
Smith ScholarWorks Smith ScholarWorks 

Statistical and Data Sciences: Faculty 
Publications Statistical and Data Sciences 

11-26-2020 

Creating Optimal Conditions for Reproducible Data Analysis in R Creating Optimal Conditions for Reproducible Data Analysis in R 

with ‘Fertile’ with ‘Fertile’ 

Audrey M. Bertin 
Smith College 

Benjamin Baumer 
Smith College, bbaumer@smith.edu 

Follow this and additional works at: https://scholarworks.smith.edu/sds_facpubs 

 Part of the Data Science Commons, Other Computer Sciences Commons, and the Statistics and 

Probability Commons 

Recommended Citation Recommended Citation 
Bertin, Audrey M. and Baumer, Benjamin, "Creating Optimal Conditions for Reproducible Data Analysis in R 
with ‘Fertile’" (2020). Statistical and Data Sciences: Faculty Publications, Smith College, Northampton, 
MA. 
https://scholarworks.smith.edu/sds_facpubs/31 

This Article has been accepted for inclusion in Statistical and Data Sciences: Faculty Publications by an authorized 
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/sds_facpubs
https://scholarworks.smith.edu/sds_facpubs
https://scholarworks.smith.edu/sds
https://scholarworks.smith.edu/sds_facpubs?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/sds_facpubs/31?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Received: 28 August 2020 Revised: 15 October 2020 Accepted: 17 November 2020

DOI: 10.1002/sta4.332

S P E C I A L I S S U E P A P E R

Creating optimal conditions for reproducible data analysis in R
with ‘fertile’

Audrey M. Bertin Benjamin S. Baumer

Program in Statistical and Data Sciences, Smith

College, Northampton, MA, 01063, USA

Correspondence

Audrey M. Bertin, Program in Statistical and

Data Sciences, Smith College, Northampton,

MA, 01063, USA.

Email: abertin@smith.edu

The advancement of scientific knowledge increasingly depends on ensuring that data-driven

research is reproducible: that two people with the same data obtain the same results. However,

while the necessity of reproducibility is clear, there are significant behavioral and technical

challenges that impede its widespread implementation and no clear consensus on standards of

what constitutes reproducibility in published research. We present fertile, an R package that

focuses on a series of common mistakes programmers make while conducting data science

projects in R, primarily through the RStudio integrated development environment. fertile

operates in two modes: proactively, to prevent reproducibility mistakes from happening in the

first place, and retroactively, analyzing code that is already written for potential problems.

Furthermore, fertile is designed to educate users on why their mistakes are problematic and

how to fix them.

KEYWORDS

quality control, statistical computing, statistical process control, teaching statistics

1 INTRODUCTION

Data-based research is considered fully reproducible when the requisite code and data files produce identical results when run by another analyst

(Patil et al. 2019). As research is becoming increasingly data driven, and because knowledge can be shared worldwide so rapidly, reproducibility

is critical to the advancement of scientific knowledge. Academics around the world have recognized this, and publications and discussions

addressing reproducibility appear to have increased in the last several years (Eisner, 2018; Fidler & Wilcox, 2018; Gosselin, 2020; McArthur, 2019;

Wallach et al. 2018).

Reproducible research has a wide variety of benefits. When researchers provide the code and data used for their work in a well-organized and

reproducible format, readers are more easily able to determine the veracity of any findings by following the steps from raw data to conclusions.

The creators of reproducible research can also more easily receive more specific feedback (including bug fixes) on their work. Moreover, others

interested in the research topic can use the code to apply the methods and ideas used in one project to their own work with minimal effort.

However, while the necessity of reproducibility is clear, there are significant behavioral and technical challenges that impede its widespread

implementation and no clear consensus on standards of what constitutes reproducibility in published research (Peng, 2009). Not only are the

components of reproducible research up for discussion (e.g., need the software be open source?), but the corresponding recommendations for

ensuring reproducibility also vary (e.g., should raw and processed data files be in separate directories?). Existing attempts to address reproducibility

in data science are often either too generalized—resulting in shallow and vague recommendations that are challenging to implement—or too

specific—approaching one aspect of reproducibility well but doing so in a highly technical way that fails to capture the bigger picture and creates

challenges for inexperienced users.

In order to address these challenges, we present fertile (Baumer & Bertin, 2020), a low barrier-to-entry package focusing on common

reproducibility mistakes programmers make while conducting data science research in R (R Core Team, 2020a).

2 RELATED WORK

2.1 Literature review

Publications on reproducibility can be found in all areas of scientific research. However, as Goodman et al. (2016) argue, the language and

conceptual framework of research reproducibility vary significantly across the sciences, and there are no clear standards on reproducibility

Stat. 2021;10:e332. wileyonlinelibrary.com/journal/sta4 © 2021 John Wiley & Sons, Ltd. 1 of 13

https://doi.org/10.1002/sta4.332

https://doi.org/10.1002/sta4.332
https://orcid.org/0000-0002-8198-4034
https://orcid.org/0000-0002-3279-0516
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsta4.332&domain=pdf&date_stamp=2021-02-18


2 of 13 BERTIN AND BAUMER

agreed upon by the scientific community as a whole. We consider recommendations from a variety of fields and determine the key aspects of

reproducibility faced by scientists in different disciplines.

Kitzes et al. (2017) present a collection of case studies on reproducibility practices from across the data-intensive sciences, illustrating a variety

of recommendations and techniques for achieving reproducibility. Although their work does not come to a consensus on the exact standards of

reproducibility that should be followed, several common trends and principles emerge from their case studies: (1) use clear separation, labelling

and documentation; (2) automate processes when possible; and (3) design the data analysis workflow as a sequence of small steps glued together,

with outputs from one step serving as inputs into the next. This is a common suggestion within the computing community, originating as part of

the Unix philosophy (Gancarz, 2003).

Cooper et al. (2017) focus on data analysis in R and identify a similar list of important reproducibility components, reinforcing the need for

clearly labelled, well-documented and well-separated files. In addition, they recommend publishing a list of dependencies and using version

control. Broman (2019) reiterates the need for clear naming and file separation while sharing several additional suggestions: keep the project

contained in one directory, use relative paths, and include a README. Wilson et al. (2017) argue that to follow good practice, an analysis must be

located in a well-organized directory, be supplemented by a file containing information about the project (i.e., a README) and provide an explicit

list of dependencies. Wilson et al. (2014) emphasize communication, recommending that code be human readable and consistently styled for

ease of understanding once shared.

The reproducibility recommendations from R OpenSci, a non-profit initiative founded in 2011 to make scientific data retrieval reproducible,

share similar principles to those discussed previously. They focus on a need for a well-developed file system, with no extraneous files and clear

labelling. They also reiterate the need to note dependencies and use automation when possible, while making clear a suggestion not present in

the previously discussed literature: the need to use seeds, which allow for the saving and restoring of the random number generator state, when

running code involving randomness (Martinez et al. 2018).

When considered in combination, these sources provide a well-rounded picture of the components important to research reproducibility.

Using this literature as a guideline, we identify several key features of reproducible work. These recommendations are a matter of opinion—due

to the lack of agreement on which components of reproducibility are most important, we select those that are mentioned most often, as well as

some that are mentioned less but that we view as important.

1. A well-designed file structure:

• Separate folders for different file types.

• No extraneous files.

• Minimal clutter.

2. Good documentation:

• Files are clearly named, preferably in a way where the order in which they should be run is clear.

• A README is present.

• Dependencies are noted.

• Code files contain descriptive comments.

3. Reproducible file paths:

• No absolute paths, or paths leading to locations outside of a project's directory, are used in code—only portable (relative) paths.

4. Randomness is accounted for:

• If randomness is used in code, a seed must also be set.

5. Readable, styled code:

• Code should be written in a coherent style. Code that conforms to a style guide or is written in a consistent dialect is easier to read

(Hermans & Aldewereld, 2017). We believe that the tidyverse (Wickham, 2019b; Wickham et al., 2019) provides the most accessible

dialect of R.

Much of the available literature focuses on file structure, organization and naming, and fertile's features are consistent with this. Marwick

et al. (2018) provide the framework for file structure that fertile is based on, a structure similar to that of an R package (R Core Team, 2020b;

Wickham, 2015), with an R folder, as well as data, data-raw, inst and vignettes.

2.2 R packages and other software

Much of the work discussed in Section 2.1 is highly generalized, written to be applicable to users working with a variety of statistical software

programs. Because all statistical software programs operate differently, these recommendations are inherently vague and difficult to implement,



BERTIN AND BAUMER 3 of 13

particularly to new analysts who are relatively unfamiliar with their software. Focused attempts to address reproducibility in specific certain

software programs are more likely to be successful. We focus on R, due to its open-source nature, accessibility and popularity as a tool for

statistical analysis.

A small body of R packages focuses on research reproducibility. rrtools (Marwick, 2019) addresses some of the issues discussed in Marwick

et al. (2018) by creating a basic R package structure for a data analysis project and implementing a basic testthat::check() functionality (Wickham,

2011, 2019a). The orderly (FitzJohn et al. 2020) package also focuses on file structure, requiring the user to declare a desired project structure

(typically a step-by-step structure, where outputs from one step are inputs into the next) at the beginning and then creating the files necessary to

achieve that structure. workflowr's (Blischak et al. 2019a, 2019b) functionality is based around version control and making code easily available

online. It works to generate a website containing time-stamped, versioned and documented results. checkers (Ross et al. 2018) allows users

to create custom checks that examine different aspects of reproducibility. packrat (Ushey et al. 2018) is focused on dependencies, creating a

packaged folder containing a project as well as all of its dependencies so that projects dependent on lesser-used packages can be easily shared

across computers. drake (OpenSci, 2020) analyzes workflows, skips steps where results are up to date, and provides evidence that results match

the underlying code and data. Lastly, the reproducible (McIntire & Chubaty, 2020) package focuses on the concept of caching: saving information

so that projects can be run faster each time they are recompleted from the start.

Many of these packages are narrow, with each effectively addressing a small component of reproducibility: file structure, modularization of

code, version control and so forth. These packages often succeed in their area of focus but at the cost of accessibility to a wider audience.

Their functions are often quite complex to use, and many steps must be completed to achieve the desired reproducibility goal. This cumbersome

nature means that most reproducibility packages currently available are not easily accessible to users near the beginning of their R journey nor

particularly useful to those looking for quick and easy reproducibility checks. A more effective way of realizing widespread reproducibility is to

make the process for doing so simple enough that it takes little to no conscious effort to implement. Users should ‘fall into a hole’1 of good practice.

Continuous integration tools provide more general approaches to automated checking, which can enhance reproducibility with minimal code.

For example, wercker—a command line tool that leverages Docker—enables users to test whether their projects will successfully compile when

run on a variety of operating systems without access to the user's local hard drive (Oracle Corporation, 2019). GitHub Actions is integrated into

GitHub and can be configured to do similar checks on projects hosted in repositories. Travis CI and Circle CI are popular continuous integration

tools that can also be used to check R code.

However, while these tools can be useful, they are generalized so as to be useful to the widest audience. As a result, their checks are not

designed to be R specific, which makes them suboptimal for users looking to address reproducibility issues involving features specific to the R

programming language, such as package installation and seed setting.

2.3 Our contribution

fertile attempts to address these gaps in existing software by providing a simple, easy-to-learn reproducibility package that, rather than focusing

intensely on a specific area (such as file structure), provides some information about a wide variety of aspects influencing reproducibility. For

example, fertile addresses file structure in part but also considers the quality of project documentation, the use of file paths, and the behavior

of random number generation. fertile is flexible, providing reports on reproducibility to users at any stage in the data analysis workflow. It also

provides R-specific features, such as tools to manage package dependencies, which address certain aspects of reproducibility that can be missed

by external project development software.

fertile is designed to be used on data analyses organized as R Projects (i.e., directories containing an .Rproj file). Once an R Project is created,

fertile provides the user with feedback on their adherence to reproducibility standards throughout the data analysis process, both during

development and after the fact. fertile achieves this by operating in two modes: proactively, to prevent reproducibility mistakes from happening

in the first place, and retroactively, analyzing code that has already been written for potential problems.

3 METHODS

3.1 Proactive use

Proactively, the package identifies potential mistakes as they are made by the user and outputs an informative message as well as a recommended

solution. For example, fertile throws an error when a user passes a potentially problematic file path—such as an absolute path, or a path that

points to a location outside of the project directory—to a variety of common input/output functions operating on many different file types.

1 We paraphrase Hadley Wickham.



4 of 13 BERTIN AND BAUMER

For users who want to override this behavior and execute their function anyway, we provide a snippet of code to bypass fertile and execute

the original function call.

fertile is even more aggressive with functions (like setwd()) that are almost certain to break reproducibility no matter the type of path passed

to them. When these functions are called, users are not presented with an option to override the resulting error. Instead, the preferred way to

achieve the desired action is for the user to execute a different function that produces the same behavior but in a reproducible way. For example,

by using the here() function from the here package (Müller, 2017) instead of setwd().

3.2 Retroactive use

Retroactively, fertile analyzes potential obstacles to reproducibility in an RStudio Project (i.e., a directory that contains an .Rproj file). The

package considers several different aspects of the project which may influence reproducibility, including the directory structure, file paths, and

whether randomness is used thoughtfully. The end products of these analyses are reproducibility reports summarizing a project's adherence to

reproducibility standards and recommending remedies for where the project falls short. For example, fertile might identify the use of randomness

in code and recommend setting a seed if one is not present.

Users can access the majority of fertile's retroactive features through two primary functions, proj_check() and proj_analyze().

The proj_check() function runs 16 different reproducibility tests, noting which ones passed, which ones failed, the reason for failure, a

recommended solution, and a guide to where to look for help. These tests include looking for a clear build chain, checking to make sure the root

level of the project is clear of clutter, confirming that there are no files present that are not being directly used by or created by the code, and

looking for uses of randomness that do not have a call to set.seed() present. A full list is provided in Table 1.

Subsets of the 16 tests can be invoked using the tidyselect helper functions (Henry & Wickham, 2020) in combination with the more limited

proj_check_some() function. These helper functions, which include starts_with(), ends_with(), contains() and matches(), allow users to check for

matches between a string or regular expression and a list of variables. In this case, we search for checks whose names match a certain condition

(e.g., contain the string ‘paths’).



BERTIN AND BAUMER 5 of 13

TA
B

LE
1

T
ab

le
ill

u
st

ra
ti

n
g

th
e

lis
t

o
f

ch
ec

k
av

ai
la

b
le

in
fe

rt
ile

C
h

ec
k

F
u

n
ct

io
n

al
it

y

h
as

_p
ro

j_
ro

o
t(

)
C

h
ec

ks
to

m
ak

e
su

re
a

si
n

gl
e.

R
p

ro
jf

ile
is

fo
u

n
d

in
th

e
ro

o
t

d
ir

ec
to

ry
o

f
th

e
p

ro
je

ct
.

h
as

_n
o

_n
es

te
d

_p
ro

j_
ro

o
t(

)
C

h
ec

ks
to

m
ak

e
su

re
th

er
e

ar
e

n
o

n
es

te
d

.R
p

ro
jf

ile
s

in
su

b
fo

ld
er

s
o

f
th

e
p

ro
je

ct
.

h
as

_c
le

ar
_b

u
ild

_c
h

ai
n

()
Lo

o
ks

fo
r

in
d

ic
at

io
n

o
f

a
cl

ea
r

o
rd

er
in

w
h

ic
h

to
ru

n
R

sc
ri

p
ts

.

h
as

_t
id

y_
[m

ed
ia

/i
m

ag
es

/c
o

d
e/

ra
w

_d
at

a/
d

at
a/

sc
ri

p
ts

](
)

T
h

er
e

ar
e

si
x

d
if

fe
re

n
t

'h
as

_t
id

y_
*(

)'
fu

n
ct

io
n

s.
E

ac
h

ch
ec

ks
to

m
ak

e
su

re
th

at
n

o
fi

le
s

o
f

it
s

gi
ve

n
ty

p
e

(im
ag

es
,c

o
d

e,
d

at
a,

et
c.

)a
re

lo
ca

te
d

in
th

e
ro

o
t

d
ir

ec
to

ry
o

f
th

e
p

ro
je

ct
.

h
as

_o
n

ly
_u

se
d

_f
ile

s(
)

E
n

su
re

s
th

at
al

lf
ile

s
lo

ca
te

d
in

th
e

p
ro

je
ct

d
ir

ec
to

ry
ar

e
b

ei
n

g
re

fe
re

n
ce

d
o

r
cr

ea
te

d
b

y
o

th
er

fi
le

s
in

th
e

p
ro

je
ct

.

h
as

_r
ea

d
m

e(
)

C
h

ec
ks

to
m

ak
e

su
re

th
er

e
is

a
R

E
A

D
M

E
fi

le
in

th
e

ro
o

t
d

ir
ec

to
ry

.

h
as

_w
el

l_
co

m
m

en
te

d
_c

o
d

e(
)

C
h

ec
ks

to
en

su
re

th
at

al
lc

o
d

e
fi

le
s

co
n

ta
in

an
ad

eq
u

at
e

n
u

m
b

er
o

f
co

m
m

en
ts

(>
1

0
p

er
ce

n
t

o
f

lin
es

).

h
as

_n
o

_a
b

so
lu

te
_p

at
h

s(
)

C
h

ec
ks

to
m

ak
e

su
re

th
at

n
o

ab
so

lu
te

p
at

h
s

ar
e

re
fe

re
n

ce
d

in
co

d
e.

h
as

_o
n

ly
_p

o
rt

ab
le

_p
at

h
s(

)
C

h
ec

ks
to

m
ak

e
su

re
th

at
n

o
p

at
h

s
in

co
d

e
le

ad
o

u
ts

id
e

th
e

p
ro

je
ct

d
ir

ec
to

ry
.

h
as

_n
o

_r
an

d
o

m
n

es
s(

)
C

h
ec

ks
to

m
ak

e
su

re
co

d
e

d
o

es
n

o
t

co
n

ta
in

u
n

co
n

tr
o

lle
d

ra
n

d
o

m
n

es
s.

h
as

_n
o

_l
in

t(
)

E
xa

m
in

es
co

d
e

to
d

et
er

m
in

e
w

h
et

h
er

it
co

n
fo

rm
s

to
't

id
y'

st
yl

e
gu

id
e

re
co

m
m

en
d

at
io

n
s.



6 of 13 BERTIN AND BAUMER

Each test can also be run individually by calling the function matching its check name.

The proj_analyze() function creates a report documenting the structure of a data analysis project. This report contains information about all

packages referenced in code, the files present in the directory and their types, suggestions for moving files to create a more organized structure,

and a list of reproducibility-breaking file paths used in code.

Both the proactive and retroactive features available in fertile are enabled automatically upon loading the package. To prevent users from

accidentally enabling or disabling features, fertile does not provide any option to control which features are active. However, those who want to

use the proactive features can simply refrain from using the retroactive-specific functions. Conversely, those who want to use only the retroactive

features can wait to load fertile until they are ready to produce a report on their project.



BERTIN AND BAUMER 7 of 13

3.3 Logging

fertile also contains logging functionality, which records commands run in the console that have the potential to affect reproducibility, enabling

users to look at their past history at any time. The package focuses mostly on package loading and file opening, noting which function was used,

the path or package it referenced, and the timestamp at which that event happened. Users can access the log recording their commands at any

time via the log_report() function:

The log, if not managed, can grow very long over time. For users who do not desire such functionality, log_clear() provides a way to erase the

log and start over.

3.4 How it works

Much of the functionality in fertile is achieved by writing shims. In computer programming generally, a shim is a function that intercepts a user's

call, changes the arguments passed to it and/or modifies the execution of the function in some way. In the case of fertile specifically, shims are

used to intercept the user's commands and perform various logging and path-checking tasks before executing the desired function. Our process

is as follows:

1. Identify an R function that is likely to be involved in operations that may break reproducibility. Popular functions associated with only one

package (e.g., read_csv() from readr) are ideal candidates.

2. Create a function in fertile with the same name that takes the same arguments.

3. Write this new function so that it (a) captures any arguments, (b) logs the name of the function called, (c) performs any checks on these

arguments, and (d) calls the original function with the original arguments. Except where warranted, the execution looks the same to the user

as if they were calling the original function. For most shims, ‘file’ is the only argument of interest. The other arguments are managed using the

dots (… ), which capture and save them, allowing them to eventually be passed back to the original shimmed function (e.g., readr::read_csv()).

Most shims are quite simple and look something like what is shown below for read.csv().

fertile shims many common functions, including those that read in a variety of data types, write data and load packages. This works both

proactively and retroactively, as the shimmed functions written in fertile are activated both when the user is coding interactively and when a file

containing code is rendered.



8 of 13 BERTIN AND BAUMER

In order to ensure that the fertile versions of functions (‘shims’) always supersede (‘mask’) their original namesakes when called, fertile uses its

own shims of the library() and require() functions to manipulate the R search() path so that it is always located in the first position. In the fertile

version of library(), we detach fertile from the search path, load the requested package and then reattach fertile. This ensures that when a user

executes a command, R will check fertile for a matching function before considering other packages. While it is possible that this shifty behavior

could lead to unintended consequences, our goal is to catch a good deal of problems before they become problematic. Users can easily disable

fertile by detaching it or not loading it in the first place.

3.5 Utility functions

fertile also provides several useful utility functions that may assist with the process of data analysis.

3.5.1 File paths

The check_path() function analyzes a vector of paths (or a single path) to determine whether there are any absolute paths or paths that lead

outside the project directory.

3.5.2 File types

There are several functions that can be used to check the type of a file:

3.5.3 Temporary directories

The sandbox() function allows the user to make a copy of their project in a temporary directory. This can be useful for ensuring that projects run

properly when access to the local file system is removed.



BERTIN AND BAUMER 9 of 13

3.5.4 Managing project dependencies

One of the challenges with ensuring that work is reproducible is dependencies. Many data analysis projects reference a variety of R packages

in their code. When such projects are shared with other users who may not have the required packages downloaded, it can cause errors that

prevent the project from running properly.

The proj_pkg_script() function assists with this issue by making it simple and fast to download dependencies. When run on an R project

directory, the function creates a .R script file that contains the code needed to instal all of the packages referenced in the project, differentiating

between packages located on CRAN and those located on GitHub.

The package installation script for project miceps looks as follows:

fertile also keeps track of dependencies in additional detail. Every time the code contained within a project is rendered by fertile, the package

generates a file capturing the sessionInfo() just after the code was run. This file contains information about the R version in which the code was

run, the list of packages that were loaded, and their specific versions.

Users can access this file via the proj_dependency_report() function. Its output appears as a new window in RStudio with contents that look like

the text below:



10 of 13 BERTIN AND BAUMER

3.6 Sample use cases

fertile's simplicity enables users of any background to take advantage of its features and its big-picture design gives fertile the potential to

provide benefits across a variety of disciplines.

For example, professors could integrate fertile into their data science curricula, giving students an understanding and awareness of

reproducibility early in their careers that can positively impact the reproducibility of their future work. It could also be used by experienced

analysts working collaboratively who are looking to promote a smoother exchange of feedback and ideas. Journal reviewers may also find the

package beneficial, allowing them to gain a fast overview of whether paper submissions meet reproducibility guidelines.

The sample use cases in this section consider fertile's applicability to some of these scenarios in detail.

3.6.1 Introductory data science student

Susan is taking an introductory data science course. This is her first time learning how to code, and she has not yet been exposed to ideas of

research reproducibility. Her professor has assigned a data analysis project that must be completed in R Markdown. The project requires her to

read in a data file located on her computer and use it to produce a graph.

She reads in the data, makes the graph and knits her .Rmd file. It compiles successfully, so she submits the assignment. The next day, she

receives an email from her professor saying that her assignment failed to compile and that she needs to make changes and try again. Susan does

not understand why it did not work on the professor's computer when it did on her own. The professor recommends that she install fertile and

run proj_check() on her assignment. She does this and gets a message informing her that she used an absolute path to open her data set when she

should have use a relative path instead. She looks up what this means and then uses the new information to update her assignment. Her second

submission compiles successfully.

On future projects, she always loads and runs fertile before submitting.

3.6.2 Experienced R user

Emma is a post-doc with several years of R experience. She is familiar with some basic rules of reproducibility—file paths should always be

relative, and randomness should always be associated with a seed—but has never needed to pass any sort of reproducibility check before because

her professors never emphasized that.

She has just finished a research project and is looking to submit her work to a journal. When researching the journal to which she is interested

in submitting, she discovers that it has high standards for research reproducibility and a dedicated editor focusing on that aspect of submission.

She goes online and finds the journal's guidelines for reproducibility. They are more complete than any guidelines to which she has previously

been required to conform. In addition to notes about file paths and randomness, the journal requires a clean, well-organized folder structure,

broken down by file category and stripped of files that do not serve a purpose. In order to be approved, submissions must also have a clear build

chain and an informative README file.

Unsure of the best way to achieve this structure, Emma goes online to find help. In her search, she comes across fertile. She downloads the

package, and, in only a handful of commands, she identifies and removes excess files in her directory and automatically organizes her files into a

structure reminiscent of an R package. She now meets the guidelines for the journal and can submit her research.

4 EXPERIMENTAL TESTING

fertile is designed to (1) be simple enough that users with minimal R experience can use the package without issue, (2) increase the reproducibility

of work produced by its users, and (3) educate its users on why their work is or is not reproducible and provide guidance on how to address any

problems.

To test fertile's effectiveness, we began an initial randomized control trial of the package on an introductory undergraduate data science

course at Smith College in Spring 2020.2

The experiment was structured as follows:

• Students are given a form at the start of the semester asking whether they consent to participate in a study on data science education.

In order to successfully consent, they must provide their system username, collected through the command Sys.getenv(‘LOGNAME’) or

Sys.getenv(‘‘USERNAME’’), depending on their computer's operating system. To maintain privacy, the results are then transformed into a

hexadecimal string via the md5() hashing function.

• These hexadecimal strings are then randomly assigned into equally sized groups, one experimental group that receives the features of fertile

and one group that receives a control.

• The students are then asked to download a package called sds192 (the course number and prefix), which was created for the purpose of this

trial. It leverages an .onAttach() function to scan the R environment and collect the username of the user who is loading the package and run it

2 This study was approved by Smith College IRB, Protocol #19-032.



BERTIN AND BAUMER 11 of 13

through the same hashing algorithm as used previously. It then identifies whether that user belongs to the experimental or the control group.

Depending on the group they are in, they receive a different version of the package.

• The experimental group receives the basic sds192 package, which consists of some data sets and R Markdown templates necessary for

completing homework assignments and projects in the class but also has fertile installed and loaded silently in the background. The package's

proactive features are enabled, and therefore, users will receive warning messages when they use absolute or non-portable paths or attempt to

change their working directory. The control group receives only the basic sds192 package, including its data sets and R Markdown templates.

All students from both groups then use their version of the package throughout the semester on a variety of projects.

• Both groups are given a short quiz on different components of reproducibility that are intended to be taught by fertile at both the beginning

and end of the semester. Their scores are then compared to see whether one group learned more than the other group or whether their

scores were essentially equivalent. Additionally, for every homework assignment submitted, the professor takes note of whether or not the

project compiles successfully.

Based on the results, we hope to determine whether fertile was successful at achieving its intended goals. A lack of notable difference between

the experimental and control groups in terms of the number of code-related questions asked throughout the semester would indicate that fertile

achieved its goal of simplicity. A higher average for the experimental group in terms of the number of homework assignments that compiled

successfully would indicate that fertile was successful in increasing reproducibility. A greater increase over the semester in the reproducibility

quiz scores for students in the experimental group compared with the control group would indicate that fertile achieved its goal of educating users

on reproducibility. Success according to these metrics would provide evidence showing fertile's benefit as a tool to help educators introduce

reproducibility concepts in the classroom.

Unfortunately, we were unable to complete the analysis as intended as the trial had to be postponed after the COVID-19 pandemic significantly

altered the experimental conditions at the midpoint of testing. Although the experiment was unsuccessful in its first attempt, conditions at Smith

College have now stabilized and we are currently running a second trial in the new online-only classroom environment.

5 CONCLUSION

fertile is an R package that lowers barriers to reproducible data analysis projects in R, providing a wide array of checks and suggestions addressing

many different aspects of project reproducibility, including file organization, file path usage, documentation and dependencies. fertile is meant

to be educational, providing informative error messages that indicate why users' mistakes are problematic and sharing recommendations on how

to fix them. The package is designed in this way so as to promote a greater understanding of reproducibility concepts in its users, with the goal

of increasing the overall awareness and understanding of reproducibility in the R community.

The package has very low barriers to entry, making it accessible to users with various levels of background knowledge. Unlike many other

R packages focused on reproducibility that are currently available, the features of fertile can be accessed almost effortlessly. Many of the

retroactive features can be accessed in only two lines of code requiring minimal arguments, and some of the proactive features can be accessed

with no additional effort beyond loading the package. This, in combination with the fact that fertile does not focus on one specific area of

reproducibility, instead covering (albeit in less detail) a wide variety of topics, means that fertile makes it easy for data analysts of all skill levels

to quickly gain a better understanding of the reproducibility of the work.

In the moment, it often feels easiest to take a shortcut—to use an absolute path or change a working directory. However, when considering

the long-term path of a project, spending the extra time to improve reproducibility is worthwhile. fertile's user-friendly features can help data

analysts avoid these harmful shortcuts with minimal effort.

5.1 Future work

fertile, in its current version, addresses the vast majority of the aspects of reproducibility identified in Section 2.1 in some way. However, there

are several areas where further development to extend the available features of the package would be beneficial. These include the following:

• Adding make-like functionality that can analyze an R project structure and files and use this information to generate a Makefile. This Makefile

would have information about target files and their prerequisites and would assist with making sure that rerunning an analysis is done as

quickly as possible by ensuring that only the necessary code and files that have been updated are run when rebuilding and rerunning code.

• Adding a badge system to improve user experience and simplify the process of understanding how reproducible any given project is. Under

this system, projects would receive badges from fertile based on the sets of reproducibility checks they pass. For example, projects that pass

all of the checks on file paths would receive a badge on their project for ‘Reproducible File Paths’, while those tha pass checks involving file

clutter and project structure might be awarded a badge for ‘Excellent File Organization’.

• Implementing a method through which users can add their own shims to the package. This would allow users to modify fertile to fit the

functions they use most often.



12 of 13 BERTIN AND BAUMER

ACKNOWLEDGEMENTS

The authors gratefully acknowledge contributions from Hadley Wickham, Jenny Bryan, Greg Wilson, Edgar Ruiz and other members of the

tidyverse team.

DATA AVAILABILITY STATEMENT

The sample project project_miceps and package code associated with this paper can be found in the R and tests folders at https://github.com/

baumer-lab/fertile.

ORCID

Audrey M. Bertin https://orcid.org/0000-0002-8198-4034

Benjamin S. Baumer https://orcid.org/0000-0002-3279-0516

REFERENCES

Baumer, B. S., & Bertin, A. M. (2020). fertile: Creating optimal conditions for reproducibility. R package version 0.0.0.9027 https://github.com/baumer-

lab/fertile

Blischak, J., Carbonetto, P., & Stephens, M. (2019a). workflowr: A framework for reproducible and collaborative data science. R package version 1.6.0

https://CRAN.R-project.org/package=workflowr

Blischak, J. D., Carbonetto, P., & Stephens, M. (2019b). Creating and sharing reproducible research code the workflowr way. F1000Research, 8, 1749.

https://doi.org/10.12688/f1000research.20843.1

Broman, K. (2019). Initial steps toward reproducible research: Organize your data and code. https://kbroman.org/steps2rr/pages/organize.html

Cooper, N., Hsing, P.-Y., Croucher, M., Graham, L., James, T., Krystalli, A., & Michonneau, F. (2017). A guide to reproducible code in ecology and evolution.

https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf

Eisner, D. A. (2018). Reproducibility of science: Fraud, impact factors and carelessness. Journal of Molecular and Cellular Cardiology, 114, 364–368. https://

doi.org/10.1016/j.yjmcc.2017.10.009

Fidler, F., & Wilcox, J. (2018). Reproducibility of scientific results. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy. Stanford, CA: Metaphysics

Research Lab, Stanford University. Winter 2018 https://plato.stanford.edu/archives/win2018/entries/scientific-reproducibility/

FitzJohn, R., Ashton, R., Hill, A., Eden, M., Hinsley, W., Russell, E., & Thompson, J. (2020). orderly: Lightweight reproducible reporting. R package version

1.0.4 https://CRAN.R-project.org/package=orderly

Gancarz, M. (2003). Linux and the Unix philosophy (2nd). Woburn, MA: Digital Press.

Goodman, S. N., Fanelli, D., & Ioannidis, J. P. A. (2016). What does research reproducibility mean? Science Translational Medicine, 8(341), 1–6. https://doi.

org/10.1126/scitranslmed.aaf5027

Gosselin, R. D. (2020). Statistical analysis must improve to address the reproducibility crisis: The access to transparent statistics (acts) call to action.

BioEssays, 42(1), 1900189. https://doi.org/10.1002/bies.201900189

Henry, L., & Wickham, H. (2020). tidyselect: Select from a set of strings. R package version 1.1.0 https://CRAN.R-project.org/package=tidyselect

Hermans, F., & Aldewereld, M. (2017). Programming is writing is programming. In Companion to the first International Conference on the Art, Science and

Engineering of Programming. Brussels, Belgium, pp. 1–8.

Kitzes, J., Turek, D., & Deniz, F. (2017). The practice of reproducible research: Case studies and lessons from the data-intensive sciences. Berkeley, CA: University

of California Press. https://www.practicereproducibleresearch.org

Martinez, C., Hollister, J., Marwick, B., Szöcs, E., Zeitlin, S., Kinoshita, B. P., … , & Meinke, B. (2018). Reproducibility in science: A guide to enhancing

reproducibility in scientific results and writing. https://ropensci.github.io/reproducibility-guide/

Marwick, B. (2019). rrtools: Creates a reproducible research compendium. R package version 0.1.0 https://github.com/benmarwick/rrtools

Marwick, B., Boettiger, C., & Mullen, L. (2018). Packaging data analytical work reproducibly using R (and friends). The American Statistician, 72(1), 80–88.

https://doi.org/10.1080/00031305.2017.1375986

McArthur, S. L. (2019). Repeatability, reproducibility, and replicability: Tackling the 3R challenge in biointerface science and engineering. Biointerphases,

14(2), 1–2. https://doi.org/10.1116/1.5093621

McIntire, E. J. B., & Chubaty, A. M. (2020). reproducible: A set of tools that enhance reproducibility beyond package management. R package version 1.0.0

https://CRAN.R-project.org/package=reproducible

Müller, K. (2017). here: A simpler way to find your files. R package version 0.1 https://CRAN.R-project.org/package=here

OpenSci, R. (2020). drake: A pipeline toolkit for reproducible computation at scale. R package version 7.11.0 https://cran.r-project.org/package=drake

Oracle Corporation (2019). Wercker. https://github.com/wercker/wercker

Patil, P., Peng, R. D., & Leek, J. T. (2019). A visual tool for defining reproducibility and replicability. Nature Human Behaviour, 3(7), 650–652. https://www.

nature.com/articles/s41562-019-0629-z

Peng, R. D. (2009). Reproducible research and biostatistics. Biostatistics, 10(3), 405–408. https://doi.org/10.1093/biostatistics/kxp014

R Core Team (2020a). R: A language and environment for statistical computing [computer software manual]. Vienna, Austria https://www.R-project.org/

R Core Team (2020b). Writing R extensions [computer software manual]. Vienna, Austria https://cran.r-project.org/doc/manuals/R-exts.html

Ross, N., DeCicco, L., & Randhawa, N. (2018). checkers: Automated checking of best practices for research compendia. R package version 0.1.0 https://

github.com/ropenscilabs/checkers/blob/master/DESCRIPTIONr

Ushey, K., McPherson, J., Cheng, J., Atkins, A., & Allaire, J. (2018). packrat: A dependency management system for projects and their R package

dependencies. R package version 0.5.0 https://CRAN.R-project.org/package=packrat

https://github.com/baumer-lab/fertile
https://github.com/baumer-lab/fertile
https://orcid.org/0000-0002-8198-4034
https://orcid.org/0000-0002-8198-4034
https://orcid.org/0000-0002-3279-0516
https://orcid.org/0000-0002-3279-0516
https://github.com/baumer-lab/fertile
https://github.com/baumer-lab/fertile
https://CRAN.R-project.org/package=workflowr
https://doi.org/10.12688/f1000research.20843.1
https://kbroman.org/steps2rr/pages/organize.html
https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf
https://doi.org/10.1016/j.yjmcc.2017.10.009
https://doi.org/10.1016/j.yjmcc.2017.10.009
https://plato.stanford.edu/archives/win2018/entries/scientific-reproducibility/
https://CRAN.R-project.org/package=orderly
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1002/bies.201900189
https://CRAN.R-project.org/package=tidyselect
https://www.practicereproducibleresearch.org
https://ropensci.github.io/reproducibility-guide/
https://github.com/benmarwick/rrtools
https://doi.org/10.1080/00031305.2017.1375986
https://doi.org/10.1116/1.5093621
https://CRAN.R-project.org/package=reproducible
https://CRAN.R-project.org/package=here
https://cran.r-project.org/package=drake
https://github.com/wercker/wercker
https://www.nature.com/articles/s41562-019-0629-z
https://www.nature.com/articles/s41562-019-0629-z
https://doi.org/10.1093/biostatistics/kxp014
https://www.R-project.org/
https://cran.r-project.org/doc/manuals/R-exts.html
https://github.com/ropenscilabs/checkers/blob/master/DESCRIPTIONr
https://github.com/ropenscilabs/checkers/blob/master/DESCRIPTIONr
https://CRAN.R-project.org/package=packrat


BERTIN AND BAUMER 13 of 13

Wallach, J. D., Boyack, K. W., & Ioannidis, J. P. A. (2018). Reproducible research practices, transparency, and open access data in the biomedical literature,

2015–2017. PLOS Biology, 16(11), 1–20. https://doi.org/10.1371/journal.pbio.2006930

Wickham, H. (2011). testthat: Get started with testing. The R Journal, 3, 5–10. https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.

pdf

Wickham, H. (2015). R packages (1st). Sebastopol, CA: O’Reilly Media, Inc.

Wickham, H. (2019a). testthat: Unit testing for R. R package version 2.3.1 https://CRAN.R-project.org/package=testthat

Wickham, H. (2019b). tidyverse: Easily install and load the ‘tidyverse’. R package version 1.3.0 https://CRAN.R-project.org/package=tidyverse

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., … , & Yutani, H.(2019). Welcome to the tidyverse. Journal of Open Source

Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., … , & Wilson, P.(2014). Best practices for scientific computing. PLOS Biology,

12(1), e1001745.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good enough practices in scientific computing. PLOS Biology, 13(6),

e1005510. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510

How to cite this article: Bertin AM, Baumer BS. Creating optimal conditions for reproducible data analysis in R with ‘fertile’. Stat.

2021;10:e332. https://doi.org/10.1002/sta4.332

https://doi.org/10.1371/journal.pbio.2006930
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=tidyverse
https://doi.org/10.21105/joss.01686
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510
https://doi.org/10.1002/sta4.332

	Creating Optimal Conditions for Reproducible Data Analysis in R with ‘Fertile’
	Recommended Citation

	Creating optimal conditions for reproducible data analysis in Rwith `fertile'xmltex	*-8pt?>
	Abstract
	1 INTRODUCTION
	INTRODUCTION
	2 RELATED WORK
	RELATED WORK
	2.1. Literature review
	Literature review
	2.2. R packages and other software
	R packages and other software
	2.3. Our contribution
	Our contribution

	3 METHODS
	METHODS
	3.1. Proactive use
	Proactive use
	3.2. Retroactive use
	Retroactive use
	3.3. Logging
	Logging
	3.4. How it works
	How it works
	3.5. Utility functions
	Utility functions
	3.5.1. File paths
	File paths
	3.5.2. File types
	File types
	3.5.3. Temporary directories
	Temporary directories
	3.5.4. Managing project dependencies
	Managing project dependencies

	3.6. Sample use cases
	Sample use cases
	3.6.1. Introductory data science student
	Introductory data science student
	3.6.2. Experienced Ruser
	Experienced Ruser


	4 EXPERIMENTAL TESTING
	EXPERIMENTAL TESTING
	5 CONCLUSION
	CONCLUSION
	5.1. Future work
	Future work

	References


