a number of selection criteria in theUBR system. The key
modifications that we make from our initial colour-cut estimates
based on the Steidel et al. (2003) cuts are to extend the selection
further redwards in(B −R) and to align the(U −B)− (B −R)
axis with the stellar locus in theUBR plane, which has a slope of
(U − B) ∼ 1.25(B − R). We note that the first of these modi-
fications risks increasing the number of contaminants in theform
of M-stars (Steidel & Hamilton 1993) and the second increases the
risk of contaminants in the form of lower redshift galaxies.How-
ever, given the large number of slits available to us with theVLT
VIMOS spectrograph, we deem the risk of increased levels of con-
tamination acceptable, whilst extending the colour-cuts can allow
the observation of dustyz > 3 objects as well asz ≈ 3 galax-
ies which may be scattered out of the primary selection area due
to photometric errors on these faint objects. As such we use four
selection criteria with different priorities for spectroscopic obser-
vation (taking advantage of the object priority system in arranging
the VIMOS slit masks). These selection criteria are as follows:
• LBG PRI1

(i) 23 < R < 25.5
(ii) U − B > 0.5
(iii) B −R < 0.8(U −B) + 0.6
(iv) B − R < 2.2

• LBG PRI2

(i) 23 < R < 25.5
(ii) U − B > 0.0
(iii) B −R < 0.8(U −B) + 0.8
(iv) B − R < 2.8

• LBG PRI3

(i) 23 < R < 25.5
(ii) −0.5 < U −B < 0.0
(iii) B −R < 0.8(U −B) + 0.6

• LBG DROP

(i) 23 < R < 25.5
(ii) No U detection
(iii) B −R < 2.2

LBG PRI1 is our primary sample and selects candidates that
are expected to be the most likely2.5 < z < 3.0 galaxies. The
LBG PRI2 sample targets objects with colours closer to the main
sequence of low-redshift galaxies than the LBGPRI1 objects. This
sample is therefore expected to include a greater level of con-
tamination from low redshift galaxies. In addition, based on the
path of the evolution tracks in Figs. 4 and 5, we also expect the
z > 2.5 population that this selection samples to have, on aver-
age, a lower redshift than the LBGPRI1 sample. The next selec-
tion sample, LBGPRI3, takes this further and is intended to target
a2.0 < z < 3.0 galaxy redshift based on the evolution tracks. Fi-
nally, we select a sample ofU -dropout objects (LBGDROP) with
detections in only ourB andR band data.

In none of the above samples do we attempt to remove stellar-
like objects due to the risk of losing good LBG candidates. The
half-light radius ofz ≈ 3 LBGs has been shown to be on average
0.4′′ and so will not be resolved in our data, which is mostly taken
under conditions of> 0.8′′ seeing.
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We apply these selection criteria to four of our QSO fields:
Q0042-2627, HE0940-1050, J1201+0116 and PKS2126-158. The
candidate selection for the J0124+0044 field was performed sepa-
rately and is discussed in Bouché & Lowenthal (2004). Figs.4 and
5 show the four selection criteria applied to these four fields. The
selection boundaries are shown by the red, green and blue lines for
the LBG PRI1, LBG PRI2 and LBGPRI3 selections respectively.
Objects selected as candidates by each criteria set are shown by
red, green, blue and cyan points for the LBGPRI1, LBG PRI2,
LBG PRI3 and LBGDROP selections respectively. The grey con-
tours in each plot show the extent of the complete galaxy population
in each of the fields.

Returning to the depths of our fields, we now compare these
to those of previous studies in the selection of LBGs. We note
that Steidel et al. (2003) used photometry with mean 1σ depths of
〈σ(Un)〉 = 28.3, 〈σ(G)〉 = 28.6 and〈σ(R)〉 = 28.0, whilst their
imposedR band limit wasR = 25.5. Using the transformations of
Steidel & Hamilton (1993), the Steidel et al. (2003) 1σ limits cor-
respond toU = 27.55, B = 28.77 andR = 27.86 in the Vega
system. Comparing this to the average depths in our own fields, we
have mean3σ depths ofU = 26.2, B = 26.8 andR = 26.3,
which equate to1σ depths ofU = 27.4, B = 28.0 andR = 27.5,
largely comparable to the Steidel et al. (2003) imaging data.

The numbers of objects selected by each selection for each
field are given in Table 2. These candidate selections were used
as the basis for the spectroscopic work which is described inthe
following sections.

2.6 QSO Candidate Selection

At redshifts ofz ≈ 3, the observed optical spectra of QSOs and
galaxies exhibit similar shapes, both being heavily influenced by
the Lyman break feature. We therefore add to our targets a number
of QSO candidates in each field (except J0124+0044) using thefol-
lowing selection, which is closely based on our high-priority z ≈ 3
LBG selection:

(i) CLASS STAR> 0.8

(ii) U − B > 0.5

(iii) B −R < 0.8(U −B) + 0.8

(iv) 0.0 < B − R < 2.2

The magnitude limits used with this selection were20 < R <
23 in the Q0042-2627 and J1201+0116 fields and18 < R < 22 in
the HE0940-1050 and PKS2126-158 fields for which we had ob-
tained shallow imaging and could therefore select brighterobjects
more reliably.

As with the LBGs, QSOs atz > 2 may be selected by the pas-
sage of the Lyman-break through theU -band (e.g. Richards et al.
2009). This selection is therefore based on the LBG selection, but
constrained to brighter magnitudes and stellar-like objects only.
This selection gives 71, 39, 15 and 38 QSO candidates in the
Q0042-2627, HE0940-1050, J1201+0116 and PKS2126-158 fields
respectively. Note that only a small number of these have actually
been observed spectroscopically as the LBG candidates remained
the higher priority.

3 SPECTROSCOPY

3.1 Observations

We observed our LBG candidates using the VIMOS instrument on
the VLT UT3 (Melipal) between September 2005 and March 2007.

As described earlier, the VIMOS camera consists of four CCDs,
each with a field of view of7′ × 8′, arranged in a square config-
uration, with2′ gaps between the field-of-views of adjacent chips.
Each observation therefore covers a field of view of16′ × 18′ with
224 arcmin2 being covered by the CCDs. The instrument was set
up with the low-resolution blue grating (LRBlue) in conjunction
with the OSBlue filter, giving a wavelength coverage of 3700Å to
6700Å and a resolution of 180 with1′′ slits, corresponding to 28̊A
FWHM at 5000̊A. The dispersion with this setting is 5.3Å per pixel.
We note that this configuration also projects the zeroth diffraction
order onto the CCDs.

Given the size of our imaging fields (36′×36′) it was possible
to target 4 distinct sub-fields with the VIMOS field of view. We
have therefore observed a total of 19 sub-fields across our 5 fields,
i.e. 4 sub-fields in each field except for HE0940-1050 in whichonly
3 sub-fields were achievable due to the CCD malfunction during
the imaging observations. Each sub-field was observed with10 ×
1, 000s exposures, apart from sub-field three of the PKS2126-158,
which was observed with only4 × 1, 000s due to time constraints
in the VIMOS schedule. All observations were performed during
dark time, with< 0.8′′ seeing and< 1.3 air mass.

Slit masks for each quadrant of each sub-field were designed
using the standard VIMOS mask software, VMMPS. We used min-
imum slit lengths of8′′, which equates to 40 pixels given the pixel
scale of0.205′′/pixel. With the effectively point-like nature of our
sources and our maximum seeing constraint of0.8′′ this allows us
a minimum of≈ 7′′ for sky spectra per slit (with which to per-
form the sky-subtraction when extracting the spectra). Using the
VMMPS software with the LRBlue grism we were able to tar-
get up to≈ 60 − 70 objects per quadrant (i.e.≈ 250 objects
per sub-field), depending on the sky density of the candidateob-
jects. For the spectroscopic observations, we predominantly used
the selections as given in section 2.5, however to optimize the spec-
troscopic observations some flexibility was employed in including
small numbers of objects outside the selection criteria. However,
we note that the LBGPRI3 selection was not employed in the spec-
troscopic observations in the first observations (i.e. the observations
of HE0940-1050 and PKS2126-158), whilst the magnitude limit
used for selecting objects to observe for later fields was reduced
from R = 25.5 to R = 25. The total number of spectroscopically
observed objects was 3,562.

3.2 Data reduction

Bias frames were obtained by the VLT service observers at thebe-
ginning of each night of observations. Lamp-flats were also taken
with each of the masks with the observation setup in place (i.e. the
OS Blue filter and LRBlue grism). These were also taken by the
service observers at the beginning of each night’s observation. Arc
frames were taken during the night with each of the masks withthe
LR Blue grism and OSBlue filter.

Data reduction was performed using the VIMOS pipeline soft-
ware, ESOREX. Firstly the bias frames were combined to form a
master bias using VMBIAS. The flat frames were then processed
and combined using the VMSPFLAT recipe. VMSPCALDISP was
then used to process (bias subtract and flat-field) the arc lamp expo-
sure and to determine the spectral distortions of the instrument. We
measured a mean RMS on the inverse dispersion solution (IDS)of
2.3± 0.6 Å. With the bias, flat and arc exposures all processed, the
object frames were reduced and combined using the VMMOSOB-
SSTARE recipe to produce the reduced 2-D spectra. The spectra
have not been fully flux calibrated, however we have applied the
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Figure 4. Our selection criteria inUBR colour space shown for the Q0042-2627 (left) and HE0940-1050 (right). The red line and points show the LBGPRI1
selection, the green line and points show the LBGPRI1 selection, the blue line and points show the LBGPRI3 selection and the cyan line atU − B = 4.5
shows the LBGDROP selection. The grey contours show the entire galaxy population in the fields. The black lines show the galaxy evolution model for a
galaxy with aτ = 9Gyr exponential SFR formed atz = 6.2 and are labelled with values of observed redshift fromz = 3.83 to z = 0.

Table 2. Number of candidate high redshift objects in each of the selected fields. Note that candidates in the J0124+0044 were selected as described in
Bouché & Lowenthal (2004) and not using the four selection criteria sets described in this paper.

Field LBG PRI1 LBG PRI2 LBG PRI3 LBG DROP Total

Q0042-2627 1,366 1,381 650 1,390 4,787
J0124+0044 3,679
HE0940-1050 1,646 2,249 741 1,042 5,678
J1201+0116 477 487 469 606 2,029
PKS2126-158 1,380 2,119 713 667 4,879

Total 4,869 6,236 2,573 3,705 21,062
Observed spectroscopically 730 569 256 999 2,554

master response curves for the LRBlue grism to correct for the
effects of the grism as a function of wavelength.

We extract the 1-D spectra using purpose-written IDL rou-
tines. For each spectrum, we first fit the shape of the spectrum
across the slit. This is implemented by binning the 2-D aperture
along the dispersion axis and then fitting a Gaussian profile to each
bin to find the centre of the object signal in each bin. We then fit
the resultant spread in the central pixel with a 4th order polynomial
function. We then lay an object aperture with a width ofnap pixels
over the object and a sky aperture covering all of the usable sky re-
gion in the slit. The object and sky spectra are then taken as being
the mean over the widths of their respective apertures. Finally, we
subtract the sky spectrum from the object spectrum to produce the
final object spectrum. The dominant remaining sky-contamination

after sky-subtraction were the strong sky emission lines [OI]5577
Å [NaI]5890 Å and [OI]6300Å.

We estimate the signal-to-noise by taking the RMS of the sky
aperture in each wavelength bin and dividing by

√
nap, wherenap

is the width of the aperture used to extract the 1-D spectrum of a
given object. Fig. 6 shows the mean signal-to-noise per resolution
element (i.e. 28̊A) in the wavelength range 4100Å< λ <5300Å
in our sky-subtracted spectra as a function of sourceR-band mag-
nitude. The selected range covers many of the key emission and
absorption lines exhibited in LBGs in the redshift range2.5 < z <
3.5, whilst excluding the strong sky lines. The points in Fig. 6 show
the mean spectrum SNR per resolution element, whilst the error
bars show the standard deviation within each bin. In the faintest
bin (25.25 < R < 25.5), we achieve a mean continuum signal-to-
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Figure 5. As in Fig. 4 but for the J1201+0116 and PKS2126-158 fields (left to right).

Table 3.Details of the spectroscopic data acquired in each of our fivetarget fields. Coordinates are given for the targeting centre of each sub-field.

Field Sub-field α δ Dates Exp time Seeing
(J2000) (J2000) (s)

Q0042-2627 f1 00:45:11.14 -26:04:22.0 8-10,15/08/2007 10, 000 0.6− 1.0′′

Q0042-2627 f2 00:43:57.30 -26:04:22.0 18-19/08/2007 & 5-6/09/2007 10, 000 0.9− 1.0′′

Q0042-2627 f3 00:45:10.35 -26:19:06.9 11-12/09/2007 10, 000 0.9− 1.0′′

Q0042-2627 f4 00:43:55.97 -26:19:16.1 7,10/09/2007 10, 000 0.9− 1.0′′

J0124+0044 f1 01:24:41.82 +00:52:18.8 1-2,4/11/2005 10, 000 0.8− 0.9′′

J0124+0044 f2 01:23:32.06 +00:52:13.1 5,29,31/10/2005 10, 000 0.6− 1.0′′

J0124+0044 f3 01:23:31.29 +00:37:02.0 19-20/09/2007 10, 000 0.8− 1.0′′

J0124+0044 f4 01:24:41.86 +00:36:51.4 4/12/2005 & 22/08/2006 10, 000 0.8− 0.9′′

HE0940-1050 f1 09:42:08.02 -11:08:14.2 26-27,29/01/2006 10, 000 0.5− 0.8′′

HE0940-1050 f2 09:43:21.53 -11:08:35.0 30-31/01/2006, 1,25/02/2006 & 1/03/2006 10, 000 0.5− 1.0′′

HE0940-1050 f3 09:43:21.58 -10:54:31.8 14,19/12/2007 & 31/01/2008 10, 000 0.6− 1.0′′

J1201+0116 f1 12:02:14.01 +01:09:09.9 13-15/04/2007 & 17/04/2007 10, 000 0.6− 1.0′′

J1201+0116 f2 12:01:10.01 +01:09:09.9 23/04/2007 & 8,11,14/05/2007 10, 000 0.4− 0.9′′

J1201+0116 f3 12:01:10.04 +01:24:09.8 16-17/05/2007 10, 000 0.5− 0.9′′

J1201+0116 f4 12:02:14.07 +01:24:08.0 18/05/2007 & 6,8,10/02/2008 10, 000 0.6− 0.7′′

PKS2126-158 f1 21:29:59.57 -15:31:30.2 17/08/2006 & 1,21-26/09/2006 10, 000 0.7− 1.0′′

PKS2126-158 f2 21:28:46.20 -15:31:29.9 5-6/08/2005 10, 000 0.6− 1.0′′

PKS2126-158 f3 21:30:00.41 -15:47:18.3 27/09/2006 4, 000 0.8− 1.0′′

PKS2126-158 f4 21:28:46.27 -15:47:11.9 9-11,25,29/08/2005 10, 000 0.7− 0.9′′

noise of≈ 3.5. This rises to a continuum signal-to-noise≈ 9 for
our brightest objects (23 < R < 23.25).

3.3 Object Identification

We perform the object identification for each slit individually by
eye. Given the wavelength range covered by the LRBlue grism
combined with the redshift range of our targets,2 < z < 3.5, there
are several key spectral features that facilitate the identification of
those targets. These are primarily:
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Figure 6. Mean signal-to-noise per resolution element (28Å) in the wave-
length range 4100̊A< λ <5300Å as a function ofR-band magnitude in
our VLT VIMOS spectra with integration times of 10,000s.

• Lyman limit, 912Å;
• Lyβ emission/absorption, 1026Å
• OVI 1032Å, 1038Å;
• Lyα forest,<1215.67̊A;
• Lyα emission/absorption, 1215.67Å;
• Inter-stellar medium (ISM) absorption lines:

– SiII 1260.4̊A;
– OI+SiII 1303Å;
– CII 1334Å;
– SiIV doublet 1393̊A & 1403Å;
– SiII 1527Å;
– FeII 1608̊A;
– AlII 1670Å;

• CIV doublet absorption/emission, 1548-1550Å.

The most prominent of these features is most frequently the
Lyα emission/absorption feature at 1215Å. However, as discussed
by Shapley et al. (2003), the observed optical (rest-frame UV) ab-
sorption and emission features are thought to originate from an out-
flowing shell of material surrounding the core nebular region of the
galaxy. These features do not therefore represent the redshift of the
rest-frame of the galaxy but in fact of these outflows.

For each confirmed LBG we measure independently the red-
shift of the Lyα emission/absorption feature and the redshift of the
ISM absorption features. In order to measure the Lyα redshift, we
fit the feature with a Gaussian function allowing the amplitude,
central wavelength and width to be free parameters. From these
we determine the redshift and line-width of the feature. We note
that absorption blue-wards of the emission wavelength produces an
asymmetry in the observed emission line, however given the mod-
est resolution of our observations the Gaussian fit is preferred to
any more complex asymmetric fitting to the emission line.

We have performed an estimate of the accuracy of our red-
shift results by repeating the spectral line fitting method with mock
spectra. Each mock spectrum consists of a single Gaussian emis-

Figure 7. Estimate of the accuracy of the Gaussian line-fitting based on
iteratively fitting mock spectra with Gaussian random noise. The open cir-
cles show the results of applying the fitting method to a single emission
line spectrum with a range of signal-to-noise (where the signal-to-noise is
defined as the ratio between the peak signal and the width of the Gaussian
noise). The blue triangles show the result of the same methodapplied to
a simple absorption line spectrum including the ISM lines: SiII (1260Å),
OI+SiII (1303Å), CII (1336Å) and SiIV (1393̊A, 1402Å).

sion line (i.e.f = Ae−(λ−λ◦)
2/2σ2

) at a random redshift in the
range2.5 < z < 3.5 and a FWHM of1680 kms−1 corresponding
to a Gaussian width ofσ = 850 kms−1 (equivalent to the resolu-
tion of the instrument). Gaussian random noise was then added to
the basic emission line shape to give the required signal-to-noise.
For each mock spectrum, we then performed the Gaussian fitting,
iteratively performing the process for a total of104 mock spectra at
a given signal-to-noise. The difference between the input redshift
and the Gaussian line fitting redshift was then measured for each of
the iterations and the error estimated from the distribution of this
difference in input and measurement. The process was repeated,
increasing the emission line peak flux from 1 to 20× the Gaussian
noise width.

The results are given in Fig. 7, where the measured accuracy is
plotted as a function of the calculated signal-to-noise (red circles).
Further to this, we measure the distribution of Lyα emission peak
signal-to-noise in our galaxy sample, which is shown in Fig.8 as a
percentage of the total number of LBGs exhibiting Lyα emission.
If we now compare these two plots, we see that≈ 90% of our emis-
sion line LBGs have an emission line signal-to-noise of> 3, which
suggests that90% of the Lyα emission line redshifts have velocity
errors of less than≈ 550 kms−1. Further, the median Lyα emis-
sion line signal-to-noise is≈ 5.5 which gives a velocity error of
≈ 400 kms−1. Our higher quality spectra (i.e. the top20%) how-
ever, are estimated to achieve velocity errors on the Lyα emission
line redshifts as small as≈ 200 kms−1.

Where feasible, we also attempt to measure the redshift of the
ISM absorption lines based on the SiII, OI+SiII, CII and SiIVdou-
blet (despite being a mixture of high and low ionization lines we
note that they are all measured to have comparable velocity off-
sets in Shapley et al. 2003, at least within the resolution constraints
afforded by our observations). We primarily use absorptionlines
between1215Å . λrest . 1500Å as these remain within the
wavelength coverage of the low-resolution blue grism over the full



10 R. Bielby et al

Figure 8.The distribution of Lyα emission line (red stars) and ISM absorp-
tion line (blue circles) signal-to-noise measurements in our LBG sample.
The calculated signal-to-noise is the ratio between the emission/absorption
line peak (after subtracting the continuum) and the measured noise. The fi-
nal ISM signal-to-noise value is taken as the median of the calculated values
for the ISM lines used. See Fig. 7 for the estimated velocity errors based on
the feature signal-to-noise.

redshift range (i.e.2 . z . 3.5) of our survey. Measuring the indi-
vidual absorption lines in most of our spectra is difficult given the
SNR of the absorption features in our spectra, however our ability
to estimate the redshift of the ISM lines can be greatly improved by
attempting to determine the mean ISM redshift by fitting the five
lines simultaneously.

To evaluate this method we repeat the iterative error analysis
performed for the Lyα emission line fitting, but fitting five absorp-
tion lines (withσISM = 850 kms−1) simultaneously. Again we
measure the offset between the input redshift and the outputredshift
measured from the Gaussian line fitting. The result is again plotted
in Fig. 7 (blue triangles), whilst the distribution of ISM signal-to-
noise measurements in the data is again given in Fig. 8. This sug-
gests that we may reasonably expect a significant improvement in
the estimated redshift compared to measuring just a single line. We
now predict an accuracy of≈ 200 kms−1 at a signal-to-noise of
≈ 3, which based on Fig. 8 accounts for55% of our sample.

With the Lyα and ISM redshifts determined, we estimated the
intrinsic redshifts,zint, of our LBG sample using the relations of
Adelberger et al. (2005a). These relations were derived from a sam-
ple of 138 LBGs observed spectroscopically in both the optical and
the near infrared and are based on the offsets found between the
Lyα plus ISM lines and the nebular emission lines, [OII]3727Å,
Hβ, [OIII]5007Å and Hα. These lines are all associated with the
central star-forming regions of LBGs as opposed to the outflowing
material and are thus expected to be more representative of the in-
trinsic redshift of a given LBG. The relations of Adelbergeret al.
(2005a) that we use here are as follows:

For LBGs with only a redshift from the Lyα emission line we
used:

zint = zLyα − 0.0033 − 0.0050(zLyα − 2.7) (1)

For objects with Lyα absorption and a measurement ofzISM we
used:

zint = zISM + 0.0022 + 0.0015(zISM − 2.7) (2)

And for objects with redshifts measured from both the Lyα emis-
sion line and the ISM absorption lines we used:

zint = z + 0.070∆z − 0.0017 − 0.0010(z − 2.7) (3)

wherez is the mean of the Lyα redshift (zLyα) and the ISM absorp-
tion line redshift (zISM) and∆z ≡ zLyα − zISM. Adelberger et al.
(2005a) quote rms scatters ofσz = 0.0027 (200 kms−1), 0.0033
(250 kms−1) and0.0024 (180 kms−1) respectively for each of the
above relations based on their application to their opticaland IR
spectroscopic sample of LBGs.

As well asz ≈ 3 galaxies, our selection also samples a num-
ber of contaminating objects. These consist of low-redshift emis-
sion line galaxies (identified by [OII]3727̊A, Hβ, [OIII]5007Å and
Hα emission), low-redshift Luminous Red Galaxies (LRGs - iden-
tified by [OII]3727Å emission, Ca H, K absorption and the 4000Å
break) and faint red stars (mostly M and K-type stars). We show
examples of the spectra of several LBGs and contaminant low-
redshift galaxies taken with the VLT VIMOS in this survey in Fig. 9
(note that these are not flux-calibrated spectra).

All identified objects, including stars and low-redshift galax-
ies, were assigned a quality rating, q, based on the confidence of
the identification. The value of q was assigned on a scale of 0 to 1,
with 1 being the most confident and 0 being unidentified. All ob-
jects withq < 0.5 were rejected as spurious identifications and are
not included in the spectroscopic catalogue used in the remainder
of this work. LBGs were generally classified as follows:

• 0.5 - Lyα emission or absorption line evident plus some
’noisy’ ISM absorption features.
• 0.6 - Lyα emission or absorption plus some ISM absorption

features.
• 0.7 - Lyα emission or absorption plus most ISM absorption

features.
• 0.8 - Clear Lyα emission or absorption plus all ISM absorption

features.
• 0.9 - Clear Lyα emission or absorption plus high signal-to-

noise ISM features.

With this classification scheme, we have identified 392, 254,
170, 111 and 93z > 2 galaxies withq =0.5, 0.6, 0.7, 0.8 and 0.9
respectively.

3.4 Sky Density, Completeness & Distribution

We summarize the numbers of objects observed in Table 4.
Our mean sky density for successfully identified LBGs is
0.24arcmin−2, whilst the percentage ofz > 2 galaxies in the en-
tire observed sample (the success rate given in table 4) is 27.5%.
The remaining observed objects are a mix of low-redshift galaxies,
stars and unidentified objects (generally very low-signal to noise
spectra). In the worst case field (J1201+0116), we have a greater
number of low-redshift galaxies than high redshift detections. We
attribute this to the relatively poor depth of the imaging observa-
tions in this field. We also note that the PKS2126-158 field is at
a relatively low galactic latitude and thus was a higher proportion
of contamination by galactic stars. However, the field stillshows a
high proportion ofz > 2 galaxies.

In Fig. 10 and Table 5 we summarize the redshift distributions
of each of our sample selections in our observed fields. The overall
redshift distribution across all fields is shown in the bottom panel of
Fig. 10, with the black histogram showing the redshift distribution
fromUBV I selected objects from J0124+0044 and the red, green,
blue and cyan histograms showing the LBGPRI1, LBG PRI2,
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Figure 9. Example spectra taken using 10,000s integration time with the LR Blue grism on the VLT VIMOS instrument. The top two spectra are examples
of contaminating low-redshift galaxies. The remaining 12 panels show LBG spectra exhibiting both Lyα emission and absorption over the redshift range
2 < z < 3.5. ISM lines are also clearly identifiable in the individual LBG spectra as is the Lyman limit. Both galaxy redshift and apparentR-band magnitude
(Vega) are quoted for each object. Note that all the above spectra have been binned to≈ 16Å.

Table 4. Summary of objects identified in the VLT VIMOS observations.The success rate is the number of successfully identified LBGs divided the total
number objects observed. Example spectra of the high-redshift and low-redshift galaxies are shown in Fig. 9. All 10 identified z > 2 QSO spectra are provided
in Fig. 16.

Field Subfields Slits Galaxies QSOs Galaxies Stars Success rate
z > 2 z > 2.0 z < 2.0

Q0042-2627 4 876 264 (0.29arcmin−2) 1 106 5 30.1%
J0124+0044 4 832 264 (0.29arcmin−2) 0 54 18 31.7%
HE0940-1050 3 501 169 (0.25arcmin−2) 1 48 36 33.7%
J1201+0116 4 699 120 (0.13arcmin−2) 5 144 72 17.2%
PKS2126-158 4 654 203 (0.23arcmin−2) 3 49 126 31.0%

Total 19 3562 1020 (0.24arcmin−2) 10 401 257 28.6%
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Figure 10. Differential redshift distribution in each of our fields and
summed over all fields. We show the number counts split by selec-
tion criteria: LBGDROP (cyan histograms), LBGPRI1 (red histograms),
LBG PRI2 (green histograms) and LBGPRI3 (blue histograms). The mean
redshifts for each selection are given in table 5.

LBG PRI3 and LBGDROP selections respectively. The overall
mean redshift for our confirmed LBG sample isz = 2.85 ± 0.34.
It is evident from the redshift distributions that the separate selec-
tion sets give slightly differing (but overlapping) segments in red-
shift space. As may be expected, the LBGDROP selection is the
most biased towards the higher end of our redshift distribution, with
an overall mean redshift across all our samples ofz = 2.99. The
LBG PRI1 selection provides a redshift range of2.90±0.32, whilst
the LBG PRI2 and LBGPRI3 give comparable redshift distribu-
tions of 2.67 ± 0.26 and2.67 ± 0.31 respectively. We also show
the redshift distributions for each individual field in the top five
panels of Fig. 10, with the LBGPRI1, LBG PRI2, LBG PRI3 and
LBG DROP identically to that in the ’all fields’ plot. In each field
we again see that the LBGPRI3 and LBGPRI2 selections pref-
erentially select the lowest redshift ranges followed by LBG PRI1
and LBGDROP showing the highest redshift range (although this
is less pronounced in the J1201+0116 field in which the imaging
depths were least faint).

We illustrate the distribution of our spectroscopic LBG sample
in each of our 5 fields in Fig. 11. The fields are ordered by R.A. top

to bottom and all identifiedz > 2 galaxies (filled blue circles)
are shown along with all knownz > 2 QSOs identified from the
NASA Extragalactic Database. We also plot the positions of QSOs
identified in our VIMOS observations and AAOmega QSO survey,
which is described further in Crighton et al. (2010).

In Fig. 12 we plot the number of identified LBGs in magni-
tude bins for each of our fields. The filled histograms show the
cumulative numbers of successfully identified objects (including
interlopers as well asz > 2 galaxies) split by their selection
criteria. LBG DROP selected objects are shown by the cyan his-
togram, LBGPRI1 by the red histogram, LBGPRI2 by the green
histogram and LBGPRI3 by the blue histogram. The distribution
of all spectroscopically observed objects is given by the solid line
histogram in each case. As the J0124+0044 objects were not se-
lected using the same selection criteria, these are simply left as a
single group shown by the filled black histogram. In all fields, we
see that we are successfully identifying objects down to themagni-
tude limit of R= 25.5 (I= 25 in the case of J0124+0044), although
a significant number of objects remain unidentified in each field at
the fainter magnitudes as spectral features become more difficult to
discern in the spectra. We note also that the shapes of the overall
magnitude distributions are biased more towards brighter objects
in the Q0042-2627 and J1201+0116 fields in which a greater num-
ber of LBG PRI3 objects are included (and also the imaging depths
achieved in these fields are shallower than in the other fields).

In Fig. 13, we show the number counts of our photometri-
cally selected LBGs (open red circles) and the estimated number
counts of LBGs (filled red circles) derived from the candidate num-
ber counts and the success rate as a function of magnitude (i.e.
the number of confirmed LBGs divided by the number of observed
candidates). At faint magnitudes we correct the counts for incom-
pleteness in the spectroscopic observations, however we have not
made any correction for incompleteness in the original photometry.
The number counts of Steidel et al. (2003) are also plotted, show-
ing their candidate number counts (open blue triangles) andnumber
counts corrected for contamination (filled blue triangles). The two
data-sets show good agreement over the magnitude ranges sampled.

3.5 Velocity Offsets and Composite spectra

The galaxy spectra contain a wealth of information as illustrated by
the work of Shapley et al. (2003). We now look at how our spectra
compare to previous work in terms of the velocity offsets between
the different spectral features. For the galaxies that exhibit both
measurable Lyα emission and ISM absorption lines, we calculate
the velocity offsets between these lines,∆v = vem − vabs. The
distribution of∆v for our galaxy sample is shown in Fig. 14. The
distribution of velocity offsets exhibits a strong peak with a mean
of 〈∆v〉 = 625 with a dispersion of510 kms−1. This compares to
a value measured by Shapley et al. (2003) of650 kms−1.

We have produced composite spectra in several Lyα equiva-
lent width bins in order to produce spectra with increased signal-
to-noise compared to the individual galaxy spectra. The Lyα profile
can be very complex, consisting of both emission and absorption
features and this combination often leads to asymmetric profiles
with a significant amount of absorption blue-wards of the emis-
sion line (Shapley et al. 2003; Kornei et al. 2010). For the purposes
of producing composite spectra of the LBGs, we take a relatively
simple approach to the measurement of the equivalent widthsof
our galaxy sample. For a given spectrum, we measure an equiva-
lent width for the emission line if clearly identifiable and if not we
make a measurement of the absorption profile. To do this, we fit
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Table 5.Redshift ranges ofz > 2 galaxies identified from each of our photometric selections.

Field LBG PRI1 LBG PRI2 LBG PRI3 LBG DROP

Q0042-2627 2.74± 0.28 2.66± 0.26 2.67± 0.30 3.04 ± 0.28
J0124+0044 2.86± 0.34
HE0940-1050 3.02± 0.33 2.67± 0.29 2.85± 0.39 3.10 ± 0.21
J1201+0116 2.71± 0.29 2.45± 0.41 2.61± 0.29 2.74 ± 0.33

PKS2126-158 2.98± 0.29 2.72± 0.27 n/a 3.30 ± 0.29

All fields 2.90± 0.32 2.66± 0.28 2.67± 0.30 2.99 ± 0.36

Figure 11. Distribution in R.A., Declination and redshift for each of our five fields. Spectroscopically confirmed LBGs are marked byblue filled circles
and known QSOs by dark red stars. We also identify those QSOs with low-resolution spectra available (red circles, i.e. VLT VIMOS and AAT AAOmega),
medium-resolution spectra (red crosses, i.e. SDSS - SDSS J1201+0116 only) and high-resolution spectra (red squares, i.e. VLT UVES, Keck HIRES).

a polynomial to the continuum and a Gaussian fit to the Lyα line
profile and estimate the equivalent width from these fits.

The individual LBG spectra were normalized prior to con-
structing the composite, using the median of the rest-frameUV
continuum in the range1300Å . λrest . 1500Å. After this nor-
malization, we rescale the LBG spectra to the rest-frame andre-
binned the spectra before combining the samples to produce the

final composite spectra. We note that all the spectra were calibrated
using the VIMOS master response curves prior to this process.

The composite spectra are shown in Fig. 15 and are split into
(from bottom to top) equivalent width ranges of W< −20Å (50
galaxies), -20̊A<W<0Å (134 galaxies), 0̊A<W<5Å (166 galax-
ies), 5Å<W<10Å (218 galaxies), 10̊A<W<20Å (181 galaxies),
20Å<W<50Å (112 galaxies) and W>50Å (60 galaxies). Between
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Figure 12.Number counts as a function of RVega magnitude for all fields,
except for J0124+0044 in which IVega is used. The shaded histograms show
the numbers of successfully identified objects with the colour coding the
same as in Fig. 10: the cyan histogram shows counts of LBGDROP objects,
the red shows LBGPRI1 objects, the green shows LBGPRI2 objects and
the blue shows LBGPRI1 objects. The unshaded histogram shows the total
number of candidates observed with VLT-VIMOS in each field (i.e. the gap
between the shaded regions and solid line shows the number ofunidentified
objects as a function of magnitude). Contamination levels from stars and
low-redshift galaxies for each field are given by the dashed line in each
panel.

them, the composites incorporate a total of 921 of the galaxysam-
ple, excluding any objects withq < 0.5 or with significant con-
tamination, for example from zeroth order overlap. The key emis-
sion and absorption features are marked and we can immediately
identify both absorption and weak emission for the ISM lines: SiII,
OI+SiII, CII, SiIV and CIV. All the features have been markedat
z = 0. The offset between the line centres of the Lyα emission and
the ISM absorption lines is evident in these composite spectra, a
result of the asymmetry of the Lyα, potentially combined with an
intrinsic difference between the velocities of the sourcesof the Lyα
emission and the ISM absorption features.

Figure 13. Sky densities of the LBG sample as a function ofRVega

magnitude. The red open circles give the total densities of objects in our
LBG PRI1, LBG PRI2 and LBGDROP photometric selections. The ‘VLT’
densities (filled red circles) are estimated using the totalphotometric den-
sities multiplied by the fraction of successfully identified LBGs from the
VLT spectroscopic observations and are corrected for incompleteness in
the spectroscopic sample at faint magnitudes. Raw (open blue triangles)
and corrected (filled blue triangles) number counts are alsoshown from
Steidel et al. (2003). Note that we transform the Steidel et al. (2003) AB
systemR magnitudes by−0.14 to convert toRVega (Steidel & Hamilton
1993).

Figure 14.Distribution of the velocity offsets between ISM absorption lines
and the Lyα emission line in individual galaxies from our redshift sur-
vey (solid histogram). We measure a mean velocity offset between Lyα

emission and the ISM lines of∆V = 625 ± 510 kms−1. The result of
Shapley et al. (2003), which has a mean of650 kms−1 is shown by the
dashed histogram.

3.6 VLT AGN and QSO observations

As discussed earlier, we also targeted a small number ofz ≈ 3
QSO candidates selected from ourUBR photometry. In combina-
tion with this, due to the similarity in the shape of the spectra of
LBGs and QSOs, the LBG selections also produced a handful of
faint QSOs and AGN. We present the spectra of these in Fig. 16,
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Figure 16. Spectra of thez > 2 QSOs observed as part of the VLT VIMOS LBG survey. Redshifts and R-band magnitudes are given for each QSO and
significant broad emission features are marked.

whilst the numbers of QSOs in each field are given in table 4. The
positions of the observed QSOs are also shown in Fig. 11.

4 CLUSTERING

In this section we present the clustering analysis of thez ≈
3 galaxy sample, incorporating estimates of the angular auto-
correlation function for our complete LBG candidates catalogue
and the redshift space auto-correlation function of our spectro-
scopically confirmed sample. Developing from these estimates, we
use a combined sample of the VLT VIMOS LBG data-set and the
Steidel et al. (2003) data-set to evaluate the 2-D correlation func-
tion and place constraints on the infall parameter,β, and the bias
paremeter,b. Finally, we relate the clustering properties of the
z ≈ 3 sample to those of lower-redshift samples.

4.1 Angular Auto-correlation Function

We now evaluate the clustering properties of our candidate and
spectroscopically confirmed LBGs. Using all five of our imaging

fields, we begin by calculating the angular correlation function of
the LBG candidates. We use all LBG candidates selected using
the LBG PRI1, LBG PRI2, LBG PRI3 and LBGDROP selections
plus the candidates from the J0124+0044 field. The total number
of objects is thus 18,489 across an area of 1.8deg2. First we create
an artificial galaxy catalogue consisting of a randomly generated
spatial distribution of points within the fields. The angular auto-
correlation function is then given by the Landy-Szalay estimator
(Landy & Szalay 1993):

w(θ) =
〈DD〉 − 2 〈DR〉+ 〈RR〉

〈RR〉 (4)

whereDD is the number of galaxy-galaxy pairs at a given sep-
aration,θ, DR is the number of galaxy-random pairs andRR is
the number of random-random pairs. The random catalogues were
produced within identical fields of view to the data and with sky
densities of100× the real object sky densities, in order to make
the noise contribution from the random catalogue negligible. We
estimated the statistical errors on thew(θ) measurement using the
jack-knife estimator.
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Figure 15.Composite spectra collated from our VLT VIMOS sample. Each
spectrum shows the composite of a sub-sample of the LBGs, grouped by
Lyα equivalent width measurements. The key UV spectral features dis-
cussed in the text (i.e. Lyα and Lyβ emission/absorption, ISM absorption
lines) are all evident in these composite spectra.

Measurements ofw(θ) in small fields are subject to a bias
known as the integral constraint (e.g. Groth & Peebles 1977;
Peebles 1980; Roche et al. 1993). This is given by:

σ2 =
1

Ω2

∫ ∫

w(θ)dΩ1dΩ2 (5)

where the ‘true’w(θ) is then:

w(θ) = 〈wmeas(θ)〉+ σ2 (6)

where〈wmeas(θ)〉 is the measured correlation function, averaged
across the observed fields, andw(θ) is the correct correlation func-
tion. As in Roche et al. (2002), we evaluate the integral constraint
using the numbers of random-random pairs in our fields:

Figure 17.The angular correlation function,w(θ), from our imaging fields.
The open stars show the correlation function for the photometrically se-
lected sample, whilst the filled stars show the same correlation function
corrected for stellar andz < 2 galaxy contamination as described in the
text. The dashed red and solid red lines show the double powerlaw models
fitted to the raw and contamination corrected correlation functions respec-
tively. We also show a model determined from ther0, γ measurements of
daÂngela et al. (2005a) - dash-dot blue line. The blue triangles and dot-
ted line show the correlation function and best fitting powerlaw model for
the photometrically selectedz < 2 galaxy population. The blue dash line
gives the result of Adelberger et al. (2005b), withr0 = 4.0 h−1Mpc and
γ = 1.57.

σ2 = A

∑

NRR(θ)θ
−δ

∑

NRR(θ)
(7)

The results of thew(θ) calculation for the full photometrically
selected LBG sample are shown in Fig. 17 (open red stars).

Additionally we show the correlation function, estimated in
the same way, for the remaining23 < R < 25.5 galaxy population
(i.e. all galaxies in the given magnitude range not selectedby the
LBG colour selection - blue triangles). This gives an estimate of the
clustering for thez < 2 galaxy population in the LBG fields. Based
on the spectroscopic results, we estimate that60% of the photomet-
ric selection consists ofz > 2 galaxies whilst the remaining40%
consists of contaminantz < 2 galaxies and galactic stars. In order
to determine more accurately the clustering of our selectedz > 2
galaxy population, we therefore correct thew(θ) measurement for
the effects of contamination. The correction is given by:

wmeas(θ) = wz<2(θ)f
2
z<2 + wLBG(θ)f

2
LBG (8)

wherewmeas is the total measured correlation function,wz<2(θ)
is the correlation function of the contaminant galaxies,fz<2 is the
fraction of contaminant galaxies,wLBG(θ) is the correlation func-
tion of the z > 2 galaxies andfLBG is the fraction ofz > 2
galaxies. We therefore use the measured correlation function (i.e.
open red stars in Fig. 17) and the measuredz < 2 correlation func-
tion (i.e. blue triangles in Fig. 17) along with the spectroscopically
measured fractions ofz > 2 andz < 2 galaxies to estimate the
z > 2 galaxy correlation function (i.e.wLBG). The result is shown
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by the filled red stars in Fig. 17. At all scales we find a higher
measurement of thez > 2 correlation function after applying this
correction. We note that thewLBG(θ) measurement shows signs
of a change in slope atθ ∼ 0.6 − 1′, suggestive of the combina-
tion of one and two halo terms used in Halo Occupation Distribu-
tion modeling (HOD, e.g. Abazajian et al. 2005; Zheng et al. 2005;
Wake et al. 2008; Zheng et al. 2009).

We now quantify the clustering amplitude of the raw and cor-
rectedw(θ) measurements using a simple power-law fit, with con-
stantsAw andδ such that:

w(θ) = Awθ
−δ (9)

Fitting to the data to the large scale clustering (0.8′ < θ <
10′) for the uncorrectedw(θ) we obtain best fit parameters of
Aw = 1.08 ± 0.27 × 10−3degδ andδ = 0.76+0.07

−0.17 . Using the
same angular range with the correctedw(θ) gives parameters of
Aw = 1.85+0.41

−0.21×10−3degδ andδ = 0.82+0.11
−0.12. We also perform

a fit to thez < 2 correlation function. In this case, the cluster-
ing is fit by a power law withAw = 2.31+0.58

−0.58 × 10−3degδ and
δ = 0.57+0.01

−0.01 (dotted blue line in Fig. 17).
We now estimate the real-space correlation function,

ξ(r), from our measurement ofw(θ) using Limber’s formula
(Phillipps et al. 1978) with our measured redshift distribution
(Fig. 10). This is performed for both the raww(θ) and the
contamination-correctedw(θ) with a double power-law form of
ξ(r) given by:

ξ1 =
(r0,1

r

)−γ1
(r < rb) (10)

ξ2 =
(r0,2

r

)−γ2
(r > rb) (11)

where rb is the break at which the power-law is split between
the two power-laws,r0 is the clustering length andγ is the
slope (which is given byγ = 1 + δ). We performχ2 fitting
over ther0-γ parameter space to both the uncorrected and cor-
rectedw(θ) results. Firstly for the uncorrected result, we find
r0,2 = 3.14+0.17

−0.36 h−1Mpc and γ2 = 1.81+0.09
−0.14 . For the cor-

rectedw(θ), we determine a clustering length above the break of
r0,2 = 4.37+0.43

−0.55 h−1Mpc, with a slope ofγ2 = 1.61 ± 0.15.
The full results are given in table 6 and the best-fittingw(θ) mod-
els are plotted in Fig. 17. We note that for continuity in the double
power-law function, the break is found to be atrb ≈ 1.5 h−1Mpc.

Comparing our result to previous results, daÂngela et al.
(2005a) obtained a clustering length ofr0 = 4.48+0.09

−0.14 h−1Mpc
with a slope ofγ = 1.76+0.08

−0.09 and Adelberger et al. (2003) ob-
tainedr0 = 3.96 ± 0.15 h−1Mpc andγ = 1.55 ± 0.29, both us-
ing a single power-law function fit (ξ(r) = (r/r0)

−γ ) to the same
z ≈ 3 LBG data (Steidel et al. 2003). Our sample appears to have
a comparable clustering strength, which is slightly higherwhen
corrected for stellar/low-redshift galaxy contamination. A further
comparison can be made with the work of Foucaud et al. (2003),
who measured an amplitude ofr0 = 5.9 ± 0.5 h−1Mpc from the
w(θ) of a sample of 129420.0 < RAB < 24.5 LBG candidates
in the Canada-France Deep Fields Survey (McCracken et al. 2001).
Hildebrandt et al. (2007) measure the clustering of LBGs in the Ga-
BoDS data and find a clustering length ofr0 = 4.8± 0.3 h−1Mpc
for a sample of22.5 < RVega < 25.5 galaxies. Subsequently
to this, Hildebrandt et al. (2009) measured the clustering proper-
ties of LBGs selected in theugr filters from the CFHTLS data

and measured a clustering length ofr0 = 4.25 ± 0.13 h−1Mpc
with a magnitude limit ofrAB < 25 and using redshift estimates
based on theHYPERZ photometric code (Bolzonella et al. 2000).
Our contamination-corrected result appears consistent with most
previous work, although lower than the result of Foucaud et al.
(2003).

4.1.1 Slit Collisions

After calculating the angular correlation function, we next use the
redshift information from our spectroscopic survey in order to con-
firm the clustering properties of the LBGs. However, before we
do this we need to evaluate the extent to which we are limited in
observing close-pairs by the VIMOS instrument set up. With the
LR Blue grism, each dispersed spectrum covers a length of 570
pixels on the CCD. Further to this each slit has a length (perpendic-
ular to the dispersion axis) in the range of 40-120 pixels. Given the
VIMOS camera pixel scale of 0.205′′/pixel, each observed object
therefore covers a minimum region of≈ 120′′ × 8.2′′, in which no
other object can be targeted.

In order to evaluate this effect, we calculate the angular auto-
correlation function for only those candidate objects thatwere tar-
geted in our spectroscopic survey,wslits(θ). To do so we require
a tailored random catalogue that accounts for the geometry of the
VIMOS CCD layout. We therefore create random catalogues for
each sub-field using a mask based on the layout of the four VIMOS
quadrants, excluding any objects that fall within the2′ gaps be-
tween adjacent CCDs. The sky-density of randoms in each sub-field
is set to be20× the sky-density of data points in the corresponding
parent field. From this subset, which consists of≈ 3400 targeted
objects, we calculatewslits(θ) using the Landy-Szalay estimator
(equation 4). The ratio of1+wslit(θ) to the original measurement
of 1 + w(θ) (prior to correction for contamination) is shown in
Fig. 18 (open circles). Atθ > 2′ the two correlation functions fol-
low each other closely and give a ratio of≈ 1. However at separa-
tions ofθ < 2′ we see an increasingly significant loss of clustering
showing the effect of the instrument setup. At redshifts ofz ≈ 3,
the2′ threshold of the effect corresponds to a comoving separation
of r ≈ 2.6 h−1Mpc.

The dashed line in Fig. 18 shows a fit to the ratio between the
slit-affected clustering measurement and the original measurement.
We use this fit to provide a weighting factor dependent on angular
separation,Wslit(θ), which is given by:

Wslit(θ) =
1

1− 0.0738θ−1.052
(12)

Applying this weighting function to DD pairs at separationsof
θ < 2′ then allows the recovery of the original correlation function
from the VIMOS sub-sample correlation function down to separa-
tions ofθ ≈ 0.1′. Belowθ ≈ 0.1′ however we are unable to recre-
ate the original candidate correlation function as no closepairs can
be observed below this scale due to the slit lengths (8′′ < θ < 24′′)
used in the VIMOS masks.

4.2 Semi-Projected Correlation Function,wp(σ)

We next present the semi-projected correlation functionwp(σ) for
the 1020q > 0.5 VLT LBGs. Here,σ is the transverse separation
given by the separation on the sky, whilstπ will be its orthogonal,
line-of-sight component. We first estimatewp(σ) for the full VLT
LBG sample using (Davis & Peebles 1983):
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Table 6.Clustering results based on the raww(θ) and thew(θ) corrected for stellar and low-redshift galaxy contamination.

Aw δ r0,1 γ1 r0,2 γ2
(×10−3degδ ) ( h−1Mpc) ( h−1Mpc)

Uncorrected data 1.08+0.27
−0.27 0.76+0.07

−0.17 2.16+0.24
−0.30 −2.49+0.09

−0.12 2.69+0.20
−0.26 −1.60± 0.11

Contamination-corrected 1.85+0.41
−0.21 0.82+0.11

−0.12 3.04+0.33
−0.34 −2.48+0.10

−0.11 4.37+0.43
−0.55 −1.61± 0.15

Figure 18.Effect of ’slit collisions’ on the measurement of the angular cor-
relation function,wθ . We show the ratio between the clustering of the en-
tire photometric sample, given by1 + w(θ), and the clustering measured
from only those objects that have been spectroscopically observed using
VLT VIMOS, 1+wslits(θ). The observational constraints incurred due to
the constraint of preventing the dispersed spectra from overlapping on the
instrument CCD lead to a significant reduction in the clustering measure-
ment atθ < 2′. The dashed line shows our parameter fit (equation 12) to
the measured ratio, which we use to correct subsequent clustering measure-
ments made using the spectroscopic galaxy sample.

wp(σ) = 2

∫ ∞

0

ξ(σ, π)dπ (13)

We perform the integration over the line of sight range fromπ = 0
to 100 h−1Mpc. This encompasses much of the bulk of the sig-
nificant signal in the correlation function and performing the cal-
culation over a range of reasonable limits showed the resultto be
robust. The VLTwp(σ) is shown in Fig. 19 with the best fit cluster-
ing model determined by aχ2 fit to the data shown as a dotted line.
For the projected correlation function a simple power law form of
ξ(r) gives:

wp(σ)/σ = rγ0σ
−γ

(

Γ
(

1
2

)

Γ
(

γ−1
2

)

Γ
(

γ
2

)

)

, (14)

whereΓ() is the Gamma function. We perform the fit to the data
using a fixed value for the slope of the function ofγ = 1.8. With
this value, we obtainr0 = 3.67+0.23

−0.24 h−1Mpc for the full VLT
sample. Comparing to the initial estimate from thew(θ) measure-
ment in Fig. 18, we find thewp(σ) measurement gives a somewhat
lower value forr0. The difference is at the. 2σ level and given

Figure 19. Projected correlation function,wp(σ) of the full VLT, Keck
(Steidel et al. 2003) and the combined samples. The blue dash-triple-dot
line represents our best-fit (withγ = 1.8) to the Keck data ofr0 =
4.20+0.14

−0.15 h−1Mpc. The dot-dashed line represents the bestγ = 1.8

fit to the VLT sample withr0 = 3.67+0.23
−0.24 h−1Mpc. The solid line

represents the bestγ = 1.8 fit to the combined VLT+Keck sample with
r0 = 3.98+0.23

−0.24 h−1Mpc and the dotted line represents the double-
power-law model fitted to the VLTw(θ). The dashed line gives the result
of Adelberger et al. (2005b), withr0 = 4.0 h−1Mpc andγ = 1.57.

the level of contamination in the photometric sample, we expect the
wp(σ) measurement to be the more reliable.

We next compare the VLT result to the LBG Keck sample
of Steidel et al. (2003). This sample consists of 940 LBGs in the
redshift range2.0 . z . 3.9, with a mean redshift of〈z〉 =
2.96 ± 0.29 (compared to2.0 . z . 4.0 and〈z〉 = 2.87 ± 0.34
for the VLT LBG survey). The survey is based on observations
within 17 individually observed fields, with most of these being
≈ 8′×8′ with a few exceptions (the largest field being≈ 15′×15′).
The Keck spectroscopic data covers a total area of0.38deg2, with
just a small number of the fields being adjacent. The median rest-
frame UV absolute magnitude isM1700 = −17.92 ± 0.02, based
on the commonly used transformations toM1700 using the ob-
served magnitudesR and G (e.g. Sawicki & Thompson 2006;
Reddy et al. 2008). With the same method (and the transforma-
tions toR and G AB magnitudes given by Steidel & Hamilton
1993), we estimate a median rest-frame UV absolute magnitude
of M1700 = −18.19 ± 0.03 for our VLT sample. The samples ap-
pear broadly compatible, with the Keck sample having a marginally
fainter average absolute magnitude, most likely due to the greater
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number of fainter objects (R & 25) observed with the deeper spec-
troscopy obtained for the Keck sample.

Combining the two spectroscopic data-sets gives a total of
1,980 LBGs over a total area of1.56deg2. In Fig. 19 we further
present the Keck and combined results forwp(σ). The VLT re-
sults are slightly lower than for the Keck data in the range1 <
σ < 7 h−1Mpc. The result for the combined sample is domi-
nated by Keck pairs forσ < 7 h−1Mpc and VLT pairs at larger
scales. The solid line represents ther0 = 4.20+0.14

−0.15 h−1Mpc,
γ = 1.8 fit for the Keck data. The dashed line representsr0 =
3.98+0.13

−0.12 h−1Mpc, which gives the bestγ = 1.8 fit to the
VLT+Keck combinedwp data. Also shown is the bestγ = 1.8
fit to the full VLT sample withr0 = 3.67+0.23

−0.24 h−1Mpc.
To calculatewp(σ) for the double power-lawξ(r) that we fit-

ted above to the VLTw(θ) we used the relation

wp(σ) = 2

∫ ∞

σ

rξ(r)√
r2 − σ2

dr (15)

The dot-dashed line in Fig. 19 then shows that this model alsogives
a good fit to the combinedwp(σ).

4.3 Redshift-Space Correlation Function

The redshift-space correlation function,ξ(s), is an estimator of
the clustering of a galaxy population as a function of the redshift-
space distance,s, which is given bys =

√
σ2 + π2. Now, us-

ing the full VLT sample of 1,020q > 0.5 spectroscopically con-
firmed z > 2 galaxies, we estimateξ(s) using the simple esti-
matorξ(s) = DD(s)/DR(s) − 1. Again the random catalogues
were produced individually for each field to match the VIMOS
geometry and with20× the number of objects as in the associ-
ated data catalogues. The DD pairs were then corrected for slit
collisions using the angular weighting function (equation12) ap-
plied to pairs with separations ofθ < 2′. The result is shown in
Fig. 20 (filled circles) with Poisson error estimates. The accuracy
of these errors is supported by analysis of mock catalogues gener-
ated from N-body simulations (dâAngela et al. 2005a; Hoyle et al.
2000). Plotted for comparison is the Keck result as analysedby
daÂngela et al. (2005a). Also shown is the combined VLT+Keck
ξ(s) result.

The VLT and Keck samples show good agreement at separa-
tions ofs > 8 h−1Mpc, however the VLT sample shows a signif-
icant drop in clustering strength at1 < s < 8 h−1Mpc compared
to the Keck measurement. This seems at odds with thew(θ) result,
which points to the two samples having similar clustering strengths.
However, we note that the estimate of the line-of-sight distances is
sensitive to any intrinsic peculiar velocities and also errors on the
redshift estimate, which will have a consequent effect on the mea-
sured redshift space correlation function. In addition to this, the pe-
culiar velocities are an important element in the cross-correlation
between the galaxy population and the Lyαforest, which is pre-
sented with this galaxy sample in Crighton et al. (2010). We there-
fore now estimate the effect of our redshift errors on this re-
sult. The error on a given LBG redshift is a combination of
the mean error on the spectral feature measurements, which is
given by the measurement error on the Lyα emission line from
Fig. 7, (i.e.≈ ±450 kms−1 given average spectral S/N=5.5 in
the full VLT sample) combined with the error on the estimation
of the redshift from the measurement of the outflow features (≈
±200 kms−1). In addition, there will be some contribution from
intrinsic peculiar velocities. We estimate this contribution based

Figure 20. Redshift-space clustering function,ξ(s), calculated from 1020
spectroscopically identified LBGs in the full VLT, Keck and combined
samples. Also shown is the result from the 529 LBGs in the highS/N
VLT sample. The models generally adopt theγ = 1.8, ξ(r) ampli-
tudes fitted towp(σ). Thus the combined VLT+Keck model assumes
r0 = 3.98 h−1Mpc and expected velocity dispersions of< w2

z >1/2=
720 kms−1 (VLT) and < w2

z >1/2= 400 kms−1 (Keck). Also shown
is a model withr0 = 3.67 h−1Mpc from the full VLT wp(σ) result and
< w2

z >1/2= 1000 kms−1, improving the VLT fit. A further model with
r0 = 4.2 h−1Mpc from the Keckwp(σ) gives a good fit to the Keckξ(s)
with < w2

z >1/2= 600 kms−1. Finally, we show the 2-power-law VLT
w(θ) model, assuming< w2

z >1/2= 1000 kms−1. All models assume
β = 0.48 (see Sect. 4.4.)

on the work of (Tummuangpak et al. In prep). Tummuangpak et al.
(In prep) use the Galaxies-Intergalactic Medium Interactions Cal-
culation (GIMIC, Crain et al. 2009), which samples a num-
ber of sub-grids of the Millennium Simulation Springel et al.
(2005), populating these with baryons using hydrodynamic sim-
ulations. Tummuangpak et al. (In prep) measure a mean intrin-
sic peculiar velocity based on galaxies in the GIMIC simu-
lations in redshift slices atz = 3.06 and find a value of
≈ 140 kms−1. Combining this in quadrature with the esti-
mated measurement errors gives an overall velocity dispersion
of σz =

√

(450 kms−1)2 + (200 kms−1)2 + (140 kms−1)2 ≈
510 kms−1. The expected overall VLT pairwise velocity disper-
sion is therefore< w2

z >1/2=
√
2 × 510 ≈ 720 kms−1. Sub-

stituting a Lyα emission-line velocity error of±150 kms−1 (based
on a measurement error of∆z ≈ 0.002 from Steidel et al. 2003) in
the above expression similarly implies an expected< w2

z >1/2≈
400 kms−1 for the Keck pairwise velocity dispersion.

On small scales, the above random pair-wise velocity disper-
sion leads to the well known ‘finger-of-god’ effect on redshift-
space maps and correlation functions. On larger scales, bulk infall
motion towards over-dense regions becomes a significant factor and
causes a flattening in the line-of-sight direction in redshift space.
We now model these two effects to see if theξ(r) estimates mea-
sured from the LBG semi-projected correlation function,wp(σ),
and the angular correlation function,w(θ), are consistent with the
measured LBG redshift-space correlation function,ξ(s). Follow-
ing Hawkins et al. (2003), we use the real-space prescription for
the large scale infall effects given by Hamilton (1992) whereby the
2-D infall affected correlation function is given by:
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ξ′(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) (16)

wherePl(µ) are Legendre polynomials,µ = cos(θ) andθ is the
angle betweenr andπ. For a simple power-law form ofξ(r) the
forms ofξl(s) are:

ξ0(s) =

(

1 +
2β

3
+

β2

5

)

ξ(r) (17)

ξ2(s) =

(

4β

3
+

4β2

7

)(

γ

γ − 3

)

ξ(r) (18)

ξ4(s) =
8β2

35

(

γ(2 + γ)

(3− γ)(5− γ)

)

ξ(r) (19)

whereγ is the slope of the power-law form of the real-space cor-
relation function:ξ(r) = (r/r0)

−γ . For the 2-power-law model
case we use the equivalent expressions derived by daÂngela et al.
(2005a). As in Hawkins et al. (2003), the infall affected clustering,
ξ′(σ, π) is then convolved with the random motion (in this case the
pair-wise motion combined with the measurement uncertainties):

ξ(σ, π) =

∫ ∞

−∞

ξ′(σ, π − v(1 + z)/H(z))f(v)dv (20)

whereH(z) is Hubble’s constant at a given redshift,z, andf(v) is
the profile of the random velocities,v, for which we use a Gaussian
with width equal to the pair-wise velocity dispersion,< w2

z >1/2.
With this form off(v), we take the expected pair-wise veloc-

ity dispersion,< w2
z >1/2= 720 kms−1 for the full VLT sample

and< w2
z >1/2= 400 kms−1 for the Keck sample. Now taking

an estimate ofβ = 0.48 (see Section 4.4), we may model the ef-
fect of these velocity components on the LBG sampleξ(σ, π), first
using the single power-law fit to the combined samplewp(σ) with
r0 = 3.98 h−1Mpc andγ = 1.8. The form of ξ(s) estimated
from the resultantξ(σ, π) is plotted in Fig. 20 (solid line). While
the model with< w2

z >1/2= 400 kms−1 gives a good fit to the
Keck data, the model with< w2

z >1/2= 720 kms−1 appears to
overestimate the VLT correlation function ats < 8 h−1Mpc. Even
increasing the velocity dispersion to1000 kms−1 did not signifi-
cantly improve the fit. We also analysed the LBG sub-sample de-
fined by having spectralS/N > 5. We found thatξ(s) for this
subsample did rise and would require a pair-wise velocity disper-
sion of≈ 1000 kms−1 for the model to fit the data. This is sig-
nificantly more than the predicted pair-wise velocity dispersion
of ≈ 600 kms−1, calculated by replacing the velocity error of
450 kms−1 for the full sample by350 kms−1 in this case, cor-
responding to average S/N=8.25 in Fig. 7. The fact that the points
at s < 1 h−1Mpc and those ats > 8 h−1Mpc agree with the
model argues against an even larger velocity dispersion.

The other possibility is that ther0 = 3.98 h−1Mpc model
may be too high for the VLTξ(r). Certainly the amplitude ofξ(r)
from the VLTwp(σ) appears lower than either that from the VLT
w(θ) or the Keckwp(σ). Fig. 20 shows that the fit improves for
the full VLT samples and the high S/N subsample if the correlation
function amplitude reduces tor0 = 3.67 h−1Mpc as fitted to the
VLT wp(σ), coupled with the velocity dispersion increasing to<
w2

z >1/2= 1000 kms−1.
The combined VLT+Keck sample is very similar to the Keck

sample at small scales. Even for the Keck sample we find that anin-
creased pairwise velocity dispersion of< w2

z >1/2≈ 600 kms−1

is needed to fitξ(s) if r0 = 4.2 h−1Mpc. For the Keck LBGs,
the velocity error (±150 kms−1, Steidel et al. 2003)+ intrinsic
outflow error (±200 kms−1, Adelberger et al. 2003) combines in
quadrature to give±250 kms−1 as the error for the line mea-
surement. Subtracting from±600/

√
2 kms−1 would imply ≈

340 kms−1 for the pairwise intrinsic velocity dispersion. Clearly
for the VLT samples the implied velocity dispersion would beeven
larger.

We have also used the double power-lawξ(r) indicated by the
VLT w(θ) to predictξ(s). Since the steepening takes place atr <
3 h−1Mpc, this means that we would need even higher velocity
dispersions to fitξ(s). Fig. 20 shows that the double power-law
model needs at least a velocity dispersion of≈ 1000 kms−1 to fit
the VLT+Keck combined sample.

We conclude that the lowξ(s) we find in the full VLT sam-
ple may be caused by a statistical fluctuation in the LBG clustering
due to a lower than averager0 and a higher than average veloc-
ity dispersion. The VLT sample is designed to improve correlation
function accuracy at large scales, particularly in the angular direc-
tion, and the somewhat noisy result forξ(s) at the smallest scales
reflects this. Overall, we conclude that the velocity dispersions re-
quired byξ(s) are bigger than reported previously for the Keck data
(400 kms−1 by daÂngela et al. 2005a) with the Keck and VLT
samples now being fitted by< w2

z >1/2= 600 − 1000 kms−1,
close to what is expected from estimates of the redshift errors.

4.4 Estimating the LBG infall parameter, β(z = 3)

The infall parameter,β, quantifies the extent of large scale coherent
infall towards overdense regions via the imprint of the infall motion
on the observed redshift space distortions. Given its dependence on
the distribution of matter, measuringβ can provide a useful dynam-
ical constraint onΩm(z) (Hamilton 1992; Heavens & Taylor 1995;
Hawkins et al. 2003; dâAngela et al. 2008; Cabré & Gaztañaga
2009). It relates the real-space clustering and redshift-space clus-
tering as outlined in the previous section (see equations 16to 19).

We shall measureβ(z = 3), using the combination of our
VLT LBG data and the LBG data of Steidel et al. (2003). As
noted above, the VLT and Keck samples complement each other
in the wide range of separation,σ, in the angular direction for
the VLT sample and the high sky densities of the Keck samples,
which help define the clustering better at small scales. As dis-
cussed in section 4.3, the two samples possess comparable real-
space clustering strengths, with measured clustering lengths of
r0 = 3.67+0.23

−0.24 h−1Mpc andr0 = 4.20+0.14
−0.15 h−1Mpc for the

VLT and Keck LBG samples respectively. The higher estimated
velocity error of the VLT sample at±450 kms−1 compared to
the Keck±300 kms−1 will make little difference due to the fur-
ther contributions of the outflow errors and intrinsic velocity dis-
persions, the dominance of the Keck data at small scales and the
smaller effect of velocity errors at large spatial scales where the
VLT data is dominant. We shall therefore combine the two samples
in the two methods we use to measureβ.

We first estimateβ by simply comparing the amplitude ofξ(s)
andξ(r) and using equation 17 at large scales. Fig. 21 shows the
ξ(s) from the combined VLT and Keck samples divided by the
best fit model forξ(r) from the semi-projected correlation function,
wp(σ), with r0 = 3.98+0.13

−0.12 h−1Mpc andγ = 1.8. Equation 17
applies only in the linear regime, so we do not expect it to fit at
small separations. We therefore fit ats > 10 h−1Mpc. Fitting in
the ranges10 < s < 25 h−1Mpc and10 < s < 60 h−1Mpc
gives the two dashed lines in Fig. 21, which correspond toβ(z =
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Figure 21. The redshift space correlation function,ξ(s) divided by the
real space correlation function,ξ(r), with the latter assumingr0 =
3.98 h−1Mpc and γ = 1.8. The short and long dashed lines repre-
sent the best fit to the data in the ranges10 < s < 25 h−1Mpc and
10 < s < 60 h−1Mpc, which correspond toβ(z = 3) = 0.51+0.20

−0.23 and

β(z = 3) = 0.38+0.19
−0.23 from equation 17.

3) = 0.51+0.20
−0.23 andβ(z = 3) = 0.38+0.19

−0.23 with the difference
between these two giving a further estimate of the uncertainty in β
from this method.

We next estimateβ using the shape of the 2-point correlation
function,ξ(σ, π), to measure the effect of redshift space distortions.
We calculateξ(σ, π) for the combined sample. As with our de-
termination ofξ(s), we use the simpleDD/DR estimator taking
randoms tailored to each individual field, with errors againcalcu-
lated using the Poisson estimate. The resultantξ(σ, π) is plotted in
Fig. 22. The elongation in theπ dimension, due to the pair-wise
velocity dispersion and redshift errors, is clearly evident at small
scales.

Now using this measurement ofξ(σ, π), we make an estimate
of the infall parameter,β. For this we use the single power-law
model of ξ(r) with r0 = 3.98 h−1Mpc andγ = 1.8 based on
the semi-projected correlation function of the combined data in
Fig. 19. With these parameters set, we calculate the model outlined
in equations 16 to 20 over a range of values of< w2

z >1/2 and
β. We then perform a simple∆χ2 fitting analysis and jointly es-
timate< w2

z >1/2= 700 ± 100 kms−1 and infall parameter of
βLBG(z ≈ 3) = 0.48 ± 0.17 for our combined LBG sample. The
contour plot of∆χ2 for the fit in the< w2

z >1/2: β plane is given
in Fig. 23.

We note that if we allow the amplitude ofξ(r) to be fitted
as well as the other two parameters, then the results move toβ =
1.1±0.4 and< w2

z >1/2= 800±100 kms−1 for a best fitγ = 1.8
value ofr0 = 3.64 h−1Mpc. Taking the Keck sample on its own,
we again findβ = 0.9− 1.5 and< w2

z >1/2= 650− 750 kms−1

if r0 is not or is allowed to float respectively. The Keck fits have
to be resticted tos < 25 h−1Mpc because of the smallσ range in
the angular direction and if we apply the same cut to the combined
sample, values ofβ again rise toβ = 0.8− 1.1 and< w2

z >1/2≈
800 kms−1, similar to the results for the Keck sample. Although

Figure 22.ξ(σ, π) projected correlation function calculated from the spec-
troscopically confirmed LBGs from the combined Steidel et al. (2003) and
VLT VIMOS LBG samples. The best fit model contours are marked as solid
lines withβ(z = 3) = 0.48 and< w2

z >1/2= 700 kms−1.

the errors are clearly still significant, we prefer values ofβ ≈ 0.5−
0.6 given by the amplitude ofξ(s) and the shape ofξ(σ, π) for the
combined sample which seems best to exploit the advantages of the
Keck sample at small scales and the VLT sample at large scales.

We have also checked the effect of assuming the double
power-law model fitted to the LBGw(θ) in Fig. 17 with r0,1 =
3.19 h−1Mpc, γ1 = 2.45, r0,2 = 4.37 h−1Mpc, γ2 = 1.61
and rb = 1 h−1Mpc. The bestξ(σ, π) fits are then given by
β = 0.20 ± 0.2 and < w2

z >1/2= 750 ± 150 kms−1. The
reducedχ2 was 3.44 compared to 3.16 for the single power-law
model. However, allowing theξ(r) amplitude to vary gaveβ =
0.48+0.24

−0.33 and< w2
z >1/2= 725+175

−150 kms−1 with fitted ampli-
tudes≈ 80% below those estimated fromw(θ). The small scale
rise atr < 1 h−1Mpc will not affect our fit much because of the
lack of statistical power at small separations. Also, the models we
are using are expected to be accurate only in the linear regime at
larger scales. The 80% reduction of the amplitude to the large scale
power-law implies anr0 = 4.05 h−1Mpc which is close to the
r0 = 3.98 h−1Mpc value assumed for our single power-law fits
above, leading to similar fitted values forβ and< w2

z >1/2 in
these two cases. The lowerβ from the actual 2 power-law model is
simply a result of the highξ(r) amplitude implied byw(θ) forcing
β down in theξ(σ, π) fit according to equation 17.

Comparing our result ofβ = 0.48 ± 0.17 to previous esti-
mates ofβ(z ∼ 3), we generally find somewhat higher values than
daÂngela et al. (2005a), who estimate a value ofβ = 0.15+0.20

−0.15 .
This is partly because we have assumedΩm(z = 0) = 0.3 and fit-
ted for the velocity dispersion< w2

z >1/2 whereas dâAngela et al.
(2005a) assumed< w2

z >1/2= 400 kms−1 and fitted forΩm(z =
0). If we assume< w2

z >1/2= 400 kms−1 for the VLT +
Keck samples, our estimate ofβ reduces toβ = 0.18 for the
combined sample. The assumption of< w2

z >1/2= 400 kms−1

seems to be the main factor that droveβ to lower values, also
helped by the different model forξ(r) assumed by dâAngela et al.
(2005a), a 2-power law model withγ1 = 1.3 andγ2 = 3.29 with
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Figure 23. LBG pairwise velocity dispersion (< w2
z >1/2)-infall

parameter(β) ∆χ2 contours for the VLT+Keck sample, fitting toξ(σ, π)
with s < 40 h−1Mpc. The best fit values areβ = 0.48 ± 0.17 and
< w2

z >1/2= 700 ± 100 kms−1, assumingr0 = 3.98 h−1Mpc and
γ = 1.8.

rb = 9 h−1Mpc motivated by fitting the form ofξ(s). The con-
tours in the< w2

z >1/2: β plane in Fig. 23 show thatβ and
< w2

z >1/2 are degenerate - higherβ implies more flattening
in the π direction which can be counteracted by fitting a higher
< w2

z >1/2 to produce elongation inπ. A flatter small scale slope
for ξ(r) also allows a smaller< w2

z >1/2 to be fitted which can
then allow lower values ofβ to be fitted. We have also fitted our
combined data with a further 2-power-law form forξ(r), now with
r0,1 = 3.98 h−1Mpc, γ1 = 1.8, r0,2 = 5.99 h−1Mpc, γ2 = 2.6
andrb = 15 h−1Mpc but we find that the results for< w2

z >1/2

andβ from the combined sample are similar to those for the single
power-law model.

As well as the higher value ofβ, we note that we are also
fitting higher velocity dispersion values to the combined sample.
Again the degeneracy between< w2

z >1/2 and β may be the
cause. However, the need for high velocity dispersions was also
noted in the small scale fits toξ(s) particularly for the VLT sample
but also for the Keck sample. Even< w2

z >1/2= 600 kms−1

for the Keck sample implies an intrinsic velocity dispersion of
< w2

z >1/2≈ 440 kms−1 taking into account velocity and outflow
errors on the redshift, much higher than< w2

z >1/2= 200 kms−1

expected from the simulations. If our velocity errors were underes-
timated then this could be a cause but they would have to be under-
estimated in both the Keck and VLT datasets. Larger velocityer-
rors are also contradicted by the consistent widths of the emission-
absorption difference histograms in Fig. 14. For example, assum-
ing±450 kms−1 for the VLT emission velocity error is consistent
with ±200 kms−1 for the outflow error and±130 kms−1 for the
absorption line error.

We conclude that forΩm(z = 0) = 0.3, the combined
survey is best fitted by< w2

z >1/2= 700 ± 100 kms−1 with
β = 0.48 ± 0.17 for a single power-law model withγ = 1.8
andr0 = 3.98 h−1Mpc. Based on theβ = 0.49 ± 0.09 value,
r0 = 5.05 h−1Mpc and γ = 1.8 values found for 2dFGRS
(Hawkins et al. 2003) linear theory predictsβ(z = 3) = 0.22 in
theΩm = 1 case andβ = 0.37 in theΩm(z = 0) = 0.3 case, with

r0 = 3.98 h−1Mpc for the latter and transformed appropriately for
Ωm = 1. Our measurements appear to produce values ofβ that are
marginally more acceptable withΩm(0) = 0.3 thanΩm(0) = 1
but neither case is rejected at high significance;β = 0.22 with
< w2

z >1/2= 600 kms−1 is rejected only at1.5σ in Fig. 23. More
importantly, these measurements provide a useful check of the im-
pact of small- and large-scale dynamics on our measurement of the
clustering of ourz ≈ 3 galaxies. The estimates of< w2

z >1/2 will
also be useful in interpreting the effect of star-formationfeedback
from our LBGs on the IGM as measured by the Lyman-alpha forest
in background QSOs (Crighton et al. 2010).

4.5 Estimating the LBG bias parameter,b(z = 3)

We can now estimate the bias,b, of the VLT+Keck LBG sample
from ourβ measurements. The bias gives the relationship between
the galaxy clustering and the underlying dark matter clustering:

ξg = b2ξDM (21)

whereξDM is the volume averaged clustering of the dark matter

distribution andξg is the volume averaged clustering of a given
galaxy distribution. In a spatially flat universe, the relationship be-
tween the bias,b, and the infall parameter,β, can be approximated
by (Lahav et al. 1991):

β =
Ω0.6

m

b
(22)

Using this relation with our estimate ofβ = 0.48 ± 0.17 and
assuming thatΩm(z = 0) = 0.3 and then given thatΩm(z =
3) = 0.98, this impliesb(z = 3) = 2.06+1.12

−0.53 .
We now compare this to an estimate of the bias from our ear-

lier clustering analysis using equation 21. To do this we calculate
the dark matter clustering using theCAMB software incorporating
the HALOFIT model of non-linearities (Smith et al. 2003). From
this we determine a second estimate of the bias using equation 21
and calculating the volume averaged clustering function (Peebles
1980) within a radius, x, for our galaxy sample and the dark mat-
ter:

ξ(x) =
3

x3

∫ x

0

r2ξ(r)dr (23)

whereξ(r) is the 2-point clustering function as a function of sep-
aration,r. We use an integration limit ofx = 20 h−1Mpc, en-
suring a significant signal, whilst still being dominated bylinear
scales. Taking the volume averaged non-linear matter clustering,
with the volume averaged clustering of our galaxy sample (with
r0 = 3.98 h−1Mpc andγ = 1.8, from the VLT+Keck wp(σ)
measurement) and determining the bias using equation 21, wefind
b = 2.22 ± 0.16, consistent with the estimate from the bulk flow
measurement ofβ = 0.48 ± 0.17 which impliesb = 2.06+1.12

−0.53 .
Both values are somewhat lower than the measurement of the bias
of a sample of LBGs from the Canada-France Deep Survey by
Foucaud et al. (2003) who measured a value ofb = 3.5± 0.3.

We now estimate the mass of typical host haloes for the
z ≈ 3 LBG sample using the Sheth et al. (2001) prescription for
the relation between halo mass and bias, determining a host halo
mass ofMDM = ×1011.1±0.1h−1M⊙. Comparing this to other
LBG samples, Foucaud et al. (2003), Hildebrandt et al. (2007) and
Yoshida et al. (2008) measure halo masses of brightz ≈ 3 LBG
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Figure 24. The shaded regions are theΩ0
m-β(z) contours for the

VLT+Keck sample, fitting toξ(σ, π) with s < 40 h−1Mpc. The dashed
lines are the 1- and 2-σ contours from comparing thez ≈ 3 LBG and
the 2dFGRSz ≈ 0.1 clustering amplitudes and also using the 2dFGRS
β(z ≈ 0.1) = 0.49 ± 0.09 result. The dotted line is the1 − σ joint
contour from applying both of these constraints.

samples ofMDM ∼ 1012h−1M⊙. This difference in mass esti-
mates reflects the deeper magnitude limits of our survey compared
to a number of the above results and also a slightly lower red-
shift range that contribute to our LBG selection sampling a lower
mass range. Work using the Steidel et al. (2003, 2004) data, which
is closer to our own in redshift and depth, report halo massesof
MDM ∼ 1011.5h−1M⊙ (Adelberger et al. 2005b; Conroy et al.
2008), which is closer to the estimate presented here, although our
result is still somewhat low.

4.6 Further test of the standard cosmology

Following the analysis of dâAngela et al. (2005a) we can make
a further test of the standard cosmology by directly comparing
the independent values of the bias from the z-space distortion and
the LBG clustering amplitude. Whereas in the above case we as-
sumed the DM clustering for the standard model, here we simply
assume the 2dFGRS clustering scale length which we approximate
asr0 = 5.0 h−1Mpc andγ = 1.8. We also assume their value
of β(z ≈ 0.1) = 0.49 ± 0.09 from redshift space distortions. In
similar fashion to dâAngela et al. (2005a) we can then for anyΩ0

m,
find the mass clustering amplitude atz = 3 and then we can find the
LBG bias,b(z = 3), by comparing this to the amplitude of LBG
clustering given byr0 = 3.98 h−1Mpc andγ = 1.8. This can
then be converted toβ(z = 3) by using the value forΩm(z = 3)
implied by the assumedΩ0

m and therefore theβ(z) : Ω0
m relation

can be drawn. The 1- and 2-σ upper and lower limits on this rela-
tion are shown in Fig. 24. These are overlaid on the∆χ2 contours
(greyscale) from a similar redshift-space distortion analysis as seen
in Fig. 23 but now allowingΩ0

m andβ(z = 3) to vary while keep-
ing < w2

z >1/2= 700 kms−1 constant. In this case we have also
allowed the LBG clustering amplitude to be fitted within a 50%
range; this is to ensure that the dynamical constraint is as inde-
pendent as possible of the other constraint which is directly taken

from the LBG clustering amplitude. We see that although the best
fit from redshift-space distortions has now moved to lowerΩ0

m and
lowerβ(z = 3), there is still a good overlap between the±1 − σ
regions of both constraints. The1 − σ joint contours from both
constraints are shown by the dotted line with the best joint-fit be-
ing Ω0

m = 0.2 andβ(z = 3) = 0.45. Thus there is certainly no
inconsistency with the standardΛCDM model although, as before,
theΩ0

m = 1 model is still rejected at less than the2σ level. With
the values ofΩ0

m in a reasonable range, there appears no inconsis-
tency with the evolution of gravitational growth rates as predicted
by Einstein gravity, extending the results presented by Guzzo et al.
(2008) toz ≈ 3.

4.7 Clustering Evolution

The space density and clustering evolution of LBGs have fre-
quently been used to infer their descendant galaxy populations
at the present day. Initially, their relatively high clustering ampli-
tudes were taken to mean that they would evolve on standard halo
models into luminous red galaxies in the richest galaxy clusters at
z = 0 (Steidel et al. 1996; Governato et al. 1998; Adelberger et al.
2005b). On the other hand, Metcalfe et al. (1996, 2001) notedthat
the comoving density of LBGs was close to that of local spirals.
Indeed, they showed that a simple, Bruzual & Charlot (1996),pure
luminosity evolution model with e-folding time,τ = 9Gyr, plus a
small amount of dust, could explain the LBG luminosity function
at z ≈ 3. Recently, more detailed merger tree models have been
used to interpret LBG space densities and clustering. For example,
Conroy et al. (2008) have concluded on this basis that the descen-
dants are varied, with LBGs evolving to become both blue and red
L∗ and sub-L∗ galaxies.

We now qualitatively compare the clustering strength of our
LBG samples to that of lower redshift galaxies. We first determine
the volume-averaged correlation function at20 h−1Mpc using the
single power-law form of the clustering of both our own and the
Keck LBG sample as prescribed in equation 23. Theξ(20) mea-
sured for the VLT LBG sample is shown in Fig. 25, compared
to a number of measures of the clustering of other galaxy sam-
ples across a range of redshifts. The VLT+Keck result (r0 =
3.98 h−1Mpc, γ = 1.8, z = 2.87) is shown by the filled
star. We also show the measure for the Keck LBG sample alone
(open star) and the Foucaud et al. (2003) LBG sample (cross).The
apparentB-band magnitude range of the VLT+Keck sample is
B = 25.69 ± 0.76. Using the overall redshift range of the sam-
ple (z = 2.87 ± 0.34) and K+e corrections determined using the
Bruzual & Charlot (2003) stellar population evolution, this equates
to an absoluteB-band magnitude ofMB ≈ −21.5 ± 1.1.

For comparison with our data, we have also plotted the esti-
mated volume-averaged correlation function values for a number
of low and high redshift galaxy samples. The open and filled red
triangles show the LRG samples of Sawangwit et al. (2009), giving
the clustering for a2L∗ and 3L∗ sample respectively (and hav-
ing absolute i-band magnitudes ofMi(AB) = −22.4 ± 0.5 and
Mi(AB) = −22.6 ± 0.4). The open squares show the clustering
of late-type galaxies from the 2dFGRS as given by Norberg et al.
(2002) with the individual points giving the clustering of galax-
ies in the absolute magnitude ranges of−18 > Mbj > −19,
−19 > Mbj > −20, −20 > Mbj > −21 and −20.5 >
Mbj > −21.5 (in order of lowest to highest clustering data-points).
In addition we plot the blue spiral galaxies of Bielby et al. (2010)
with the open upside-down triangles and Blake et al. (2010) with
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filled upside-down triangles, plus the sBzKs (open blue diamond)
of Hayashi et al. (2007).

As an illustration of how we may expect the clustering of the
samples to evolve with time, we first consider a model based on
the simulated merger history of dark matter haloes (dot-dot-dot-
dash line) calculated from the simulations of González & Padilla
(2010), whilst the method used to follow the merger trees is de-
scribed in Padilla et al. (2010). The simulation was performed us-
ing parameter values ofΩm = 0.26, ΩΛ = 0.74, σ8 = 0.80 and
ns = 1.0 and consisted of a box size ofLbox = 123 h−1Mpc
containing5123 particles with a particle mass of109h−1M⊙. The
normalization to the LBG data was performed by finding the halo
mass (1011.12±0.08h−1M⊙) for which the haloξ20 matches theξ20
measurement for the VLT LBG sample at its mean redshift. We see
that the model predicts little change in the clustering amplitude at
z = 1 and then stronger evolution to a higher clustering amplitude
atz = 0. The amplitude of the clustering at z=0 appears consistent
with that of late-type galaxies in the 2dFGRS survey (Norberg et al.
2002). The predicted descendant number density atz = 0 based on
the halo merger tree model is log10(n/(h

3Mpc−3)) = −3.49+0.59
−0.51

and is also consistent with number density of the Norberg et al.
(2002)−20.5 > Mbj > −21.5 late-type population, which is
equal to log10(n/(h

3Mpc−3)) = −3.64+0.01
−0.01 . These models are

able to estimate the transition scale between the 1-halo and2-halo
terms in the correlation function of0.71+1.80

−0.51 h−1Mpc, consis-
tent with the transition scale ofrb ≈ 1.5 ± 0.3 h−1Mpc in our
measured LBGw(θ). Overall, these conclusions are not dissimi-
lar to those of Conroy et al. (2008). However, Conroy et al. (2008)
predicted higher clustering amplitudes,r0 ≈ 5 − 6h−1Mpc or
ξ(20) = 0.21 − 0.29, at z ≈ 1 and r0 ≈ 6 − 7h−1Mpc or

ξ(20) = 0.29 − 0.38, at z ≈ 0 for the LBG descendants. Given
these differences between the merger-tree models of Padilla et al.
(2010) and Conroy et al. (2008), we conclude the results appear
somewhat model dependent.

We next compare theξ(20) results to simpler clustering mod-
els. This approach is partly motivated by the interpretation of
Metcalfe et al. (1996, 2001) whose passive luminosity evolution
(PLE) models connected the LBG population atz ≈ 3 to the late-
type population atz ≈ 0. Such models assume that the comoving
density of the LBG/late-types remains constant with time and the
clustering models considered here also make this assumption. Al-
though the models do not take into account halo mergers, it has
been shown that in the case of Luminous Red Galaxies, such mod-
els can still provide useful phenomenological fits to LRG cluster-
ing out to significant redshifts (Wake et al. 2008; Sawangwitet al.
2009). Therefore we first plot in Fig. 25 three simple clustering evo-
lution models: the long-lived model (dashed blue lines), stable clus-
tering (dot-dashed cyan lines), and no evolution of the comoving-
space clustering (short-dashed line). All the models have been nor-
malised to the VLT LBG clustering amplitudes.

The long-lived model is equivalent to assuming that the galax-
ies have ages of order the Hubble time. The clustering evolution
is then governed by their motion within the gravitational potential
and assuming no merging (Fry 1996; Croom et al. 2005). The bias
evolution is thus governed by:

b(z) = 1 +
b(0)− 1

D(z)
(24)

whereD(z) is the linear growth rate and is determined using the

fitting formulae of Carroll et al. (1992). We evaluateξ(20) using

the bias evolution in conjunction with the dark matter clustering
evolution, again determined using theCAMB software incorporat-
ing theHALOFIT model. This is then normalized to the measured
LBG clustering at the appropriate redshift.

The stable clustering model represents the evolution of virial-
ized structures and is characterised by (Peacock 1999):

ξ(r, z) ∝ r−γ ∝ (1 + z)γ−3 (25)

where r is the comoving distance.
Finally, the no-evolution model simply assumes that there

is no evolution of the clustering in comoving coordinates. From
Eq 24, this model can be thought of as a long-lived model in the
limit of very high bias, (b(0) >> 1) since thenb(z) ≈ b(0)/D(z).

Evaluating the clustering evolution of the LBGs, first using
the stable clustering prescription, we would expect the clustering
of the z ≈ 3 galaxies to evolve to a level comparable to that of
low-redshift LRG galaxy samples (Sawangwit et al. 2009), giving
a highly clustered modern day population. However, as argued by
Conroy et al. (2008), the number density of luminous, early-type
galaxies may not match that of LBGs atz ≈ 3 as required by this
virialised clustering model. Alternatively, on the basis of the long-
lived model, the LBG descendants could either be lower luminos-
ity red galaxies or higher luminosity blue galaxies. The space den-
sity of such galaxies is probably more consistent with that of the
LBG population. This assumes theΛCDM cosmology and its spe-
cific value ofσ8 = 0.80. For a lower mass clustering amplitude
the long-lived model would have higher bias and thez = 0 pre-
dicted amplitude would reduce to more resemble the no-evolution
model. In this case, the descendants of high redshift LBGs could
even be the relatively poorly clustered, star-forming galaxies of
Blake et al. (2010). Thus the long-lived models tend to make LBGs
the progenitors of bluer, or lower-luminosity red galaxiesat the
present day, similar to the conclusion from the merger-treemodel
of Conroy et al. (2008). The no-evolution (or long-lived, high bias)
model would suggest LBGs are the progenitors of bluer galaxies
with lower clustering amplitudes, more similar to the conclusions
of the merger-tree models of Padilla et al. (2010) or the simple pure
luminosity evolution models of Metcalfe et al. (1996, 2001).

5 CONCLUSIONS

In this paper we have described the VLT VIMOS survey ofz ≈ 3
galaxies in a number of fields around brightz > 3 QSOs. In total
this survey has so far produced a total of 1020 LBGs at redshifts of
2 < z < 3.5 over a total area of1.18deg2. This concludes the data
acquisition for the initial phase of the VLT VIMOS LBG Survey.
At the time of writing, these are the most up to date observations,
however the survey has a number of observations only recently ac-
quired, comprising another 25 VIMOS pointings. Upon comple-
tion, the survey will comprise a total of 45 VIMOS pointings,build-
ing significantly on this initial data-set and providing a catalogue of
≈ 2, 000 z > 2 galaxies over a sky area of2.11deg2. The wide an-
gular coverage of VLT VIMOS makes the new LBG study very
complementary to the previous Keck study which has higher space
densities over smaller areas and hence increased power at the small-
est LBG separations but little information in the angular direction
beyond10 h−1Mpc. We therefore have frequently used the two
surveys in combination in the studies of LBG clustering we have
presented here.

Based on the fraction of objects observed for this initial VLT



The VLT LBG Redshift Survey I 25

Figure 25. The volume-averaged correlation function,ξ(20), is plotted

for our LBG sample alongsideξ(20) measurements for several other
galaxy populations, including LRGs atz < 1 (Sawangwit et al. 2009),
star-forming galaxies atz < 1 (Norberg et al. 2002; Bielby et al. 2010;
Blake et al. 2010) andz ∼ 2 and other LBG populations (Adelberger et al.
2003; Foucaud et al. 2003). Further to the observational data, the solid line
shows the estimated evolution of the underlying dark-matter clustering us-
ing the CAMB software (Lewis et al. 2000), whilst the horizontal dotted
line, dashed line and dot-dash line show the clustering evolution given no
evolution in comoving coordinates, the long-lived model and the stable
model. The dot-dot-dot-dash line shows the clustering evolution based on
the modeling of the merger history of dark matter haloes.

LBG survey, we find that our estimated number densities are con-
sistent with previous studies of LBGs in this redshift range. Over-
all we obtain a mean redshift ofz = 2.85 ± 0.34. From the
data obtained we have shown evidence for the existence of galac-
tic outflows with comparable offsets between emission and absorp-
tion lines as in previous studies (e.g. Pettini et al. 2000, 2002 and
Shapley et al. 2003)

We have further measured the clustering properties of the VLT
VIMOS LBG sample. Based on the angular auto-correlation func-
tion of the photometric LBG candidates, the real-space LBG cor-
relation function,ξ(r), is estimated to take the form of a dou-
ble power-law, with a break atrb ≈ 1.5 h−1Mpc. This is
parametrised by a clustering length and slope below the break of
r0,1 = 3.19 ± 0.55 h−1Mpc, γ1 = 2.45 ± 0.15 and above the
break ofr0,2 = 4.37+0.43

−0.55 h−1Mpc, γ2 = 1.61 ± 0.15.
Assuming γ = 1.8, the semi-projected LBG correlation

function wp(σ) gives r0 = 3.67+0.23
−0.24 h−1Mpc for the VLT

LBGs, slightly lower thanr0 = 4.2+0.14
−0.15 h−1Mpc for the

Keck LBGs, and the combined VLT+Keck sample givesr0 =
3.98+0.13

−0.12 h−1Mpc. At rb > 1 h−1Mpc, theξ(r) estimates from
w(θ) andwp(σ) are therefore quite consistent. Atrb < 1 h−1Mpc
the steeper power-law from the angular correlation function rises
above the single power-law that best fitswp, but the difference
is only marginally statistically significant. These measurements of
LBG clustering are broadly consistent with previous measurements
of the clustering of LBGs atz ≈ 3 made by Adelberger et al.
(2003) and dâAngela et al. (2005a) but lower than those made by
Foucaud et al. (2003)

We then measured the redshift-space LBG auto-correlation

function, ξ(s). As expected, this presents a flatter slope at scales
s < 8 h−1Mpc due to the effect of velocity errors, outflows and
intrinsic velocity dispersions. Both the VLT and Keck samples re-
quire total pairwise velocity dispersions in the range< w2

z >1/2=
600 − 1000 kms−1 to fit ξ(s), higher than the< w2

z >1/2=
400 kms−1 previously assumed (dâAngela et al. 2005a). The VLT
and Keck samples’ξ(s) results both imply an intrinsic pairwise
velocity dispersion of±400 kms−1 for a ξ(r) model withr0 =
3.98 h−1Mpc andγ = 1.8. A higher< w2

z >1/2 will imply a
higher infall parameter,β(z = 3), due to the degeneracy between
these parameters. The high value of the velocity dispersionwill
also have an impact on our search for the effects of star-formation
feedback on the QSO Lyman-α forest (Crighton et al. 2010) be-
cause any sharp decrease in absorption near an LBG will tend to
be smoothed away by this dispersion acting as an effective redshift
error.

We combine our LBG sample with that of Steidel et al. (2003)
with the aim of measuring the infall parameter,β(z = 3). Us-
ing a single power-law withr0 = 3.98 h−1Mpc andγ = 1.8 as
our model for the real spaceξ(r), our fits to our measurement of
the LBGξ(σ, π) from the combined data-set produce a best fitting
infall parameter ofβ = 0.48± 0.17. We find that this value is con-
sistent with theβ = 0.37 value expected in the standardΛCDM
cosmology. For this cosmology the value of the LBG bias implied
from the galaxy dynamics isb = 2.06+1.12

−0.53 , again consistent with
the value ofb = 2.22 ± 0.16 measured from the amplitude of the
LBG ξ(r), assuming the standard cosmology.

We have also made the cosmological test suggested by
Hoyle et al. (2002) and dâAngela et al. (2005a) and shown that
the values ofΩ0

m andβ(z = 3) derived from LBG redshift-space
distortion are consistent with those derived by comparing the am-
plitude of LBG clustering atz = 3 from the combination of the
measured 2dFGRS clustering amplitude andβ at z = 0.1, using
linear theory. Our measurement ofβ(z = 3) is therefore consis-
tent with what is expected from the gravitational growth rate pre-
dicted by Einstein gravity in the standard cosmological model (see
Guzzo et al. 2008).

Finally, we have used the clustering amplitude measured for
the LBGs to test simple models of clustering evolution. In particu-
lar, we find that if the LBGs are long-lived then they could be the
progenitors of low redshiftL∗ spirals or early-type galaxies by the
present day.

The VLT LBG Survey is an ongoing project and we hope to
double the survey area and LBG numbers by completion of the
project. In combination with this work we are performing a survey
of z ≈ 3 QSOs in our LBG survey fields using the AAOmega
instrument at the AAT. Bringing these two data-sets together will
present a significant data resource for the study of the relationship
between galaxies and the IGM atz ≈ 3.
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Bolzonella M., Miralles J., Pelló R., 2000, Astron. & Astrophys.,
363, 476

Bouché N., Lowenthal J. D., 2004, ApJ, 609, 513
Bregman J. N., Benjamin R. A., Bonamente M., Canizares C. R.,
Hornschemeier A., Jenkins E., Lockman F. J., Nicastro F.,
Ohashi T., Paerels F., Putman M. E., Sembach K., Schulz N.,
Savage B., Smith R., Yamasaki N., Yao Y., Wakker B., 2009, in
ArXiv Astrophysics e-prints, Vol. 2010, astro2010: The Astron-
omy and Astrophysics Decadal Survey, pp. 25–+

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
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L., Infante L., 2010, MNRAS, 409, 184

Peacock J. A., 1999, ”Cosmological Physics”. Cambridge Univer-
sity Press, UK

Peebles P. J. E., 1980, ”The Large-Scale Structure of the Uni-
verse”. Princeton University Press

Péroux C., Dessauges-Zavadsky M., D’Odorico S., Sun Kim T.,
McMahon R. G., 2005, MNRAS, 363, 479

Pettini M., Madau P., Bolte M., Prochaska J. X., Ellison S. L., Fan
X., 2003, ApJ, 594, 695

Pettini M., Rix S. A., Steidel C. C., Adelberger K. L., Hunt M.P.,
Shapley A. E., 2002, ApJ, 569, 742

Pettini M., Shapley A. E., Steidel C. C., Cuby J.-G., Dickinson
M., Moorwood A. F. M., Adelberger K. L., Giavalisco M., 2001,
ApJ, 554, 981

Pettini M., Steidel C. C., Adelberger K. L., Dickinson M., Gi-
avalisco M., 2000, ApJ, 528, 96

Phillipps S., Fong R., Fall R. S. E. S. M., MacGillivray H. T.,
1978, MNRAS, 182, 673

Pichon C., Scannapieco E., Aracil B., Petitjean P., Aubert D.,
Bergeron J., Colombi S., 2003, ApJ Lett., 597, L97

Ratcliffe A., Shanks T., Parker Q. A., Fong R., 1998, MNRAS,
296, 191

Reddy N. A., Steidel C. C., Pettini M., Adelberger K. L., Shapley
A. E., Erb D. K., Dickinson M., 2008, ApJS, 175, 48

Richards G. T., Myers A. D., Gray A. G., Riegel R. N., Nichol

R. C., Brunner R. J., Szalay A. S., Schneider D. P., Anderson
S. F., 2009, ApJS, 180, 67

Roche N., Shanks T., Metcalfe N., Fong R., 1993, MNRAS, 263,
360

Roche N. D., Almaini O., Dunlop J., Ivison R. J., Willott C. J.,
2002, MNRAS, 337, 1282
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