
Smith ScholarWorks Smith ScholarWorks 

Statistical and Data Sciences: Faculty 
Publications Statistical and Data Sciences 

10-31-2013 

As Strong as the Weakest Link: Mining Diverse Cliques in As Strong as the Weakest Link: Mining Diverse Cliques in 

Weighted Graphs Weighted Graphs 

Petko Bogdanov 
University of California, Santa Barbara 

Ben Baumer 
Smith College, bbaumer@smith.edu 

Prithwish Basu 
BBN Technologies 

Amotz Bar-Noy 
City University of New York 

Ambuj K. Singh 
University of California, Santa Barbara 

Follow this and additional works at: https://scholarworks.smith.edu/sds_facpubs 

 Part of the Data Science Commons, Other Computer Sciences Commons, and the Statistics and 

Probability Commons 

Recommended Citation Recommended Citation 
Bogdanov, Petko; Baumer, Ben; Basu, Prithwish; Bar-Noy, Amotz; and Singh, Ambuj K., "As Strong as the 
Weakest Link: Mining Diverse Cliques in Weighted Graphs" (2013). Statistical and Data Sciences: Faculty 
Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/sds_facpubs/38 

This Conference Proceeding has been accepted for inclusion in Statistical and Data Sciences: Faculty Publications 
by an authorized administrator of Smith ScholarWorks. For more information, please contact 
scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/sds_facpubs
https://scholarworks.smith.edu/sds_facpubs
https://scholarworks.smith.edu/sds
https://scholarworks.smith.edu/sds_facpubs?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/sds_facpubs/38?utm_source=scholarworks.smith.edu%2Fsds_facpubs%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


As Strong as the Weakest Link:
Mining Diverse Cliques in Weighted Graphs

Petko Bogdanov1, Ben Baumer2, Prithwish Basu3, Amotz Bar-Noy4, and
Ambuj K. Singh1

1 University of California, Santa Barbara, CA 93106, USA,
{petko,ambuj}@cs.ucsb.edu

2 Smith College, Northampton, MA 01063, USA, bbaumer@smith.edu
3 Raytheon BBN Technologies, 10 Moulton St., Cambridge, MA 02138, USA,

pbasu@bbn.com
4 The City University of New York, New York, NY 10016–4309, USA,

amotz@sci.brooklyn.cuny.edu

Abstract. Mining for cliques in networks provides an essential tool for
the discovery of strong associations among entities. Applications vary,
from extracting core subgroups in team performance data arising in
sports, entertainment, research and business; to the discovery of func-
tional complexes in high-throughput gene interaction data. A challenge
in all of these scenarios is the large size of real-world networks and the
computational complexity associated with clique enumeration. Further-
more, when mining for multiple cliques within the same network, the
results need to be diversified in order to extract meaningful information
that is both comprehensive and representative of the whole dataset.
We formalize the problem of weighted diverse clique mining (mDkC)
in large networks, incorporating both individual clique strength (mea-
sured by its weakest link) and diversity of the cliques in the result set.
We show that the problem is NP-hard due to the diversity requirement.
However, our formulation is sub-modular, and hence can be approxi-
mated within a constant factor from the optimal. We propose algorithms
for mDkC that exploit the edge weight distribution in the input network
and produce performance gains of more than 3 orders of magnitude com-
pared to an exhaustive solution. One of our algorithms, Diverse Cliques
(DiCliQ), guarantees a constant factor approximation while the other,
Bottom Up Diverse Cliques (BUDiC), scales to large and dense networks
without compromising the solution quality. We evaluate both algorithms
on 5 real-world networks of different genres and demonstrate their utility
for discovery of gene complexes and effective collaboration subgroups in
sports and entertainment.

1 Introduction

It is often said that while the success of a sports or business team depends on
good individual performances, it depends even more on how individuals gel as
a team – thus resulting in the idiom “There is no “I” in T-E-A-M”. While this
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expression downplays the importance of individual performance, a team com-
prised of players with moderate individual talent but superior teamwork skills
can outperform a dysfunctional team that emphasizes superlative individual per-
formances. For example, the Detroit Pistons basketball team won the 2004 NBA
championship with a collection of relatively unheralded players who were thought
to collaborate so well together that “the whole was greater than the sum of its
parts.” Conversely, the team they defeated, the heavily-favored Los Angeles Lak-
ers, featured four future Hall of Famers, none of whom appeared to collaborate
particularly well together [14].5 Could the unexpected success of the Pistons or
the demise of the Lakers have been predicted based on previous observations?

While the importance of teamwork between elements in a group is easy to
articulate, it is a non-trivial analytical task to isolate the core subgroups of en-
tities that are responsible for the overall team performance. If the performance
of the whole team can be measured, say, in terms of wins or losses, or revenue
generated, the key problem is the discovery and identification of the team cores –
subgroups within a team, whose inclusion results in higher-than-expected overall
team performance, since their collaboration appears to motivate the success of
the team as a whole. The discovery of core subgroups can illuminate distinctive
individual characteristics, whose combination has a super-additive effect on the
team [21]. This could provide important assistance to executives, who are ulti-
mately judged by the success of the team, rather than the personal achievements
of individual players. For example, sports executives could use team performance
data from prior years to identify and acquire players exhibiting a combination
of traits that lead to team success. Similarly, Hollywood studios can use data
on prior collaborations among actors, directors, editors, cinematographers etc.
while assembling a cast for an upcoming film, since successful past collaborations
may portend similar success in the future.

“Teamwork” is not restricted to sports or business; it is also observed in-
side cells of living organisms – multiple proteins interact with each other to
form a multi-protein complex, which is a cornerstone of many (if not most) bio-
logical processes, and together they form various types of molecular machinery
that perform a vast array of biological functions [17]. The challenge here is to
discover those complexes which are core groups of interacting genes within high-
throughput pairwise interaction data [27]. The biological setting presents a dis-
tinctive challenge due to the difficulty in measuring the existence of a complex
directly. The good news is that the strength of pairwise associations between
genes can be tested efficiently via high-throughput methods employed to build
functional interaction networks for analysis [28]. Hence, analytical techniques
for mining strong gene subgroups can allow biologists to infer the existence of
protein complexes that participate in the same cellular process and predict func-
tional annotations for new gene sequences [11].

5 Indeed, the open feud between Shaquille O’Neal and Kobe Bryant combusted after
the season, resulting in the trade of O’Neal to Miami.
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Our main goal is to extract an informative set of high-scoring6 cliques that
are representative of the entire network. To mitigate the presence of free riders
(nodes attached by weak links to a strong clique), we define an intuitive score
based on the weakest link in the clique. Alternative scoring schemes using sum
or average are more forgiving to free riders since their link weights, albeit weak,
would not drag the overall clique score down significantly. Similar scoring func-
tions have been used in the Bioinformatics literature, namely Bandyopadhyay et
al. [8] measure multi-way interaction strength as the minimum average weight of
links adjacent to a node. A weakest link explanation of group success is also cen-
tral to the pooled interdependence theory for business organizations as discussed
by the classic text of Thompson [25].

Another challenge is to handle possible overlap among the best scoring cliques
in order to represent all network locations of interest in the result set. Less
overlap amounts to greater diversity among the reported cliques. Consideration
of diversity is imperative in certain team sports such as ice hockey, in which a
coach decides which lines (subgroups) of players play together on ice before being
substituted by other lines Over the course of the season, the coach experiments
with the makeup of these lines several times in order to figure out which players
play well together. Diversity is also important in team formation for multiple
tasks, where one aims to maximize the fitness of each team while simultaneously
incorporating fairness by not overloading members with multiple tasks [6]. Thus,
an analytical scheme that can mine a diverse set of subgroups is more useful than
one which merely returns the top scoring ones without taking into account the
overlap between them.

Our Contributions in this paper include the following:
Novelty: We formulate a novel weighted diverse clique mining (mDkC) problem
that incorporates clique strength and diversity of result; and show that, although
NP-hard, the formulation is sub-modular and allows accurate approximation
schemes.
Scalability: We propose a (1− 1/e)-approximation algorithm, DiCliQ, and a
faster heuristic, BUDiC, for mDkC. Both achieve an improvement in running
time of 3 orders of magnitude, when compared to an exhaustive search.
Quality: We demonstrate the utility of DiCliQ and BUDiC to identify team
cores of significant performance and protein complexes in a gene interaction
network.

2 Related Work

Clique mining work has focused on quasi (almost) cliques which allow a con-
trolled number of missing edges [3, 15, 29]. While this relaxation is to accommo-
date possible missing links and noise, all of the above methods operate in the

6 The edge weights between entities (player/protein/stock symbol) are indicative of the
strength of their pairwise relation. Particularly well-performing subgroups (or tightly
interacting proteins) manifest in the resulting graph as “strong” cliques associating
nodes with heavy edge weights.
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scenario of unweighted and labeled graphs and optimize the frequency of clique
occurrence as opposed to scores (labels are not unique and hence a quasi-clique
may occur multiple times in the same data graph or in a database of small
graphs). In contrast, we operate in settings of dense and weighted interactions
exhibiting variance in the link strength. Weighted clique mining was considered
by Bandyopadhyay et al. [8] who proposed a heuristic for the largest cardinality
clique with average node-connectivity weight exceeding a user-defined threshold.
Instead of using the link quality as a constraint, we incorporate it in the solution
score. In addition, we are interested in finding a diverse set of (multiple) high
scoring cliques as opposed to the single largest one.

Different subgraph “goodness” criteria have also been considered in graph
mining, including diameter and spanning tree cost [16], Steiner tree and bottle-
neck cost [18]. Communities and modules have also been defined based on clique
percolation (highly overlapping cliques) in CFinder [22] and applied to biological
and social networks in a series of follow-up work. Such formulations allow sparse
structures including nodes that do not interact directly. Instead, our methods
are targeted to the discovery of “flat–organization” teams and all-to-all inter-
actions in the case of gene complexes. As we show experimentally, our method
(and formulation) outperforms CFinder by 20% when employed in gene complex
discovery.

Alternative definitions of diversity have also been considered. Lappas et
al. [16] investigated diversity of the node roles within single cliques. This within-
clique diversity definition is targeted to cases where multiple nodes may have the
same role (label) and can be considered in conjunction with ours. Anagnastopo-
lus et al. [6] considered structures with fair assignment of tasks within the team
and in follow-up work [7, 18] combined communication cost with fair task assign-
ment in online team formation. While these formulations target both overlap
(task assignment) and structure, they incorporate one of the criteria (overlap or
structure density) as a user-defined constraint and allow for sparse structures,
i.e. they are suitable for hierarchical as opposed to “flat” teams/complexes.

3 Preliminaries

We model interaction strength between entities from sports, business, cinema
and biology as a weighted undirected network G = (V,E,w). Nodes V of the
network graph correspond to agents or entities, while edge weights w(u, v) be-
tween two nodes u and v reflect their connection strength: joint performance,
interaction strength or similarity. For the rest of the presentation, without loss
of generality, we assume edge weights are scaled to the interval [0, 1].

Our goal is to extract a diverse set of groups, requiring that all internal
pairwise connections are strong. In the graph setting, strong all-pair-connected
groups map to cliques (complete graphs) of high weights on all edges. Finding
the Maximum Clique (Max Clique) (the one of largest size in an unweighted
graph) is NP-hard to solve and also approximate to within n1−ε [13]. Introducing
weights on edges preserves the same general complexity.
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Fig. 1. Comparison of two cliques based on the weakest link as their score (a). Example
of five high-scoring triples from NBA (b). A diverse 2-set of cliques of size 3 minimizes
the overlap in the resulting set, i.e. prefers {G1, G3} over {G1, G2} (slightly lower total
scores but increased diversity).

4 Problem definition

In this paper, we model the strength of a subgroup in terms of the pairwise
interactions between individuals in that subgroup. Ideally, techniques that go
beyond graph theory, e.g., hypergraphs or abstract simplicial complexes [9, 19],
are appropriate for modeling higher order interactions (triples, quadruples, etc.)
directly. Such higher-order modeling approaches, however, are limited by both
data scarcity and intractability. Enumerating and scoring all subgroups becomes
computationally demanding for datasets of even hundreds of nodes. Moreover,
in order to validate methods that score higher order groups directly, we need
empirical data containing sufficiently many observations in which a particular
group has interacted as a whole — a requirement that is hard to meet.

To address the above challenges, we require that all pairwise interactions
(performances) are strong and relate the performance of a group to its weakest
link, seeking to approximate the group behavior. Most professional sports teams,
scientific collaborations, and protein networks are all examples of predominantly
non-hierarchical (“flat”) organizations that may collapse without strong pairwise
links among all group members. This is true especially in a team sport such as
basketball in which lack of good communication between any pair of players
can easily threaten the success of the team (see [14]), especially since a highly
competitive opponent is typically smart enough to exploit that vulnerability
during the game. Thus, our clique scoring scheme is targeted to groups in which
all pairs correlate/interact strongly, where the potential success of a group is
limited by the worst pairwise connection therein.

We define the score of a group (network clique) in terms of its weakest link.
That is, for any subset of nodes C ⊆ V , s(C) = |C|minu,v∈C w(u, v). If C
is not a clique (at least one missing edge), then the score is s(C) = 0. This
scoring criterion prefers larger cliques, whose minimal edge score is high. It is
also designed to eliminate the free-rider effect, i.e. inclusion of nodes that exhibit
some weak links to others within the group.
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An example from the NBA that illustrates our scoring method is shown in
Fig. 1(a). Although both cliques feature high weight edges, a single weak link
(between Shaquille O’Neal and Paul Pierce) results in a much lower score for
the top triplet. Conversely, the {Casspi,Gibson,Gee} triplet is scored higher as
all pairwise edges retain high score.

The clique score we adopt agrees with statistical measures of success for
triples in our sports data sets with 90% of the top-scoring NBA triples having
statistically significant performance (p-value ≤ 0.05). Furthermore, the highest
scoring cliques of genes in our experimental gene network have homogeneous
biological functions, and hence likely correspond to gene complexes. Details of
the above observations are available in Sec. 6.

Based on our weakest link score definition, we formalize the problem of finding
the best weighted fixed-size clique in a graph.

Definition 1. The maximum weighted k-clique in a graph G = (V,E,w) is the
k-clique C∗k(G) of maximum score, i.e. C∗k(G) = arg maxC⊆V,|C|=k s(C). Given
a weighted graph G, Maximum Weighted k-Clique (WkC) is the problem of
finding the maximum weighted k-clique in G.

WkC is NP-hard as it can be reduced from the Max Clique problem by
restriction of the edge weights to 1. In our solutions, we will exploit the weight
distribution of edges in a network in order to explore more promising cliques
first and prune unpromising candidates for extension.

Beyond a single group, our goal is to report the best set of cliques, in order
to represent all locations of interest in a large network. There are two main
computational challenges to this end: (i) efficient discovery of good (high-scoring)
cliques and (ii) ensuring informativeness of the result set by diversification.

To illustrate the intuition behind the importance of diversity in the result-
ing set, consider the NBA player example in Fig 1(b). There are five candidate
cliques of size 3 and their scores are listed in shaded boxes in the corresponding
triangles. Assuming that the top 2 highest scoring cliques are of interest, ignor-
ing diversity amounts to reporting {G1, G2}. However, there is a lot of overlap
(the duo Casspi-Gee) between {G1, G2}. Intuitively, reporting all super-cliques
of Casspi-Gee is not representative of the overall network. Instead, we can di-
versify by pairing G1 with a slightly lower scoring clique of lower overlap such
as G3. The idea of diversity has been considered in a number of other settings
including information systems for web search [4, 10, 12], image retrieval [24, 26],
cheminformatics [5] and other domains.

Next, we formalize a joint diversity-score formulation and a corresponding
solution with a good approximation guarantee.

Definition 2. For a set A of cliques each of size k, we define their diversity
score as

ds(A) = α

∑
C∈A s(C)

k
+ (1− α)

|
⋃
C∈A C|
k

,

where α ∈ [0, 1],
⋃
C∈A C is the union of nodes in the cliques of A and

ds(∅) = 0. Then given parameters k and α, the m Diverse k-Clique (mDkC)
problem seeks the set A of size m that maximizes ds(A).
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The above definition combines the average score of the answer set cliques and
the diversity of their comprising nodes in a linear fashion. The trade-off between
score and diversity can be controlled by the parameter α. Note that since both
terms are bounded above by |A|, ds(A) ∈ [0, |A|].

If we set m = α = 1, then ds(A) = s(C), and mDkC is equivalent to WkC.
Since, as we saw above, WkC is NP-hard, mDkC is NP-hard. However, we prove
the stronger statement that mDkC is NP-hard even if an efficient heuristic for
WkC (or an alternative high score structure) exists.7 That is, we prove that the
hardness of mDkC comes not only from the hardness of WkC, but also from
the difficulty of diversifying the result set.

Theorem 41 For any scoring function s() that maps a graph substructure to a
non-negative real number, the decision problem corresponding to mDkC, namely:
“Is there a set of m substructures A, each of size k, such that ds(A) ≥ B for
some positive number B,” is NP-complete.

Proof. The proof is available in the Appendix [2].

While our focus is on cliques, the above theorem shows a more general result
for arbitrary subsets of nodes in a graph given a scoring function for each subset.
Hence, in different applications in which finding an optimal score substructure
is computationally tractable, ensuring that the solution comprised of multiple
substructures is diverse remains NP-hard.

Although the mDkC problem is NP-hard (due to the NP-completeness of the
decision version), we show that the diversity score function is monotonic and sub-
modular. These properties allow a fixed-quality approximate solution based on
a greedy scheme. Next, we formally show the monotonicity and sub-modularity
of our diversity score formulation.

Theorem 42 If k and α are fixed, the diversity score function ds(A) is:
- Monotonic, i.e. for any subset A ⊆ B, ds(A) ≤ ds(B)
- Sub-modular, i.e. for any sets A,B, ds(A) + ds(B) ≥ ds(A ∪ B) + ds(A ∩ B).

Proof. The proof is available in the Appendix [2].

Due to the monotonicity and sub-modularity of the diversity score and based
on the seminal result of Nemhauser et al [20], we can show the following corollary.

Corollary 41 A Greedy procedure for mDkC that adds cliques in decreasing
order of their diversity score improvement always achieves a solution within 1− 1

e
from the optimal. Since ds(∅) = 0, this the best possible approximation ratio for
the problem.

The (1−1/e)-approximation guarantee assumes that we can construct Greedy
and hence solve WkC optimally (when α = 1, the first clique to be added is the
WkC solution). This is by itself a hard problem as we argued above, however,
we exploit the edge weights to provide scalable solutions for real-world datasets.

7 Recall that by [13], the general clique problem cannot be approximated within n1−ε

for any given ε.



8 Petko Bogdanov et al.

5 Weighted diverse clique mining

In this section we propose two algorithms for the mDkC problem: DiCliQ and
BUDiC. Both adopt pruning of infeasible candidates based on partially explored
cliques in order to reduce computation time. DiCliQ works by enumerating
cliques within a thresholded version of the network: first high-scoring edges are
considered and as the algorithm progresses lower-weight edges are included if
needed. It provides a (1 − 1/e)-approximation guarantee as it implements a
greedy strategy. For large and dense instances (exceeding 4, 000 nodes and 30, 000
edges) and for higher number of cliques and clique sizes, DiCliQ’s running time
worsens (requiring on the order of minutes to complete in our experimental
datasets). To handle larger and denser instances, we develop a scalable heuristic
BUDiC that achieves more than 90% of DiCliQ’s diversity score (and at times
even better scores than DiCliQ). BUDiC employs similar pruning, but avoids
expensive enumeration of cliques by greedy expansion from a single edge.

5.1 Bounding the diversity score for partial cliques

We first show an upper bound for the contribution of a clique C when added
to a set of cliques A. If the newly added clique C is of the desired size k then
its contribution to the overall score can be computed according to the definition
of ds(). If, however, C is not a complete clique of the desired size |C| < k, one
can bound the contribution of any of its super cliques (cliques that contains all
nodes in C) of size k to the diversity score.

Theorem 51 Let C, |C| ≤ k be a clique of size not exceeding k. The maximum
improvement of ds score when adding any k super clique of C to a clique set A
is bounded by:

δ(A, C) = ds (A ∪ C)− ds(A) = α min
u,v∈C

w(u, v) + (1− α)
k − |(∪B∈AB) ∩ C|

k
,

where in the diversity part, the set (∪B∈AB) ∩ C is the intersection of nodes
included in A and nodes in C.

Proof. The proof is available in the Appendix [2].

The upper bound can be applied for incomplete cliques C of any size, even
ones that are completely unobserved, i.e. |C| = 0. In the latter case, the score
part increases by at most α (assuming the maximum possible edge weight is 1)
and the diversity part increases by at most (1 − α). Equipped with the upper
bound δ, we next define our edge thresholding algorithm DiCliQ that considers
high-scoring cliques first and prunes infeasible candidates.
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Algorithm 1 DiCliQ
Require: G = (V,E,w), k,m, α, threshold schedule T = {Ti}
Ensure: A set of cliques A = {Ci}, |A| = m, |Ci| = k
1: A = ∅, l = 0
2: while |A| < m AND l < |T | do
3: Obtain Gl(V,El, w), e ∈ El ⇐⇒ w(e) ≥ Tl

4: Compute δ(A, Ci
l ), ∀|C

i
l | ≤ k (incl. Ci

l = ∅)
5: while max|Ci

l
|=k

δ(A, Ci
l ) ≥ max

|Cj
l
|<k

δ(A, Cj
l ) do

6: A = A
⋃
argmax|Ci

l
|=k

δ(A, Ci
l )

7: break if |A| = m

8: Update δ(A, Ci
l ) based on the new A

9: end while
10: l = l + 1
11: end while
12: return A

5.2 DiCliQ: enumeration of cliques with thresholding

A naive Baseline heuristic for mDkC (with the (1−1/e)-approximation) can (i)
enumerate all possible cliques of the desired size k and then (ii) greedily (based
on best ds() improvement) compile an m-size result-set. While such Baseline
might be feasible for small sparse networks (up to |V | = 500) and small values
of k, the clique enumeration step quickly becomes a bottleneck as the input size
increases due to its combinatorial nature. It fails to complete in less than 4 hours
in all but our smallest network from the NBA.

Different from Baseline, we observe that in order to maximize the diversity
score, we can first consider only edges of high weights. Then, as needed, we can
consider lower score edges completing cliques of small overlap with the partial
result set. Following this intuition, DiCliQ enumerates cliques in a thresholded
subgraph induced by the highest-score edges and gradually includes more edges
on demand. This process is based on a decreasing schedule T = {Tl} of edge
weight thresholds. The best-scoring cliques are discovered first within a much
smaller instance of the graph. In addition, DiCliQ employs the upper bound
on the improvement of the ds score for candidate cliques in order to filter out
infeasible candidates and guarantee that cliques are added to the result set in a
greedy order ensuring a (1− 1/e)-approximation.

DiCliQ is presented in Alg. 1. Apart from the input graph and parameters k,
m and α, the algorithm also takes as an input a schedule {Tl} of descending edge
value thresholds. The result set A is first initialized as empty and the threshold
level l to 0 (i.e. highest edge values). While a set A of size m is not obtained
and we have not reached the last level of thresholding, the algorithm (i) filters
the graph based on Tl (Line 3), (ii) enumerates and upper-bounds all cliques of
size up to k (Line 4) from the filtered graph and (iii) attempts to add cliques to
the result set if they are the best next cliques to add (Lines 5-9). Note, that on
Line 4 an upper bound δ(A, ∅) = αTl + 1 − α on all yet unobserved cliques is
also computed.

If the maximum improvement δ of a size-k clique Cil exceeds the upper bound
on any incomplete clique, we add Cil to the solution (Line 6) and update the
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Algorithm 2 BUDiC
Require: G = (V,E,w), k,m, α
Ensure: A set of cliques A = {Ci}, |A| = m, |Ci| = k
1: A = ∅
2: for i = 1→ m do
3: for all Edges e ∈ E do
4: Ce = e;
5: repeat
6: Grow Ce by argmaxv∈V δ(A, Ce

⋃
v)

7: until (|Ce| = k)∨(Ce cannot be extended)
8: end for
9: if no Ce of size k are found then

10: break
11: end if
12: A = A

⋃
argmax|Ce|=k,e∈Eδ(Ce)

13: end for
14: return A

improvements of the cliques based on the new A (Line 8). Additions of cliques
are performed until no complete clique exceeds the upper bound of an incomplete
one, or until |A| = m. After all possible additions are exhausted, if the result
set does not contain m cliques, we lower the edge weight threshold (Line 10)
and repeat Lines 3-5 for the new thresholded graph. Since we add cliques to
the results set only if their score improvement exceeds the upper bound of all
possible candidates (line 5) we ensure that the cliques are added in a greedy
(descending score) order and hence DiCliQ implements a greedy strategy and
obtains a (1− 1/e)-approximation.

The thresholding scheme of DiCliQ is effective when the result set of m
best cliques is completed before reaching the lowest threshold level, i.e. enumer-
ating cliques in the whole graph. An important means to this end is choosing
an appropriate schedule that reflects the distribution of edges. We divide the
set of all edge weights into equi-size bins and adjust the threshold to incorpo-
rate one more of these bins at every iteration. Other schedules (exponentially
increasing subsets of edges) are also possible, but were not more favorable in our
experiments.

5.3 BUDiC: Scalable Bottom-Up Diverse C lique heuristic

The bottleneck in DiCliQ is the enumeration and bounding of all cliques at
a given edge weight level (Line 4, Alg. 1). This step is in general exponential
and the algorithm is efficient only when the results set is computed at the first
several thresholding levels. To scale to larger and denser graphs, while avoid-
ing exhaustive enumeration of cliques, we employ a greedy Bottom-up scheme
BUDiC.

The intuition behind BUDiC (Alg. 2) is that one can get good candidates
for the result set by starting from a good edge and growing a clique, while
avoiding overlap according to the diversity α. Cliques are added one at time in
the outer loop (Lines 2-13). Good local cliques are grown greedily by nodes of
best improvement (Line 3-8). If no clique of the desired size is found the main
loop is terminated and an incomplete set of cliques is returned (Line 9-11). The
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best clique in each iteration is added to A (Line 12). Note, that BUDiC does
not have the same approximation guarantee as DiCliQ because in the greedy
expansion from an edge it does not consider all possible cliques.

The algorithm runs in polynomial time O(k · m · n · |E|) as every edge is
grown to a clique of at most size k and this is repeated m times. The n term is
due to the possibility of considering all graph nodes in Step 6 when the graph
is complete. BUDiC is also suitable for parallel implementation, since Lines 3-8
can be executed on separate machines assuming the graph is partitioned with
redundancy and distributed to all machines.

5.4 Discussion on setting parameters

While it is unlikely that a universally appropriate value of k exists, in certain
applications there are domain-specific constraints that could be used. For exam-
ple, in basketball, subgroups of sizes less than 5 are of interest, while in gene
networks appropriate sizes are between 4 and 6 since many known yeast com-
plexes contain 4.7 subunits on average [23]. When no prior domain knowledge
is available, we envision varying k while tracking the relationship among con-
secutive result sets and concentrating on values for which the solution changes
substantially (i.e. solution cliques of size k do not tend to include those of size
k−1). A similar approach can be adopted to determine interesting values of the
diversity weight α. We perform such analysis for α in the experimental section.
The number of cliques in the resulting set (m) can be increased until the score
contribution of adding additional cliques diminishes significantly relative to the
average contributions of already included cliques.

6 Experimental Evaluation

We evaluate our algorithms on a variety of real world data from sports, cinema,
biology and finance. Our goal in experimentation is to (i) assess the scalability of
DiCliQ and BUDiC to large problem instances; (ii) demonstrate the quality of
BUDiC compared to the (1−1/e)-approximation DiCliQ; and (iii) demonstrate
the relevance of the mined diverse cliques to real world applications.
Data. We experiment with 5 publicly-available data sets including participation
in teams sports (NBA, MLB), collaboration in movies (IMDB), a gene interac-
tion network (YeastNet) and a correlation network of stock symbols (Stocks) (see
Table 1). Edge strength in the sport/collaboration are based on the statistical
significance of the performance of the pair of entities when in groups (sport team
success or movie cast ratings). The edge weights in the gene network is based on
strength of measured interaction of the genes, while the absolute Pearson’s corre-
lation serves as a weight in the stock network. The sizes of the datasets are listed
in Table 1 (columns 2,3). We discuss in detail the sources and preprocessing of
our datasets in the Appendix [2].
Scalability. All scalability measurements are on a Dell Desktop with 6GB RAM
and Dual Core 4GHz processor. We measure the clock time of the exhaustive
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Baseline DiCliQ iMDV BUDiC
Source |V | |E| Time Time Time % sc. Time % sc.
NBA 532 5,945 23.00s 0.48s 0.018s 57 0.13s 98
MLB 1,569 40,126 >4h 3.00s 0.015s 52 0.24s 95
IMDB 25,141 417,705 >4h 107.00s 0.087s 54 0.17s 94

YeastNet 4,450 30,5416 >4h 5.8s 0.463s 73 0.77s 99
Stocks 1,194 32,406 >4h 12s 0.022s 44 0.4s 99

Table 1. Summary of our datasets including time span, number of nodes V and edges
E. The second part of the table lists the running time (in seconds) and quality (%
of Baseline) on all datasets α = 0.5, m = 10, k = 5. The quality of BUDiC and an
iterative version of iMDV is measured as percentage of DiCliQ ’s score. Baseline does
not complete in 4h and its memory footprint exceeds 6GB causing an out-of-memory
exception.

Baseline, DiCliQ, BUDiC and the iterative extension of [8] called iMDV. Note
that both DiCliQ and Baseline implement a greedy strategy and hence obtain
a constant 1 − 1/e factor approximate solution. An optimal solution for the
problem would further require considering all possible (exponential) subsets of
cliques and is not be feasible even for our smallest datasets. Details of competing
techniques are available in the Appendix [2].

The right part of Table 1 shows the performance of competing techniques in
all datasets. Baseline was able to complete only on our smallest dataset NBA
and it was 40 times slower than DiCliQ and 2 orders of magnitude slower than
BUDiC. On the rest of the datasets (α = 0.5, m = 10 and k = 5) Baseline
does not complete in 4 hours and runs out of memory, due to the exponential
number of candidate cliques that it has to consider for inclusion in the result set.
DiCliQ, BUDiC and iMDV have comparable running time on small datasets,
while in denser and larger networks DiCliQ is 10 to 100 times slower. In terms
of diverse clique score, our fast heuristic BUDiC dominates iMDV by 30−50%.

We present the scalability behavior of our techniques for varying clique size
and number of cliques in the results set within YeastNet in Fig. 2. Baseline
does not complete in 4 hours for k = 5 and any value of m. The reason for
this long running time is that Baseline consumes all allocated memory (6GB)
while enumerating all possible cliques. For smaller clique sizes it is 3 to 4 orders
of magnitude slower than DiCliQ and BUDiC. When increasing k and m,
DiCliQ slows down due to the need to lower its edge weight threshold and
enumerate more cliques in progressively larger graphs. BUDiC’s performance
does not change significantly for these experimental settings, making it a good
scalable method for higher k and m.

Quality of BUDiC. BUDiC reduces the computational time by up to 2 or-
ders of magnitude, as expected due to its polynomial complexity. However, an
immediate question is: What is its quality? We showed that BUDiC’s quality
on all datasets is above 95% (diversity score as a fraction of Baseline’s score) for
one setting of parameters in Table 1. Next, we explore the quality dependence
on the number of cliques m in the result set and on the value of α.
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Fig. 2. Scalability comparison of Baseline, DiCliQ and BUDiC for increasing number
of cliques m in the result set for k = 5, α = 0.5 (a) and increasing clique size k for
m = 5, α = 0.5 (b) in the YeastNet network. The Baseline approach does not complete
in 4 hours for k = 5, α = 0.5 and its memory footprint exceeds 6GB. (c) Quality of
BUDiC’s diversity score as a fraction of the score obtained by a GREEDY heuristic
(both Baseline and DiCliQ obtain the same score) in the Stocks (Left) and YeastNet
(Right) networks(k = 5).

Fig. 2(c) summarizes the quality of BUDiC in the YeastNet and Stocks
networks. We show its diversity score as a fraction of a Greedy solution (obtained
by either Baseline or DiCliQ.) For high values of α (i.e. when the clique score
matters more than diversity), BUDiC is able to find even better score solutions
than Baseline. On average, it behaves similar to the greedy alternatives with
(1−1/e)-approximation. We observe similar behavior on the rest of the datasets
as well. We also explored qualitatively the mined clique sets and found that
for m up to 20 the intersection of the cliques obtained by BUDiC and Baseline
(and DiCliQ) remains above 80% as well (i.e. only 2-3 cliques differ in the result
sets). Hence, BUDiC achieves tremendous savings in time at almost no cost in
quality in the data we analyzed.

Gene complexes and influential sub-groups. Next, we demonstrate the
applicability of our formulation and methods for gene complex discovery and
summarization of effective groups in sports. We label genes in YeastNet with
known process Gene Ontology (GO)terms [1]. The GO labels are hierarchical
with specificity increasing with the distance from the root. To account for varying
specificity and hierarchy utilization, we only consider labels at level 4 and their
descendants (i.e. 4 hops or more from the root). Annotations of higher specificity
are mapped to their corresponding level 4 ancestors and the YeastNet network
is filtered to include only genes that are annotated.

To evaluate the ability of BUDiC to identify meaningful gene complexes, we
measure discovered groups’ purity as the fraction of genes sharing the same label
and compare to a recent overlapping community detection algorithm CFinder [22]
and a Random subsets of genes as control (see details in the Appendix [2]).
Figure 3(a) is a scatter plot of the average solution annotation purity versus
coverage (the union size of nodes in the solution). Our diversity parameter α
allows for control over the coverage/purity trade-off (labels of the BUDiC trace
show the selected α). BUDiC’s average group purity is 20% higher than that of
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Fig. 3. (a) Average group GO biological process purity (fraction of genes sharing labels)
versus coverage (number of covered nodes) in YeastNet. Comparison among BUDiC
(varying α labeling each point), CFinder (δ = 0.6, w = 0.15) and Random grouping of
genes (k = 6,m = 37); (b) Dissimilarity of consecutive solutions when increasing α.
Peaks correspond to drastic changes in the result set (m = 10, k = 4).

CFinder [22] (at coverage 136 nodes) and 30% higher than the average random
purity (at coverage 220 nodes). This separation demonstrates that our mini-
mum edge weight formulation allows for discovery of biologically more relevant
complexes, while allowing for diversity (overlap) control within the result set.

In sports data, we compared the scores of DiCliQ cliques and the signif-
icance scores of the corresponding groups of players (in the form of p-values).
In the NBA data set, DiCliQ retrieves 44% of the triples of lowest p-values
(considering 1% of the lowest p-value triples). These high-performing triples are
of paramount interest, since they represent the cliques that are likely driving
team success. Furthermore, the average p-values of DiCliQ’s top cliques are
comparable with the reference set of lowest p-value triples (0.010 versus 0.026)
with 90% of DiCliQ triples having p-value less than 0.05 (a common level of
determining statistical significance in general scenarios). We discuss the mined
subgroups and their relevance across the various datasets in the Appendix [2].
Effect of diversity. By changing the value of the diversity parameter (α), we
can alter the amount of overlap between the cliques returned by BUDiC. In
Fig. 3(b), we show how the result sets change as a function of α. For any two
consecutive values of α (e.g. 0.3 and 0.4), we obtain two result sets A and B.
To measure their dissimilarity, we form the complete bipartite graph between
the cliques in A and B, and assign weights to the edges based on the Jaccard
similarity of the individuals cliques. Thus, for each clique Ca ∈ A,Cb ∈ B,
the weight of the corresponding edge is given by 1 − Jaccard(Ca, Cb) = 1 −
|Ca ∩Cb|/|Ca ∪Cb|. The maximum weighted matching on this graph provides a
dissimilarity score for A and B.

In Fig. 3(b), the dissimilarity between result sets in the NBA, for example,
spikes at α between 0.3 and 0.6. The top 3 scoring quartets returned by BU-
DiC consist of only five distinct players, all playing for the Cleveland Cavaliers.
However, by increasing diversity (α = 0.4) we retain the first and third quartets
only and bring in a different team quartet. Thus, α allows for application-specific
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control of the amount of diversity desired in the result sets. When exploring a
new data set, appropriate α values can be chosen based on the tipping points of
the solutions (spikes in Fig. 3(b)).

7 Conclusion

Mining strong subgroups in networks is an important, yet challenging compu-
tational problem. In this paper, we proposed a novel and flexible formulation
mDkC, in which a diverse set of strong cliques is identified. We show that
mDkC is NP-hard, but due to its submodularity, allows a constant factor approx-
imation. We develop scalable approximation schemes: DiCliQ with (1− 1/e)-
approximation guarantee and BUDiC that scales to large and dense networks.
Both algorithms are more than 3 orders of magnitude faster compared to ex-
haustive counterparts, and BUDiC achieves 2 times higher scores than previous
clique-mining heuristics. We demonstrate the utility of our algorithms for iden-
tifying interesting sets of high-performance collaborators in sports and enter-
tainment, and complexes of similar biological function (30% improvement over
earlier approaches) in gene networks. The developed algorithms thus present a
useful tool for mining influential core subgroups in large networks from diverse
sources.
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