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Quantifying exceptionally large populations of Acropora spp. 
corals off Belize using sub-meter satellite imagery classification
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ABSTRACT.—Caribbean coral reefs have experienced 
dramatic declines in live coral cover in recent decades. Pri-
mary branching framework Caribbean corals, Acropora cer-
vicornis (Lamarck, 1816) and Acropora palmata (Lamarck, 
1816), have suffered the greatest collapse. Coral Gardens, 
Belize, is one of few remaining, and perhaps the largest, re-
fugia for abundant, healthy, but undocumented populations 
of both Acropora species in the Caribbean Sea. In the pres-
ent study, GeoEye-1 multispectral satellite imagery of a 25 
km2 reefal area near Ambergris Caye, Belize, was analyzed to 
identify live Acropora spp. cover. We used a supervised classi-
fication to predict occurrence of areas with live Acropora spp. 
and to separate them from other benthic cover types, such 
as sandy bottom, seagrass, and mixed massive coral species. 
We tested classification accuracy in the field, and new Acro-
pora spp. patches were mapped using differential GPS. Of 11 
predicted new areas of Acropora spp., eight were composed 
of healthy Acropora spp. An unsupervised classification of a 
red (Band 3):blue (Band 1) ratio calculation of the image suc-
cessfully separated Acropora corals from other benthic cover, 
with an overall accuracy of 90%. Our study identified 7.58 ha 
of reef dominated by Acropora spp. at Coral Gardens, which 
is one of the largest populations in the Caribbean Sea. We 
suggest that Coral Gardens may be an important site for the 
study of modern Acropora spp. resilience. Our technique can 
be used as an efficient tool for genera-specific identification, 
monitoring, and conservation of populations of endangered 
Acropora spp.

Caribbean coral reefs have experienced significant decline in live coral cover in re-
cent decades (Gardner et al. 2003, Bellwood et al. 2004, Carpenter et al. 2008, Miller 
et al. 2009, Eakin et al. 2010). The framework-building corals, such as Acropora 
palmata (Lamarck, 1816) and Acropora cervicornis (Lamarck, 1816), were prolific 
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throughout the Caribbean Sea during the Pleistocene and Holocene (Jackson 1992, 
Greenstein et al. 1998, Wapnick et al. 2004, Pandolfi and Jackson 2006, Greer et 
al. 2009, Riegl et al. 2009a). These key reef-building corals have experienced mas-
sive population decline since the 1980s and now rank among the most decimated 
of Caribbean scleractinians (Aronson and Precht 2001, Miller et al. 2002, Bruckner 
2003, Vollmer and Palumbi 2007). Many researchers believe that Acropora spp. 
may not recover without active restoration efforts (Young et al. 2012). The mortal-
ity of Acropora corals has been attributed primarily to white band disease (WBD; 
Gladfelter 1982, Aronson and Precht 2001), or overfishing (e.g., Jackson et al. 2014), 
and susceptibility of Acropora spp. to WBD has been linked to recent increases in 
global sea-surface temperature (Bruno 2015, Randall and Van Woesik 2015). This 
drastic decline of Acropora spp. throughout the Caribbean led to A. cervicornis and 
A. palmata becoming the first two coral species listed as threatened under the US 
Endangered Species Act (NOAA 2005, NMFS 2006). Understanding the recent de-
cline and lack of recovery of Acropora corals is important because in addition to 
being significant Caribbean reef-framework builders, the structural complexity and 
high growth rates of Acropora spp. make them ecologically valuable for western 
Atlantic marine ecosystems (Precht et al. 2010, Williams and Miller 2012).

Acropora corals survive in abundance in few remaining places (Aronson and 
Precht 2001, Miller et al. 2009). With rare exception, reports of extant Acropora 
spp. (A. cervicornis in particular) are limited to small, isolated, or non-reef building 
colonies. Vargas-Ángel et al. (2003) documented between 0.1 and 0.8 ha of non-reef 
forming A. cervicornis off Fort Lauderdale, Florida, with between 5%–28% live coral 
cover. Lidz and Zawada (2013) reported isolated small A. cervicornis colonies spaced 
over a large region (average of 0.002 colonies m−2) on Pulaski Shoal, Dry Tortugas, 
Florida, and Larson et al. (2014) reported A. palmata densities of 0.02–0.28 colonies 
m−2 with high live coral cover off Veracruz, Mexico. Lirman et al. (2010) documented 
approximately 2 ha of prolific reef-forming A. cervicornis off northern Dominican 
Republic, perhaps the largest quantified population reported in recent years. Keck 
et al. (2005) reported the presence of extensive A. cervicornis populations at Smith 
Bank and Cordelia Shoal, Roatán, Honduras, which Purkis et al. (2006) and Riegl 
et al. (2009b) documented in greater detail using remote sensing techniques. In a 
short note, Macintyre and Toscano (2007) commented on the return of A. palmata 
to Belize, but to our knowledge, no efforts to quantify the extent of Acropora spp. off 
Belize have been published. With the exception of Purkis et al. (2006) and Riegl et al. 
(2009b), the studies above relied on video, photography, or field observations using 
a variety of underwater survey methods to characterize Acropora spp. populations. 
Colony or population size, where estimated, were determined by methods ranging 
from visual estimates to estimates from digital photography, or measuring tapes and 
handheld GPS (see also Walker et al. 2012). Other attempts to precisely document 
Acropora spp. cover in detail have been smaller in scale (e.g., Huntington and Miller 
2014).

Coral Gardens (formerly also known as Mitchell Rocks) is located south of 
Ambergris Caye and north of Caye Caulker in the shallow (<7 m water depth) back 
reef off coastal Belize (Fig. 1). The Holocene abundance of Acropora spp. and the re-
cent general decline of these corals off Belize have been well documented by Aronson 
et al. (2002, 2004). Anecdotal reports suggest Acropora corals were well established 
at Coral Gardens in the past (prior to the 1980s Caribbean die-off). It is unclear what 
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their extent has been in time or space, or the degree to which live Acropora spp. have 
declined in recent decades (K Mattes and M Gannon, Belize Marine TREC, pers 
comm; HA Curran, Smith College, pers comm). An extensive literature review sug-
gests that no long-term studies of the abundance, extent, or persistence of Acropora 
spp. exist for Coral Gardens prior to a study by Greer et al. (2015) and associated 
short contribution papers. In that investigation, Greer et al. (2015) established five 
permanent survey transects across Coral Gardens and quantified live coral cover as 
well as additional habitat characteristics over a 4-yr period (2011–2014) using field 
observation techniques. Given the lack of high-resolution and larger-scale quantita-
tive information on the spatial extent of endangered Acropora spp. at Coral Gardens 
and elsewhere, we suggest that a more efficient and reliable method for identifying 
and monitoring the few remaining Acropora reefs is critical for long-term protection 
of these now rare habitats.

Here, we develop a satellite imagery classification technique in ArcGIS®, which, 
with high accuracy, specifically identifies Acropora corals at Coral Gardens. Image 
classification is the process of extracting information about the spectral character 
of observed features. Two conventional methods for data extraction are supervised 
classification, where the operator defines the classes (features) to be identified in the 
imagery using “training areas” and unsupervised classification, where numerical 
methods break pixel values into clusters and automatically define classes in the im-
age based on statistical relationships of pixel values, with no operator involvement 
(Aranoff 2005). One of the most common uses of image classification is to identify 
and/or differentiate objects or areas of interest in satellite imagery.

Figure 1. Location of Coral Gardens, Belize and the GeoEye-1 image of the area (outlined in blue). 
Basemap imagery courtesy of ESRI, DigitalGlobe, GeoEye, I-cubed, Earthstart Geographics, 
CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, Swisstopo, the GIS 
User Community, National Geographic, DeLorme, HERE, UNEP-WCMC, NASA, ESA, METI, 
NRCAN, GEBCO, NOAA, Increment P Corp. 
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Landsat satellite imagery was first used for coral reef applications in the early 
1970s (Smith et al. 1975). Subsequently, a multitude of new sensor platforms have 
been developed. Advantages and disadvantages of many of the platforms have been 
assessed for coral reef specific applications (Mumby et al. 2004). Techniques pre-
viously employed by others to characterize marine benthic habitats and coral reef 
communities include hand-held or boat-towed optical reflectance spectrometry and 
hyperspectral remote sensing (Holden and LeDrew 1998, Hochberg and Atkinson 
2000, Hochberg et al. 2003, Louchard et al. 2003, Kutser and Jupp 2006, Suffianidris 
et al. 2009, Leiper et al. 2012), boat-based digital imaging (Lidz et al. 2008, Lidz and 
Zawada 2013), airborne and space imaging (Andréfouët et al. 2001, 2003, Mumby 
and Edwards 2002, Hochberg and Atkinson 2003, Rowlands et al. 2008, Mishra et al. 
2006, Tamondong et al. 2013), combinations of optical reflectance spectrometry and 
airborne hyperspectral imaging (Leiper et al. 2014), combinations of spectral model-
ing and space imaging (Lubin et al. 2001), integrated satellite imagery and ecological 
time-series data (Purkis and Riegl 2005), and the multifaceted integration of satellite, 
aerial, ground, and acoustic methods (Purkis et al. 2008, Rowlands et al. 2012).

Airborne and satellite imagery are attractive ways to remotely identify and monitor 
coral populations. Diver-operated field surveys can be logistically challenging, costly, 
time intensive, or even impossible for remote, dangerous, or politically unstable loca-
tions. While remote sensing methods can have drawbacks as well (cost of image ac-
quisition and water depth limitations, addressed later), they can significantly expand 
the spatial range of coral monitoring efforts. The spectral and spatial resolution, 
and cost of satellite or airborne platforms are all important to consider when choos-
ing the best approach to map a particular reef site. For a researcher simply trying 
to distinguish coral from other bottom cover, the most important consideration is 
likely spatial resolution. Spatial resolution is particularly important to identify small 
populations of rare Acropora spp. in imagery. However, if the goal of the study is to 
differentiate specific species of coral and map their distributions, then spectral and 
spatial resolution both must be prioritized and the chosen sensor must be capable of 
resolving the spectral signatures of small species-specific areas. Relatively few stud-
ies have been specifically designed to distinguish Acropora spp. from other species of 
corals (Purkis et al. 2006, Collier and Humber 2007, Collin and Planes 2012), and the 
scientific literature provides no previous studies that aimed to do so using an easily 
replicated methodology with widely available proprietary software.

The purpose of this study was to: (1) quantify Acropora coral cover near Coral 
Gardens using GeoEye-1 imagery and ArcGIS® software; (2) devise a semi-exportable 
classification methodology for discriminating Acropora corals from other benthic 
cover that is user friendly, time efficient, and cost-effective; (3) document the largest 
quantified population of Acropora spp. in the Caribbean Sea to date; and (4) establish 
a baseline for long term monitoring at Coral Gardens for future studies that empha-
size reef conservation and stewardship of endangered Acropora spp.

Methods

Live Acropora Coral Cover at Coral Gardens.—Large populations of live 
Acropora spp. populations were identified for our study in the field at Coral Gardens 
in summer 2013. Five transects across large patches of living A. cervicornis, ranging 
from 12 to 35 m in length, were chosen from locations of dense shallow-water (<7 
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m depth) Acropora coral documented in diver surveys (Greer et al. 2015, and pres-
ent study). Acropora cervicornis was virtually monospecific across all transects. Live 
A. cervicornis coral was assessed by quantifying live coral tissue coverage from 130 
scaled photographs of 1-m2 quadrats from the transects using ImageJ and MatLab 
(Fig. 2). The exceptional health and size of the Acropora spp. populations provided 
the motivation to acquire satellite imagery for the purpose of identifying additional, 
previously unidentified, Acropora spp. populations in the greater Coral Gardens re-
gion. The area of the longest transect, T5 (35 m), was used as a representative ex-
ample of Acropora spp. coral cover for the initial image classification methodology 
described below.

Initial Image Classification.—We chose GeoEye-1 multispectral satellite im-
agery of a 25 km2 area near Ambergris Caye, Belize (collected 25 August, 2011), to an-
alyze for live Acropora coral cover in the greater Coral Gardens region. The GeoEye-1 
multispectral pansharpened imagery (from DigitalGlobe™) was selected because it is 
relatively inexpensive and has sub-meter spatial resolution (0.50 m). DigitalGlobe™ 
implemented the pansharpening and a standard geometric correction to the image. 

Figure 2. Locations of the survey transects from the Greer et al. (2015) study area with under-
water photographs showing examples of calculated live Acropora cervicornis coral cover for 1 
m2 quadrats. 
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The imagery has blue (450–510 nm), green (510–580 nm), and red (655–690 nm) vis-
ible light bands and one near IR band (780–920 nm). ArcGIS® was chosen for imagery 
analysis because it is a widely-available, full-feature GIS program. The image was not 
atmospherically corrected because such a correction requires more advanced propri-
etary software and image processing experience, and a goal of our study was to create 
an easily replicable method for non-specialists.

A supervised classification using red (Band 3), green (Band 2), and blue (Band 1) 
was chosen for the initial purpose of identifying Acropora spp. at Coral Gardens 
based on the populations of Acropora spp. previously surveyed and described above. 
Because we had quantitative data on live coral cover, these locations were the most 
obvious choice as training regions from the greater Coral Gardens region for the su-
pervised classficiation. The training area for the supervised classification was drawn 
as a polygon across Acropora corals in the center of transect T5. For the purpose of 
visual comparison, training areas were also drawn as one polygon each in locations 
of other representative benthic cover: dense seagrass, moderate seagrass, light sea-
grass and sand, mixed coral species and seagrass, sand and rubble. These locations 

Figure 3. Locations of the 11 identified new areas of Acropora cervicornis, Acropora palmata, 
and Acropora prolifera that were ground-truthed (waypoints) during field assessment of the su-
pervised classification. 
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were chosen solely based on interpretation of the visual appearance of benthic cover 
as they appeared in the image. We used the results of this classification to qualita-
tively identify 11 new potential areas dominated by Acropora spp. (Fig. 3). All poten-
tial sites of Acropora spp. were outside, and did not overlap our training area (T5) and 
did not overlap any of the locations of Acropora spp. surveyed by Greer et al. (2015).

Field Verification.—In 2014, snorkelers visited each of the 11 sites identified 
during initial classification and observed live coral cover, water depth, orientation 
of live coral, species of corals present, and height of the tallest live coral. Ground-
truth points of newly documented Acropora corals were recorded using a Trimble 
GeoExplorer® XT 6000 differential GPS. Additional ground-truth points of non-
Acropora spp. benthic cover, such as environments dominated by sparse seagrass, 
medium seagrass, dense seagrass, sandy bottom, and other mixed massive corals, 
were collected at eight sites using direct observation methods in the field to help re-
fine the method of spectrally distinguishing live Acropora corals from other benthic 
cover. The GPS data were post-processed using Pathfinder Office® software with a 
differential correction from a reference base station in Quintana Roo, Mexico. The 
resulting horizontal precision is 0.1 to 0.4 m.

Unsupervised Band 3:Band 1 Image Classification.—Following the 
groundtruthing of the supervised classification in the field as described above, the 
classification scheme was refined to improve the accuracy of distinguishing Acropora 
corals from other benthic cover. The new classification scheme was designed to be 
completely independent from the initial supervised classification and any train-
ing area data so it could be replicated by other researchers attempting to identify 
Acropora spp. in new locations without previously collected field observations. The 
three Acropora spp. [A. cervicornis, A. palmata, Acropora prolifera (Lamarck, 1816)] 
are spectrally indistinguishable using our methods so they are treated at genus 
level in our study. The initial supervised classification successfully discriminated 
Acropora coral, but incorrectly identified some areas of seagrass and populations 
of mixed massive corals as Acropora spp. Therefore, Acropora coral, seagrass (pri-
marily Thalassia testudinum K. D. Koenig and Syringodium filiforme Kützing), and 
mixed massive coral cover dominated by Orbicella spp., Siderastraea spp., Agaricia 
spp., and Porites spp. were identified as the most important benthic units for refining 
the classification scheme. The spectral signature of each benthic unit was extracted 
from the image, compared, and examined at ground-truth locations. The spectral 
signatures were generated by compiling statistics for each Band at the ground-truth 
locations, which included mean value, maximum value, minimum value, and stan-
dard deviation. Spectral response curves were also generated for each of the three 
benthic units using Exelis ENVI® software to visualize the spectral similarities and 
differences between Acropora coral, mixed massive coral species, and dense seagrass 
(Fig. 4). The three benthic units have very similar minimum, maximum, and mean 
values for Band 3, as well as similar spectral response curves, making them spec-
trally very similar. However, a unique inverse reflectance relationship between red 
Band 3 (655–690 μm) and blue Band 1 (450–510 μm) was observed in a spectral 
profile across a section of Acropora reef (Fig. 5). To capture the inverse relationship 
between Band 3 and Band 1 for Acropora spp., a Band 3:Band 1 ratio calculation was 
performed to examine whether the statistical relationship was specific to Acropora 
coral and could distinguish the Acropora coral from other types of coral and benthic 
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Figure 4. Spectral response curves generated for Acropora spp. coral, mixed massive coral spe-
cies, and dense seagrass using the mean pixel values calculated within mapped reference areas 
for each benthic unit with error bars showing standard deviation. 

Figure 5. Pixel values for the blue, green, and red bands from a transect drawn across part of the 
study area by Greer et al. (2015) that has an average live Acropora cervicornis coral cover of 
53.11% at T5. 
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cover. An ArcGIS® “ISO Cluster” unsupervised classification (a modified iterative op-
timization clustering procedure) with a maximum of 50 classes was performed on 
the Band 3: Band 1 ratio image. Of the 49 classes produced, a single class populated 
the Acropora spp. reference areas [class number 49; range: 0.0161–0.5758, mean = 
0.2866 (SD 0.0464)]. This result agrees with field observations that Acropora spp. 
have a distinct color from other corals and habitat, even underwater (e.g., Figs. 2, 6). 
Other band ratios and derived variables including principal components were at-
tempted, but did not yield results that effectively discriminated Acropora spp. coral 
from the other types of benthic cover.

Classification Assessment.—The differentially corrected GPS ground-truth 
points for Acropora spp., mixed massive corals, and seagrass with underwater pho-
tography and the GeoEye-1 imagery to accurately map these single benthic units 
as polygons in ArcMap. These “reference areas” mapped as polygons around the 
ground-truth points formed the basis of a quantitative accuracy assessment of the su-
pervised classification and ratio classification methods. The Acropora reference area 
was mapped as rectangles that included survey transects from Greer et al. (2015), 
as well as a polygon that encompassed the perimeter of the patch reef surveyed at 
transect T5 (Fig. 6A). The mixed massive coral reference area was the largest non-
Acroporid stand of coral observed in the field (Fig. 6B). It was composed of mixed 
coral species dominated by large Orbicella spp., Siderastrea spp., and various brain 
corals, as well as smaller Agaricia spp., Porites spp., and Millipora spp., allowing the 
area to be easily identified and mapped in the imagery based on the GPS points and 
underwater photography that was collected in the field. The seagrass reference area 
was composed almost exclusively of dense seagrass growing on a featureless sandy 
bottom (Fig. 6C).

Because the seagrass reference area was significantly larger than the mixed mas-
sive coral and Acropora coral reference areas, we subsampled it so the area for accu-
racy assessment would be similar for the three reference areas and the larger dense 
seagrass reference area would not statistically skew results. To select a subset of the 
seagrass cells, we generated random raster cells within the area to produce an area 
equivalent to the mean size of the Acropora area and mixed massive coral areas. For 
the purposes of our study, we assumed that 100% of a given area was composed of 
its respective benthic cover in each mapped reference area. At Coral Gardens, aver-
age live coral cover is 29.85% (Greer et al. 2015, and the present study) and areas that 
were ground-truthed and mapped as coral also include small patches of macroalgae 
and dead coral rubble.

An error matrix shows the correct vs incorrect classifications for the initial super-
vised classification and the ratio classification and leads to calculations of the produc-
er error (error of omission, type II error), consumer error (error of commission, type 
I error), overall accuracy, and k^  statistic (Jensen 1996). Consumer error describes the 
probability that Acropora coral on the map will be correct, whereas producer error 
describes the probability that a reference area was correctly interpreted by the classifi-
cation. The k^  statistic provides a measure of classification accuracy adjusted for the 
probability that an entity was identified correctly by chance. The “overall accuracy” 
is the proportion of correctly classified pixels to the total number (Aranoff 2005). 
In the error matrix, seagrass and mixed massive coral reference areas are combined 
into a binary classification, yielding either Acropora spp., or non-Acropora coral.



Bulletin of Marine Science. Vol 92, No 2. 2016274

Total Area Calculation of Live Acropora Coral.—The total area of live 
Acropora coral reef was calculated by isolating the only class of the 49 classes pro-
duced from the ratio classification that populated the Acropora reference area. A 
depth criteria of 7 m was used to mask out erroneous classifications in deeper water 
(>7 m). The depth criteria was established by examining depth measurements col-
lected by divers in the field and previously exisiting bathymetric maps. The total area 
was then calculated as the summation of all the classified Acropora pixels in the iso-
lated class from the ratio classification. No minimum mapping unit was established 

Figure 6. Underwater photographs of the reference areas for (A) Acropora spp. coral, (B) mixed 
massive coral, and (C) dense seagrass used in the accuracy assessment. 
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because the accuracy assessment suggested an accuracy close to the map resolution 
(0.5 m) and many patches of live Acropora coral observed in the field were not much 
larger than several square meters.

Results

The average live coral cover at Coral Gardens (living tissue in only two dimensions) 
from photographic data at T5 was 53.11% live monospecific Acropora cervicornis (n 
= 35 m2 quadrats) with a range of 27.54%–64.33% live coral cover per quadrat. This 
number does not reflect the living coral below a two-dimensional surface cover. The 
remaining percent cover was composed of coralline and fleshy algae, bare coral skel-
etons, and empty or unresolved space (interior canopy).

We identified a total of 7.58 ha of living Acropora spp. in the shallow (<7 m depth) 
reef crest and back-reef area of Coral Gardens using our final unsupervised ratio 
classification method (Fig. 7). Most visually-assessed sites were dominated by A. 
cervicornis, but A. palmata was not uncommon. Water depth was assessed using 

Figure 7. Total area of Acropora cervicornis, Acropora palmata, and Acropora prolifera coral 
contained within the yellow bounding box calculated from the ratio classification results. Note 
that the classified Acropora spp. outside the yellow box is falsely identified (in deep water) and 
was not counted in the 7.58 ha calculation. 
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bathymetric maps and field depth measurements of the reef crest and back reef ar-
eas. The deep water (>7 m, and offshore of the reef crest) false identifications in both 
the supervised classification and ratio classification were not used in abundance 
calculations or the accuracy assessment because they reflect limitations of satellite 
imagery and can be eliminated using a depth criteria of >7 m, although most false 
positive data are likely from significantly deeper areas. Therefore, the total Acropora 
spp. coral area calculation used here only included the reef crest (approximately 0 
to 7 m depth, usually much shallower than 7 m) and shallow water patch reef areas 
(<7 m). Mapped shallow water populations based on the ratio classification show 
that Acropora corals populate a relatively thin but long stretch of the back reef and 
lagoonal area around Coral Gardens (Fig. 7). Ground-truthing revealed that the reef 
crest areas are dominated by A. palmata, but lagoonal areas are strongly dominated 
by A. cervicornis with some A. palmata (and the hybrid A. prolifera) present. Patches 
vary in connectivity, shape, and size. The largest patches are close to 2 ha in size 
and the smallest appear as scattered isolated patches of only a few square meters. 
Field assessment of the initial supervised classification led to the discovery of large 
and numerous previously-undocumented patches of Acropora coral (Fig. 8) proxi-
mal to 9 of the 11 areas visited for field verification of the supervised classification. 
Acropora spp. health and live coral cover at these sites appeared comparable to the 
original transect locations. Only two were falsely identified as Acropora spp. (Fig. 3), 
and consisted of large areas of seagrass. The supervised classification occasionally 
falsely grouped mixed massive coral with Acropora spp. and overestimated the size 

Figure 8. Dense Acropora spp. coverage discovered during the field assessment of the super-
vised classification. Locations are in UTM Northings and Eastings: (A) 394384.387, 1969991.250 
(Acropora cervicornis); (B) 394524.711, 1971149.383 (Acropora prolifera); (C) 394564.166, 
1971087.790 (A. cervicornis); (D) 395271.140, 1971685.381 (Acropora palmata).
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of some Acropora patches (Fig. 9). Moreover, deeper water areas of the image were 
falsely classified as Acropora spp. (lower right, Fig. 7). The ratio classification elimi-
nated false identifications of mixed massive coral and reduced false identifications in 
large areas of seagrass. However, in the northern area of dense Acropora coral, more 
patches of coral went unidentified.

The error matrices show that the ratio classification improved both overall accu-
racy and the k^  percentage, but yielded mixed results for consumer and producer error 
for identification of Acropora coral (Table 1). The decreased consumer error in the 
ratio classification indicates that Acropora coral occurs in nearly 100% of the clas-
sified cells. However, the increased producer error in the ratio classification shows 
that more of the field-observed Acropora coral was missed than in the supervised 
classification. Despite the mixed results for consumer and producer error, the overall 
accuracy of the ratio classification for Acropora spp. coral was nearly 90%.

Discussion

Acropora spp. Abundance Proximal to Coral Gardens.—Our study quan-
tified one of the largest extant Acropora spp. populations currently known in the 
Caribbean Sea. The 7.58 ha of mostly reef-forming Acropora spp. documented at 
Coral Gardens exceed the approximatley 2 ha of A. cervicornis estimated to be pres-
ent off the northern Dominican Republic coast (Lirman et al. 2010) and numerous 
other smaller, non-reef forming Acropora spp. populations documented by others 
(Vargas-Ángel et al. 2003, Walker et al. 2012, Lidz and Zawada 2013, Huntington and 

Figure 9. Comparison between the initial supervised classification and the ratio classification of 
Acropora cervicornis, Acropora palmata, and Acropora prolifera corals at each reference area. 
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Miller 2014, Larson et al. 2014). Acropora spp. abundance at Coral Gardens may even 
rival total area coverage off Roatán, where extensive A. cervicornis reefs have been 
documented (Keck et al. 2005, Purkis et al. 2006, Riegl et al. 2009b). While our im-
agery analysis is only for one location, we hope it will serve as a template or starting 
point for additional Acropora spp. surveys in the future, including other locations.

Imagery Classification.— Field assessment results indicated that the initial su-
pervised classification method was successful in identifying populations of Acropora 
spp. coral, but in some instances seagrass and mixed massive coral zones were mis-
identified as Acropora spp. (Fig. 9). This likely occurred because seagrass, mixed mas-
sive coral, and Acropora spp. coral have mean green (Band 2) and red (Band 3) values 
that are within the standard deviation, making them more likely to be grouped to-
gether by the ArcMap® maximum likelihood supervised classification algorithm (Fig. 
4). The ratio classification method resulted in a significant decrease of false posi-
tive classification of seagrass and mixed massive coral as part of the Acropora spp. 
class, suggesting it successfully captures the unique difference in red Band 3 and 
blue Band 1 values of Acropora spp. While our ratio classification methodology is 
relatively straightforward and accesible to non-specialists, it did not falsely identify 
any habitats in the mixed massive coral reference area and successfully separated 
Acropora spp. from other coral types (Fig. 9). The ratio classification is also advanta-
geous because it is a commonly-used technique that is easily applicable in a variety 
of software platforms.

It should be noted that part of the Acropora spp. training area polygon used for 
the intial supervised classification partially overlaps the reference area for Acropora 
coral used in the accuracy assessment. Therefore, the accuracy of the initial super-
vised classification for identifying only Acropora spp. is potentially biased due to 
the supervised classification automatically identifying the pixels within the training 
area as Acropora spp. However, because this reference area is the largest and most 
homogenous stand of Acropora spp. identified in the field, it still serves as the best 

Table 1. Error matrices for the (A) initial supervised classification and the (B) ratio classification. Consumer 
error (error of commission) is the probability that Acropora coral on the map will be correct and producer error 
(error of omission) describes the probability that a reference area was correctly interpreted by the classification. 
The k

^
  statistic measures classification accuracy adjusted for the probability that a pixel was identified correctly 

by chance. The overall accuracy is the proportion of correctly classified pixels to the total number of pixels.

 Classified area  

Reference area
Not Acropora 

coral (m2)
Acropora 
coral (m2) Total (m2)

Consumer 
error 

Producer 
error  k^  

A. Error matrix for supervised classification
Not Acropora coral 720.30 177.52 897.82 98.05% 80.23%
Acropora coral 14.30 535.11 549.42 75.09% 97.40%
Total 734.60 712.63 1,255.41  73.39%
Overall accuracy = 86.75%

B. Error matrix for ratio classification
Not Acropora coral 896.79 1.02 897.82 86.03% 99.89%
Acropora coral 145.59 403.83 549.42 99.75% 73.50%
Total 1,042.39 404.85 1,300.62 77.34%
Overall accuracy = 89.87%
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representative area to assess classification accuracy. Therefore, the accuracy calcu-
lated for the ratio classification should be the focus of the accuracy assessment, since 
the unsupervised classification operates completely independent from any operator 
identification of training areas and proves to be the most easily replicable and accu-
rate method implemented.

The increase of false negative classification for the ratio classification method (pro-
ducer error decrease from 97% to 74%) may reflect the inaccuracy of the null hy-
pothesis for the Acropora spp. reference area, which states that 100% of the area is 
live coral cover. Although the reference areas are along transects with documented 
high density Acropora coral cover, coral cover is heterogeneous and some areas along 
transects have far lower live Acropora cover than the average at T5 of 53.11%. Areas 
of low live coral tissue abundance may result in less classified live Acropora spp. cover 
(Fig. 2). Therefore, the increase in false negatives for the supervised classification 
method may actually be a more accurate reflection of the amount of live Acropora 
cover. Given the inability to map live coral in the field with a high degree of spatial 
accuracy as well as the limit of spatial resolution in the imagery, it would extremely 
difficult to assess the accuracy of the classification at such a fine scale.

All Coral Gardens Acropora spp. patches occurred at a water depth of no more 
than 7 m with little turbidity and surface waves. Our method cannot be assumed to 
be accurate for populations that live in deeper water due to the limitations of mul-
tispectral satellite imagery and the effects of light attenuation with water depth (see 
false identifications of Acropora spp. at depth in bottom right of Fig. 7). However, 
most documented reef-forming populations of Acropora coral are found at shallow 
water depths similar to Coral Gardens (Goreau 1959, Tunnicliffe 1981, Riegl et al. 
2009a). Therefore, we suggest that our method, when constrained to shallow water 
habitats, could be effective for identifying Acropora spp. elsewhere in the Caribbean 
region. It is also important to note that environmental conditions of Coral Gardens 
are well suited to high-resolution satellite imagery acquisition because of minimal 
turbidity and relatively calm water conditions at this site. Also, the acquisition of 
GeoEye-1 imagery was such that the percent cloud cover (4%) was minimized and the 
sun angle elevation was ideal (66.65°) to produce a high-quality image. The quality of 
imagery acquired and subsequent classification attempts in areas of high turbidity, 
greater water depth, and higher wave activity might be less successful, but the use 
of a ratio classifier may reduce the impact of illumination, water depth, or turbid-
ity. Other studies have developed successful tools to further decrease the impacts of 
reflectance and water column properties using more sophisticated techniques when 
water depth can be constrained (e.g., Purkis and Riegl 2005). Furthermore, because 
the image was not atmospherically corrected, it should be noted that if the imagery 
is not collected under similar ideal conditions in future studies, it could be subject to 
atmospheric noise that could degrade the effectiveness of the method.

The error matrices also show the tradeoff inherent between the initial supervised 
and refined ratio classification methods, with the initial supervised classification 
identifying more of the Acropora coral than exists in the imaged study area, and the 
ratio classification identifying the Acropora spp. more accurately (Table 1). We sus-
pect many field researchers would prefer the map to more accurately show Acropora 
spp. even if about 10% is missing, rather than have a map with false positive identi-
fications that would lead to wasted time in the field. Hence, the ratio classification 
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method may hold more value to field researchers trying to identify Acropora corals 
prior to a field study. 

The purposes of our study were to document Acropora coral cover at Coral Gardens 
and to create an easily replicatable, time efficient, and inexpensive method for identi-
fying Acropora spp. using remote sensing. We used methods commonly implement-
ed in imagery analysis using ArcGIS® software, a widely available and user-friendly 
program, making our method more accessible to non-specialists. The present study 
successfully mapped possibly one of the largest accumulations of Acropora spp. doc-
umented in the Caribbean region today, quantifying >7.5 ha of living Acropora spp. 
reef habitat. We hope that our methods can be useful in quantifying Acropora spp. 
abundance at other Caribbean sites, particularly sites that are difficult to access and 
monitor on site. If preserving Acropora spp. habitat is a goal, our method might prove 
useful in future management of Acropora spp. reefs.
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