
Masthead Logo Smith ScholarWorks

Mathematics and Statistics: Faculty Publications Mathematics and Statistics

4-2018

Symplectic Structures on the Integration of Exact
Courant Algebroids
Rajan Amit Mehta
Smith College, rmehta@smith.edu

Xiang Tang
Washington University in St. Louis

Follow this and additional works at: https://scholarworks.smith.edu/mth_facpubs

Part of the Mathematics Commons

This Article has been accepted for inclusion in Mathematics and Statistics: Faculty Publications by an authorized administrator of Smith ScholarWorks.
For more information, please contact scholarworks@smith.edu

Recommended Citation
Mehta, Rajan Amit and Tang, Xiang, "Symplectic Structures on the Integration of Exact Courant Algebroids" (2018). Mathematics
and Statistics: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/mth_facpubs/40

http://www.smith.edu/?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.smith.edu/?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/mth_facpubs?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/mth?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/mth_facpubs?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/mth_facpubs/40?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


ar
X

iv
:1

31
0.

65
87

v1
  [

m
at

h.
D

G
] 

 2
4 

O
ct

 2
01

3

SYMPLECTIC STRUCTURES ON THE INTEGRATION OF

EXACT COURANT ALGEBROIDS

RAJAN AMIT MEHTA AND XIANG TANG

Dedicated to Professor Alan Weinstein on the occasion of his 70th birthday

Abstract. We construct an infinite-dimensional symplectic 2-groupoid as
the integration of an exact Courant algebroid. We show that every inte-
grable Dirac structure integrates to a “Lagrangian” sub-2-groupoid of this
symplectic 2-groupoid. As a corollary, we recover a result of Bursztyn-Crainic-
Weinstein-Zhu that every integrable Dirac structure integrates to a presym-
plectic groupoid.

1. Introduction

In the late 80’s, T. Courant and A. Weinstein [2] introduced the notion of Dirac
structure as a way of unifying Poisson, symplectic, and presymplectic structures.
An important ingredient in the definition of Dirac structure is a bracket, now called
the Courant bracket, defined on the direct sum of the spaces of vector fields and
1-forms on a manifold. In the 90’s, Z. Liu, Weinstein, and P. Xu [7] formalized the
properties of the Courant bracket in the definition of a Courant algebroid.

For any manifoldM , the standard Courant algebroid overM is the bundle TM⊕
T ∗M , equipped with following structures on its space of sections X(M)⊕ Ω1(M):

(1) the symmetric bilinear form given by

〈X1 + ξ1, X2 + ξ2〉 = ξ2(X1) + ξ1(X2),

and
(2) the Courant bracket, given by

[X1 + ξ1, X2 + ξ2] = [X1, X2] + LX1
ξ2 − ιX2

dξ1

for Xi ∈ X(M), ξi ∈ Ω1(M).

The Courant bracket satisfies the Jacobi identity but is not skew-symmetric.
Given a closed 3-formH onM , one can define a “twisted” version of the Courant

bracket by

[X1 + ξ1, X2 + ξ2]H = [X1, X2] + LX1
ξ2 − ιX2

dξ1 + ιX ιYH.

P. Ševera [9] proved that the cohomology class [H ] ∈ H3(M) classifies exact Courant
algebroids, i.e. those that fit into an exact sequence

0 −→ T ∗M −→ E −→ TM −→ 0,

up to isomorphism.

2010 Mathematics Subject Classification. 53D17, 58H05.
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A (twisted) Dirac structure is a subbundle of TM ⊕ T ∗M that is maximally
isotropic with respect to the bilinear form 〈·, ·〉 and whose sections are closed under
the (twisted) Courant bracket. When the Courant bracket is restricted to a Dirac
structure, the skew-symmetry anomaly disappears, making the Dirac structure into
a Lie algebroid. In [1], H. Bursztyn, M. Crainic, Weinstein, and C. Zhu showed
that, if the Lie algebroid associated to a Dirac structure is integrable in the sense
of [3], then the Lie groupoid carries a natural closed (or H-closed, in the twisted
case), multiplicative 2-form, making it a presymplectic groupoid.

In this article, we study the integration problem for Courant algebroids, which
was one of open problems raised by Liu, Weinstein, and Xu [7]:

“Open Problem 5. What is the global, groupoid-like object corresponding to a
Courant algebroid? In particular, what is the double of a Poisson groupoid?”

From the work of Ševera [10], it is expected that the solution to this problem is
a symplectic 2-groupoid. Recently, the authors [8], D. Li-Bland and P. Sěvera [6],
and Y. Sheng and C. Zhu [12] independently constructed 2-groupoids integrating
certain subclasses of Courant algebroids, with the standard Courant algebroid being
the common element of all three subclasses. For these constructions, the term
“integration” can be justified by showing that the Courant algebroid structure can
be recovered via Ševera’s 1-jet construction [11].

An important question that has remained unaddressed is how a symplectic 2-
groupoid integrating a Courant algebroid is related to the presymplectic groupoids
integrating the Dirac structures that sit inside the Courant algebroid. In fact, one
can easily find examples showing that the symplectic 2-groupoids of [8], [6], and
[12] are not large enough to contain all the presymplectic groupoids arising from
Dirac structures. In this article, we show that this problem can be resolved, at the
cost of working with infinite-dimensional manifolds.

We construct, for any manifold M , an infinite-dimensional Lie 2-groupoid, i.e.
a Kan simplicial (Banach) manifold {X•} for which the horn fillings are unique in
degrees greater than 2. For any closed H ∈ Ω3(M), we obtain a natural multi-
plicative symplectic 2-form ωH2 on X2, making {X•} into a symplectic 2-groupoid,
which we call the Liu-Weinstein-Xu 2-groupoid, or LWX(M) for short.

A brief description of LWX(M) in low degrees is as follows. The space of
“0-simplices” is LWX0(M) = M . The space LWX1(M) of “1-simplices” con-
sists of bundle maps from the tangent bundle of the standard 1-simplex to T ∗M .
An element of the space LWX2(M) of “2-simplices” is given by a quadruplet
([f ], ψ0, ψ1, ψ2), where [f ] is a class of maps from the standard 2-simplex to M ,
modulo boundary-fixing homotopies, and where each ψi is an element of LWX1(M)
whose base map is the ith edge of f . In order to endow LWX(M) with a smooth
structure, we require the maps to have certain fixed orders of differentiability; the
details are in Section 2.

Our most significant results arise from the observation that LWX(M) has a
natural symplectic 2-form ωH1 on LWX1(M) for which

dωH1 = δH, δωH1 = ωH2 ,(1.1)

where δ : Ω•(LWXk(M)) → Ω•(LWXk+1(M)) is the simplicial coboundary map.
This structure seems to be specific to the case of exact Courant algebroids, so it
does not appear in the general theory sketched out in [10].
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We associate to any integrable Dirac structure a sub-2-groupoid of LWX(M)
whose 1-truncation can be identified with the Lie groupoid integrating the Dirac
structure. We prove that the pullback of ωH2 vanishes on this sub-2-groupoid; as a
result, we can deduce that the pullback of ωH1 descends to the 1-truncation, induc-
ing an H-closed, multiplicative 2-form on the Lie groupoid integrating the Dirac
structure. This 2-form precisely coincides with the one constructed by Bursztyn,
Crainic, Weinstein, and Zhu [1]. We can thus view the Liu-Weinstein-Xu 2-groupoid
as being the geometric origin of presymplectic groupoids.

We prove that the sub-2-groupoid associated to a Dirac structure is in fact
Lagrangian at the “units” of the 2-groupoid. We conjecture that it is Lagrangian
everywhere, and we prove the conjecture in a special case. We believe that the
Lagrangian property is the origin of the nondegeneracy condition in [1] and therefore
deserves further study.

Another issue that we do not address here is that of the relationship between
LWX(M) and the finite-dimensional symplectic 2-groupoids of [6, 8, 12]. Clearly,
there should be a notion of equivalence between symplectic 2-groupoids, but the
precise nature of the equivalence remains an open question.

Organization of the paper. In Section 2, we construct an infinite-dimensional simpli-
cial manifold {C•(M)} associated to any manifold M . We show that {C•(M)} can
be truncated to an infinite-dimensional Lie 2-groupoid, which we denote LWX(M).
In Section 3, we construct canonical symplectic forms ωi on LWXi(M) for i = 1, 2,
as well as twisted versions ωHi associated to any closed 3-form H on M . In particu-
lar, we show that the relations (1.1) are satisfied. In Section 4, we construct a sim-
plicial manifold {G•(D)} associated to any Dirac structure D, whose 1-truncation
is the Lie groupoid G integrating the Dirac structure. There is a natural inclusion
map G•(D) →֒ C•(M), and we show that the pullback of ω2 vanishes, implying
that ω1 induces a presymplectic structure on G. Finally, in Section 5, we show that
the image of G2(D) in LWX(M) is Lagrangian at the units and conjecture that it
is Lagrangian everywhere.

Acknowledgements. We would like to thank Professor Alan Weinstein for his contin-
uing advice and encouragement during and since our Ph. D. study. Tang’s research
is partially supported by NSF grant 0900985, and NSA grant H96230-13-1-02.

2. Construction of LWX(M)

In this section, we describe the construction of the Liu-Weinstein-Xu 2-groupoid,
by first constructing an infinite-dimensional simplicial manifold, and then truncat-
ing it to obtain a Lie 2-groupoid.

The basic idea of the construction in this section goes back to D. Sullivan [13].
The application of Sullivan’s idea to the integration problems in Poisson geometry
was described by Ševera [9, 10], using the language of NQ-manifolds. In this
section, we describe a direct construction that does not require any knowledge of
supergeometry.

2.1. A simplicial manifold. LetM be a manifold. Recall that, if X is a manifold

and E
π
−→M is a vector bundle, then a map φ : X → E is said to be of class Cp,q if

φ is Cq and π ◦ φ is Cp. Clearly, if this is the case, then it is necessary that p ≥ q.
Fix p ≥ q. For each integer n ≥ 0, let Cn(M) denote the set of Cp,q bundle maps

from T∆n to T ∗M , where ∆n is the standard n-dimensional simplex in R
n.
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Lemma 2.1. The space Cn(M) of Cp,q bundle maps from T∆n to T ∗M is a Banach
manifold.

Proof. Let T ∗
nM be the n-fold direct sum of T ∗M . That is,

T ∗
nM := T ∗M ⊕ · · · ⊕ T ∗M︸ ︷︷ ︸

n

.

Then we may use the standard trivialization T∆n = ∆n×R
n to obtain a one-to-one

correspondence between bundle maps ϕ : T∆n → T ∗M and maps ϕ̃ : ∆ → T ∗
nM .

Specifically, given such a ϕ, we obtain ϕ̃ by evaluating ϕ on the standard basis
vectors of Rn. This correspondence preserves order of differentiability, in that ϕ is
Cp,q if and only if ϕ̃ is Cp,q.

The statement immediately follows from the fact that the space of Cp,q-maps
from ∆n to T ∗

nM is a Banach manifold. �

There is a cosimplicial manifold structure on {T∆•}, obtained by applying the
tangent functor to the standard cosimplicial manifold {∆•}. Thus there is an
induced simplicial manifold structure on {C•(M)}. For each n, we will use di :
Cn(M) → Cn−1(M), 0 ≤ i ≤ n, to denote the face maps and si : Cn(M) →
Cn+1(M), 0 ≤ i ≤ n to denote the degeneracy maps.

We note that C0(M) = M , and that C1(M) = {Cp,q bundle maps T [0, 1] →
T ∗M} can be identified with the space of Cp,q paths on T ∗M .

2.2. 2-groupoid truncation. Recall that a simplicial manifold satisfies the Kan
condition if all the horn maps are surjective submersions.

Proposition 2.2. The simplicial manifold {C•(M)} satisfies the Kan condition.

Proof. For each n, let Sn(M) denote the set of Cp maps from ∆n toM . It is known
(see, for example, [5, Lemma 5.7]) that {S•(M)} is a Kan simplicial manifold. There
is a natural projection map {C•(M)} → {S•(M)}, so, by [5, Lemma 2.8], it suffices
to show that this map is a Kan fibration. In this setting, the Kan fibration condition
is as follows.

For 0 ≤ ℓ ≤ n, let Λn,ℓ, applied to any simplicial manifold, denote the space of n-
dimensional horns where the ℓth face is omitted. There is a natural map Cn(M) →

Sn(M) ×Λn,ℓ(S(M)) Λn,ℓ(C(M)), taking ϕ ∈ Cn(M) to (ϕ̄, (d0ϕ, . . . , d̂ℓϕ, dnϕ)),
where ϕ̄ is the underlying base map of ϕ. The Kan fibration condition requires
that this map be a surjective submersion for all ℓ and n, which we will prove using
a method similar to that used in [5, Lemma 5.7].

Let f : ∆n →M be a Cp map, and let ψi : T∆
n−1 → T ∗M , i 6= ℓ be a collection

of Cp,q maps forming a horn in Λn,ℓ(C(M)) that is compatible with f . For each
nonempty I ⊂ {0, . . . , n}r{ℓ}, let FI ⊂ ∆n denote the (n−|I|)-dimensional subface
whose vertices are {0, . . . , n}r I. As a result of the horn compatibility conditions,
the maps ψi induce well-defined Cp,q maps ψI : TFI → T ∗M .

For each I, let pI : ∆
n → FI be the affine projection map collapsing the vertices

in I onto ℓ. Fix a Riemannian metric on M . Then, for each t ∈ ∆n, we may use
parallel transport along the image of the line from t to pI(t) to identify T ∗

f(t)M

with T ∗
f(pI(t))

M .

We now define a map ϕ : T∆n → T ∗M with base map is f , given by

ϕ =
∑

I⊂{0,...,n}r{ℓ}

(−1)|I|+1ψI ◦ TpI.
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It is clear by construction that ϕ is Cp,q, and it follows from the identities satis-
fied by the projection and face maps that diϕ = ψi for each i 6= ℓ. This proves
surjectivity.

To show that the map is a submersion, we observe that, under a sufficiently
small change in f , we can use parallel transport to accordingly change any horn
filling ϕ, and under a change in {ψi}, we can apply the above construction to the
difference to accordingly change ϕ. This process gives a local section through any
ϕ ∈ Cn(M). �

Recall that an n-groupoid is a Kan simplicial set for which the horn-fillings are
unique in dimensions greater than n. A Lie n-groupoid is a Kan simplicial manifold
satisfying the same condition.

Duskin [4] introduced a truncation functor τ≤n which may be applied to a Kan
simplicial set {X•} to produce an n-groupoid. It is defined as follows:

• (τ≤nX)m = Xm for m < n;
• (τ≤nX)n = Xn/∼ , where x ∼ y if and only if there exists z ∈ Xn+1 such
that dnz = x, dn+1z = y, and diz ∈ im(sn−1) for 0 ≤ i < n;

• (τ≤nX)m = Xm/∼ for m > n, where x ∼ y if and only if the n-skeletons
of x and y are equivalent with respect to the equivalence relation on Xn.

The following result can be found in [5, Lemma 3.6] and [14, Section 2].

Lemma 2.3. If {X•} is a Kan simplicial manifold, then τ≤nX is an n-groupoid.
If, furthermore, Xn/∼ is a manifold, then τ≤nX is a Lie n-groupoid.

By applying Lemma 2.3 to {C•(M)} for n = 2, we obtain the Liu-Weinstein-Xu
2-groupoid LWX(M) := τ≤2C(M). The main result of this section is the following:

Theorem 2.4. The quotient C2(M)/∼ is a Banach manifold, and therefore LWX(M)
is a Lie 2-groupoid.

Section 2.3 is devoted to proving Theorem 2.4.

2.3. Proof of Theorem 2.4. Without loss of generality, we will assume that M
is connected.

Lemma 2.5. The map C1(M) → M ×M given by ψ 7→ (d0ψ, d1ψ) is a surjective
submersion.

Proof. Surjectivity follows from the assumption that M is connected. To prove
that the map is a submersion, we will describe a way to construct local sections.

Recall that C1(M) can be identified with the space of Cp,q paths on T ∗M . Let
ψ be such a path. Choose a Riemannian metric on M , and, for i = 1, 2, let Ui be
a neighborhood of diψ for which the exponential map is a diffeomorphism. Using
the exponential map and parallel transport along the base path ψ̄ : [0, 1] →M , we
may then identify the neighborhood U1 × U2 of (d0ψ, d1ψ) with a neighborhood of
(0, 0) in Td0ψM × Td0ψM .

For any (v0, v1) ∈ Td0ψM × Td0ψM , we may (again using parallel transport)
view v(t) := (1 − t)v0 + tv1 as a vector field along ψ̄. By exponentiating ψ̄ in the
direction of v(t) and parallel transporting the cotangent vectors of ψ, we obtain
a path ψ′ ∈ C1(M) for which (d0ψ

′, d1ψ
′) = (v0, v1). This process provides a

well-defined local section through ψ. �
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Let B(M) be defined as the space of “triangles” of paths in C1(M). More
precisely, B(M) is the space of triples (ψ0, ψ1, ψ2), ψi ∈ C1(M), such that

d0ψ2 = d1ψ0, d0ψ1 = d0ψ0, d1ψ1 = d1ψ2.(2.1)

Lemma 2.6. B(M) is a Banach manifold.

Proof. Recall (see, for example, [5, Lemma 4.4]) that Banach manifolds are closed
under fiber products where one of the maps is a surjective submersion. Since
the face maps of a simplicial manifold are surjective submersions, the horn space
Λ2,1(C(M)), consisting of pairs (ψ0, ψ2) ∈ C1(M)×C1(M) satisfying the first equa-
tion in (2.1), is a Banach manifold.

We may view B(M) as the fiber product overM×M of C1(M) and Λ2,1(C(M)),
where the fiber product imposes the latter two equations in (2.1). Since this fiber
product involves the surjective submersion C1(M) → M ×M from Lemma 2.5, it
follows that B(M) is a Banach manifold. �

Let πB : B(M) → Cp(∂∆2;M) be the map taking (ψ0, ψ1, ψ2) ∈ B(M) to its
base map (ψ̄0, ψ̄1, ψ̄2).

Lemma 2.7. The map πB is a surjective submersion.

Proof. Surjectivity is clear, since the edges of any map from ∂∆2 toM can be lifted
to zero maps T∆1 → T ∗M .

Choose a Riemannian metric on M . For any map f : ∂∆2 → M , we can use the
exponential map to identify any sufficiently close maps with lifts f̃ : ∂∆2 → TM .
Given such a lift, we can use parallel transport along the exponential paths to
translate any element of B(M) whose base map is f . This process gives a local
section of πB. �

There is a natural “1-skeleton” map ν : C2(M) → B(M), given by ν(ϕ) =
(d0ϕ, d1ϕ, d2ϕ). The map ν is invariant under the equivalence relation that defines
LWX2(M) = C2(M)/∼ .

Let B0(M) be the connected component of B(M) consisting of elements β for
which πB(β) is contractible. Clearly, the image of ν is contained in B0(M). Thus,
we see that ν induces a map ν̂ : LWX2(M) → B0(M).

There is another map πC : C2(M) → S2(M) := Cp(∆2;M), taking ϕ to its
base map ϕ̄. An equivalence between elements ϕ, ϕ′ ∈ C(M) induces a boundary-
fixing homotopy between ϕ̄ and ϕ̄′, so πC descends to a map from LWX2(M)
to S2(M)/∼ , where the equivalence relation is boundary-fixing homotopy. We
observe that S2(M)/∼ is a covering of the component of contractible maps in
Cp(∂∆2;M) and is therefore a Banach manifold1. In particular, if π2(M) = 0,
then S2(M)/∼= Cp(∂∆2;M).

Lemma 2.8. The map (ν̂, πC) is a bijection from LWX2(M) to the fiber product
(over Cp(∂∆2;M)) of B0(M) with S2(M)/∼ .

Proof. Throughout this proof, we will assume that a choice of Riemannian metric on
M has been fixed, and we will implicitly use parallel transport to identify cotangent
spaces at different points along paths in M .

1This statement is a higher-dimensional analogue of the fact that the fundamental groupoid
of a manifold M is a cover of M ×M , and the proof is similar. We leave the details to the reader.
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We will first show that (ν̂, πC) is surjective. Let (ψ0, ψ1, ψ2) be in B0, and let f
be a compatible map in Cp(∆2;M). Using the standard trivializations of ∆1 and
∆2, we can identify each ψi with a path in T ∗M , and we can identify C2(M) with
the space of Cp,q maps from ∆2 to T ∗

2M := T ∗M ⊕ T ∗M .
For i = 0, 1, 2, let βi be the path in T ∗

2M with the same base path as ψi, given
by

β0(t) = (ψ0(t), (1 − t)(ψ1(0)− ψ0(0)) + tψ2(0)) ,

β1(t) = ((1− t)ψ0(0) + t(ψ1(t)− ψ2(1)), (1 − t)(ψ1(t)− ψ0(0)) + tψ2(1)) ,

β2(t) = ((1− t)ψ0(1) + t(ψ1(1)− ψ2(1)), ψ2(t)) .

These paths agree at the endpoints, in that β2(0) = β0(1), β0(0) = β1(0), and
β1(1) = β2(1), so they form a well-defined map β : ∂∆2 → T ∗

2M that can be
extended to a Cq map ϕ : ∆2 → T ∗

2M for which the base map is f . By construction,
we have that ν̂(ϕ) = (ψ0, ψ1, ψ2) and πC(ϕ) = f .

Next, we will show that (ν̂, πC) is one-to-one. Suppose that ϕ, ϕ′ are elements
of C2(M) for which ν(ϕ) = ν(ϕ′) and πC(ϕ) ∼ πC(ϕ

′). By a process similar to
the proof of surjectivity, one can construct a map from ∂∆3 to T ∗

3M which, if it
could be extended to a map ζ : ∆3 → T ∗

3M , would satisfy the conditions of an
equivalence between ϕ and ϕ′. The assumption that πC(ϕ) and πC(ϕ

′) are in the
same boundary-fixing homotopy class guarantees that such an extension ζ does exist
(and can be chosen to have the same order of differentiability as the boundary),
proving that ϕ and ϕ′ represent the same element of LWX2(M). �

Theorem 2.4 follows directly from Lemmas 2.6–2.8.

Remark 2.9. If π2(M) = 0, then Lemma 2.8 implies that LWX2(M) is naturally
diffeomorphic to B0(M). If π1(M) = 0, then B0(M) = B(M). Thus, if M is 2-
connected, then ν̂ is a diffeomorphism from LWX2(M) to B(M). This fact provides
a simple description (in the 2-connected case) of elements of LWX2(M) as triangles
of paths in C1(M). For general M , an appropriate modification is as follows: an
element of LWX2(M) corresponds to a quadruplet ([f ], ψ0, ψ1, ψ2), where

• [f ] is a class of Cp maps from ∆2 toM , modulo boundary-fixing homotopy,
and

• each ψi is a C
q lift of the ith edge of f to T ∗M .

3. Symplectic structures

In this section, we describe how the canonical symplectic form on T ∗M induces
symplectic structures on LWX1(M) and LWX2(M).

3.1. Multiplicative forms and truncation. Let X• be a Kan simplicial mani-
fold, and let α be a differential form on Xn for some n. Recall that the simplicial
coboundary of α is defined as

δα :=

n+1∑

i=0

(−1)id∗iα.

We say that α is multiplicative if δα = 0.

Proposition 3.1. If α is multiplicative, then α is basic with respect to the quotient
map Xn → (τ≤nX)n.



8 RAJAN AMIT MEHTA AND XIANG TANG

Proof. Recall that the quotient is defined by the equivalence relation where x ∼ y if
and only if there exists z ∈ Xn+1 such that dnz = x, dn+1z = y, and diz ∈ im(sn−1)
for 0 ≤ i < n. In this case, it follows that diz = sn−1dix = sn−1diy for 0 ≤ i < n.

From the definition of the equivalence relation, we can see that a vector v ∈ TXn

is tangent to a fiber of the quotient map if and only if there exists a vector ṽ ∈
TXn+1 such that (dn+1)∗ṽ = v and (di)∗ṽ = 0 for 0 ≤ i ≤ n. If this is the case,
then, for any α ∈ Ωk(Xn),

α(v, ·, . . . , ·) = ±(δα)(ṽ, ·, . . . , ·).

Therefore, if α is multiplicative, then any vector tangent to a fiber of the quotient
map is in kerα.

If α is multiplicative, then dα is also multiplicative, and any vector tangent to a
fiber of the quotient map is also in ker dα. Since both α and dα annihilate vectors
tangent to the fibers, we conclude that α is basic. �

3.2. Lifting differential forms. Recall that, for each n, the space C(M) consists
of Cp,q bundle maps from T∆n to T ∗M . For ϕ ∈ Cn(M), a tangent vector at ϕ is
given by a Cp,q lift X : T∆n → TT ∗M that is linear over TM :

(3.1) TT ∗M = T ∗TM

��

&&▼
▼
▼
▼
▼
▼
▼
▼
▼
▼

T∆n

��

ϕ
//

X

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
T ∗M

��

TM

&&▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼

∆n

X0

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦ f
// M

For each pair of tangent vectors X,Y ∈ TϕCn(M), we can use the canonical
symplectic form ωcan on T ∗M to obtain a function ηnX,Y on T∆n, given by

ηnX,Y (v) = ωcan(X(v), Y (v))

for v ∈ T∆n.

Proposition 3.2. The function ηnX,Y is linear and can therefore be identified with
a 1-form on ∆n.

Proof. The result is a direct consequence of the linearity property of ωcan with
respect to the bundle structure of T ∗M →M . �

For n = 1, the operation (X,Y ) 7→
∫
∆1 η

1
X,Y is bilinear and skew-symmetric, and

so it determines a 2-form ω1 ∈ Ω2(C1(M)). For n = 2, we can also define a 2-form
ω2 ∈ Ω2(C2(M)) by the formula

(3.2) ω2(X,Y ) =

∫

∆2

dη2X,Y =

∫

∂∆2

η2X,Y .

Proposition 3.3. ω2 is the simplicial coboundary of ω1.
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Proof. For i = 0, 1, 2, let σi : ∆
1 → ∆2 be the ith coface map (which is essentially

dual to the face map di). For any X,Y ∈ TϕC2(M) and v ∈ T∆1, we have that

η1Tdi(X),Tdi(Y )(v) = ωcan(Tdi(X)(v), T di(Y )(v))

= ωcan(X(Tσi(v)), Y (Tσi(v)))

= η2X,Y (Tσi(v)).

(3.3)

Using (3.3), we see that

(d∗i ω1)(X,Y ) = ω1(Tdi(X), T di(Y ))

=

∫

∆1

η1Tdi(X),Tdi(Y )

=

∫

∆1

σ∗
i η

2
X,Y .

(3.4)

The result then follows from (3.2) and (3.4). �

Proposition 3.4. The 2-forms ω1 ∈ Ω2(C1(M)) and ω2 ∈ Ω2(C2(M)) are exact.

Proof. Let λcan denote the tautological 1-form on T ∗M , satisfying the property
ωcan = −dλcan. We can use λcan to induce forms on the mapping spaces in a
manner similar to the construction of ω1 and ω2. Specifically, for X ∈ TϕCn(M),
let θnX be the function on T∆n given by

θnX(v) = λcan(X(v)).

Because of the linearity property of λcan, we have that θnX is a linear function and
can therefore be identified with a 1-form on ∆n.

Then, let λ1 ∈ Ω1(C1(M)) and λ2 ∈ Ω1(C2(M)) be defined by

λ1(X) =

∫

∆1

θ1X , λ2(X) =

∫

∆2

dθ2X =

∫

∂∆2

θ2X .

The proof of Proposition 3.3, with appropriate modification, can be used to show
that λ2 = δλ1.

We claim that ω1 = −dλ1 (and, since d commutes with δ, therefore ω2 = −dλ2).
We can check it locally in M , as follows.

Let (xi, pi) be canonical coordinates on a neighborhood in T ∗M . Any Cp,q

bundle map ϕ : T∆1 → T ∗M is locally described by the pullbacks f i := ϕ∗(xi)
and ξi := ϕ∗(pi), where f

i ∈ Cp(∆1) and ξi ∈ Cqlinear(T∆
1) can be identified with

1-forms on ∆1. A tangent vector X ∈ TϕC1(M) is locally given by (vi, χi), where
the vi and χi are functions and 1-forms, respectively, on ∆1.

We can locally describe λ1 by the formula

(3.5) λ1|(fi,ξi)(v
i, χi) =

∫

∆1

viξi.

The directional derivatives of λ1 are given by

D(vi,χi)λ1|(fi,ξi)(v
′i, χ′

i) =

∫

∆1

v′iχi,

from which we obtain the result

dλ1((v
i, χi), (v

′i, χ′
i)) =

∫

∆1

v′iχi − viχ′
i = −ω1((v

i, χi), (v
′i, χ′

i)).

�
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3.3. A symplectic 2-groupoid. The notion of symplectic 2-groupoid was defined
in [6, 8]. We somewhat imprecisely state the definition as follows:

Definition 3.5. A symplectic 2-groupoid is a Lie 2-groupoid {X•} that is equipped
with a closed, multiplicative 2-form ω ∈ Ω2(X2) satisfying a nondegeneracy condi-
tion.

In Definition 3.5, we have intentionally left the content of the nondegeneracy
condition ambiguous. Li-Bland and Ševera [6] required the 2-form to be genuinely
nondegenerate, so that (X2, ω) is a symplectic manifold. In [8], a weaker condition
was stated, where the kernel of ω is required to be controlled in a certain way by
the simplicial structure. For our present purposes, it will suffice to use the genuine
nondegeneracy condition; however, since we are dealing with Banach manifolds, we
only require weak nondegeneracy.

Since ω2 ∈ Ω2(C2(M)) is multiplicative, it descends (by Proposition 3.1) to
LWX2(M) = C2(M)/∼ .

Theorem 3.6. LWX(M), equipped with the 2-form ω2, is a symplectic 2-groupoid.

Proof. The fact that ω2 descends to a closed, multiplicative 2-form on the truncation
is an immediate consequence of Propositions 3.1, 3.3, and 3.4.

It remains to check the nondegeneracy condition. For this, we first observe
that ω1 ∈ Ω2(C1(M)) is (weakly) nondegenerate. Then, using the description of
LWX2(M) obtained in Lemma 2.8, one can see that a tangent vector in LWX2(M)
is given by a compatible triplet of tangent vectors in C1(M). If such a triplet
(b0, b1, b2) does not vanish everywhere, it is a straightforward exercise to construct
another triplet (b′0, b

′
1, b

′
2) for which the pairing

ω2((b0, b1, b2), (b
′
0, b

′
1, b

′
2)) = ω1(b0, b

′
0)− ω1(b1, b

′
1) + ω1(b2, b

′
2)

does not vanish, thereby proving the (weak) nondegeneracy of ω2 on LWX2(M). �

3.4. 3-form twisting. Let H be a 3-form on M . In this section, we describe how
H can be used to twist the 2-forms ω1 and ω2.

For ϕ ∈ Cn(M), let f : ∆n → M be the base map underlying ϕ : T∆n → T ∗M .
For X,Y ∈ TϕCn(M), let X0, Y0 : ∆n → TM be the respective base maps (see
(3.1)). We can use H to obtain a 1-form Hn

X,Y on ∆n, given by

Hn
X,Y (s) = f∗H(X0(s), Y0(s), ·)

for s ∈ ∆n. We then define 2-forms φH1 ∈ Ω2(C1(M)) and φH2 ∈ Ω2(C2(M)) by

φH1 (X,Y ) =

∫

∆1

H1
X,Y ,

φH2 (X,Y ) =

∫

∆2

dH1
X,Y .

Remark 3.7. The forms φHi , i = 1, 2, only depend on the information about the
underlying base maps, so are actually pullbacks of forms on Si(M) := Cp(∆i,M).
The construction of φH1 is a special case of a more general transgression procedure

taking any β ∈ Ωp(M) to φβi ∈ Ωp−1(Si(M)).

Proposition 3.8. φH2 is the simplicial coboundary of φH1 .

Proof. The result follows from an argument similar to the proof of Proposition
3.3. �
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Proposition 3.9. If H is closed, then dφH1 is the simplicial coboundary of H.

Proof. In local coordinates onM , writeH = 1
6Hijkdx

i∧dxj∧dxk. Then, in the local

neighborhood, for f = (f i) ∈ Cp(∆1;M) and any Cp sectionsX0 = (X i
0), Y0 = (Y i0 )

of f∗(TM), we have

φH1 |f (X0, Y0) =

∫

∆1

f∗(Hijk)X
i
0Y

j
0 df

k.

The differential of φH1 is then given by

(3.6) dφH1 |f (X0, Y0, Z0) =

∫

∆1

X∗
0 (dHijk)Y

i
0Z

j
0df

k + f∗(Hijk)Y
i
0Z

j
0dX

k
0 + {cycl.}.

The integral of the first term on the right side of (3.6), together with its cyclic
permutations, is equal to

(3.7) φdH1 |f (X0, Y0, Z0) +

∫

∆1

f∗(dHijk)X
i
0Y

j
0 Z

k
0 .

The integral of the second term on the right side of (3.6), together with its cyclic
permutations, is

(3.8)

∫

∆1

f∗(Hijk)d(X
i
0Y

j
0 Z

k
0 ).

Putting (3.7) and (3.8) together, we have

dφH1 |f (X0, Y0, Z0) = φdH1 |f (X0, Y0, Z0) +

∫

∆1

d
(
f∗(Hijk)X

i
0Y

j
0 Z

k
0

)

= φdH1 |f (X0, Y0, Z0) +
[
f∗(Hijk)X

i
0Y

j
0 Z

k
0

]1
0
,

or, in other words,

(3.9) dφH1 = φdH1 + δH.

In particular, if H is closed, then dφH1 = δH . �

Since φH2 ∈ Ω2(C2(M)) is multiplicative, it descends to LWX2(M). We now
arrive at the main result of this section.

Theorem 3.10. Let M be a manifold, and let H be a closed 3-form on M . Then
LWX2(M), equipped with the 2-form ωH2 := ω2 + φH2 , is a symplectic 2-groupoid.

Proof. An immediate consequence of Propositions 3.8 and 3.9 is that φH2 is closed
and multiplicative. We therefore have that ωH2 is closed and multiplicative.

As in the proof of Theorem 3.6, the nondegeneracy property follows from the
observation that ωH1 := ω1+φ

H
1 is nondegenerate. This can be seen by showing that,

for any X ∈ TϕC1(M), one can construct Y ∈ TϕC1(M) for which φH1 (X,Y ) = 0
and ω1(X,Y ) 6= 0. We leave the details as an exercise. �

4. Integration of Dirac structures

In this section, we study the geometry of integration of Dirac structures in rela-
tion to the Liu-Weinstein-Xu 2-groupoid.
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4.1. A-path integration. Let D be a Dirac structure in an exact Courant alge-
broid (TM ⊕ T ∗M,H). Letting ρ be the canonical projection from TM ⊕ T ∗M
to TM , we have that (D, ρ) forms a Lie algebroid. The integration of (D, ρ) via
“A-paths” was studied in [3, 1].

In this section, we will construct a simplicial manifold {G•(D)} that connects
the A-path integration of a Dirac structure to {C•(M)}. First, we briefly review
the A-path construction.

Define P (D) to be the space of C2,1 paths α : ∆1 → T ∗M satisfying
(
d

dt
(π ◦ α)(t), α(t)

)
∈ D, ∀t ∈ ∆1.

It is proved in [3, Lemma 4.6] that P (D), which is called the space of A-paths, is a
Banach manifold.

Recall that C1(M) can be identified with the space of all Cp,q maps from ∆1 →
T ∗M . Taking p = 2 and q = 1, we have a natural, smooth inclusion map ι1 :
P (D) → C1(M).

To construct a groupoid integrating D, one needs to impose the homotopy re-
lation on A-paths; we refer to [3, Definition 1.4] for the precise definition. Crainic
and Fernandes proved [3, Theorem 2.1] that the quotient G := P (D)/∼ is a source-
simply-connected topological groupoid. In general, G could fail to be smooth, and
necessary and sufficient conditions for D to be integrable to a Lie groupoid were
obtained in [3, Theorem 4.1].

We will now describe a simplicial manifold associated to a Dirac structure D. For
simplicity, we will assume that D is integrable to a Lie groupoid, although many of
the results will carry through in the general case.

For each n ≥ 0, let Gn(D) denote the set of C2 groupoid morphisms from the
pair groupoid ∆n ×∆n to G. There is a natural simplicial structure on {G•(D)},
induced by the cosimplicial structure of {∆•}.

Lemma 4.1. The space Gn(D) is a Banach manifold.

Proof. Given a C2 groupoid morphism Σ : ∆n × ∆n → G, we define a C2 map
σ : ∆n → G by the equation σ(w) = Σ(w, 0). We observe that σ satisfies the
following two properties:

• σ(0) is a unit of G,
• σ(w) is in the same source-fiber as σ(0) for all w ∈ ∆n.

Conversely, given any C2 map σ : ∆n → G satisfying the above properties, we may
obtain Σ ∈ Gn(D) by setting Σ(w1, w2) = σ(w1)σ(w2)

−1, so we have a one-to-one
correspondence.

We will now show that the space of σ satisfying the above properties (and hence
Gn(D)) is a Banach manifold. Let s : G → M denote the source map. Since s
is a submersion, we have that s−1(x) is a submanifold of G for each x ∈ M , so
C2(∆n; s−1(x)) is a Banach manifold.

Consider the evaluation map ev0 : C2(∆n; s−1(x)) → s−1(x), defined by ev0(f) :=
f(0) for f ∈ C2(∆n; s−1(x)). It is not difficult to check that ev0 is a surjective sub-
mersion between Banach manifolds. Therefore, C2(∆n; s−1(x))0 := ev−1

0 (x) is a
Banach manifold.

As σ(∆n) is compact and the map s : G →M is submersive, we have that G(D)n
near σ is locally a product of a neighborhood of σ in C2(∆n, s−1(x))0 and R

dim(M).
This shows that Gn(D) is a Banach manifold. �
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Remark 4.2. We point out that, since G might not be a Hausdorff manifold [3], it
is possible for Gn(D) to be non-Hausdorff as well.

Following the approach of the proof of Lemma 4.1, one can show that the horn
maps are surjective submersions, thereby completing the proof of the following
statement.

Proposition 4.3. {G•(D)} is a Kan simplicial manifold.

For any Σ ∈ Gn(D), we may apply the Lie functor to obtain a C2,1 Lie algebroid
morphism Σ̄ from T∆n to D; in fact, this process gives a one-to-one correspondence,
since G and the pair groupoid ∆n ×∆n are both source-simply-connected.

When n = 1, this correspondence allows us to identify G1(D) with the A-path
space P (D). Furthermore, when we consider the truncation τ≤1G(D), the equiva-
lence imposed by the truncation corresponds to homotopy equivalence of A-paths
(see [3, Propositions 1.1, 1.3]). In other words, (τ≤1G(D))1 can be identified with
G = P (D)/∼ . Thus we see that G can be recovered from {G•(D)} by truncation.

To connect {G•(D)} to {C•(M)}, let πT∗ be the canonical projection from TM⊕
T ∗M to T ∗M . The map taking Σ ∈ Gn(D) to the bundle map πT∗ ◦ Σ̄ : T∆n →
T ∗M defines a natural map of simplicial manifolds

(4.1) F• : G•(D) → C•(M).

Superficially, it may seem that F• discards the information about the TM -component
of Σ̄; however, the fact that Σ̄ is a Lie algebroid morphism implies that the TM -
component can be recovered by applying the tangent functor to the underlying map
∆n →M . We therefore see that F• is injective.

The following diagram of Kan simplicial manifolds summarizes the various rela-
tionships we have described.

(4.2) G•(D) �
� F•

//

τ≤1

��

C•(M)

τ≤2

��
G LWX(M)

4.2. Presymplectic 2-form. In Section 3.2, we introduced 2-forms ωi, as well as
their twisted versions ωHi , on Ci(M) for i = 1, 2. In this subsection, we study the
relationship of these 2-forms to the simplicial manifold {G•(D)} associated to a
Dirac structure D. Our main results are as follows.

Theorem 4.4. The 2-form F ∗
2 ω

H
2 ∈ Ω2(G2(D)) vanishes.

Together with the results of Section 3 (specifically, Propositions 3.1, 3.8, and
3.9), Theorem 3.10 implies the following result.

Corollary 4.5. The 2-form F ∗
1 ω

H
1 is closed and multiplicative, and it therefore

descends to a closed, multiplicative 2-form on the Lie groupoid G integrating D.

Remark 4.6. In Corollary 4.5, we recover one of the main results of [1]. However,
[1] showed that the 2-form on G satisfies an additional property that controls the
extent to which it is degenerate. It remains unclear how this property arises from
the inclusion (4.1), but we expect that it is related to the Lagrangian property
discussed in Section 5.
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In the remainder of this section, we will prove Theorem 4.4. For simplicity, we
assume H = 0. The extension to the general case is straightforward and left to the
reader.

It suffices to check the statement locally on a coordinate chart of M . On such
a chart, let (xi, qi, pi) be coordinates on TM ⊕ T ∗M . A C2,1 bundle map ϕ :
T∆2 → T ∗M is locally given by ϕ = (f i, ξi), where f

i := ϕ∗(xi) is a function on
∆2 and ξi := ϕ∗(pi) is a 1-form on ∆2 for each i. Together, the f i form a C2 map
f : ∆2 →M , and the ξi form a C1 element of Ω1

(
∆2, f∗(T ∗M)

)
.

A tangent vector on C2(M) at ϕ is locally given by (vi, χi), where the v
i describe

a section of f∗(TM) and the χi describe an element of Ω1
(
∆2, f∗(T ∗M)

)
. In the

above coordinates, η2 has the form

η2
(
(vi, χi), (v

′i, χ′
i)
)
= viχ′

i − v′iχi,

so the 2-form ω2 on C2(M) is given by

(4.3) ω2((v
i, χi), (v

′i, χ′
i)) =

∫

∆2

d(viχ′
i − v′iχi).

Let n = dimM . Since the rank of the Dirac structure D is n, we can locally find
linearly independent sections Θα = Qα+Pα = qiα∂i+piαdx

i, for α = 1, . . . , n, that
span D. The following properties hold by definition of Dirac structures:

〈Θα,Θβ〉 = qiαpiβ + qiβpiα = 0,(4.4)

[Θα,Θβ] = CγαβΘγ ,(4.5)

where Cγαβ is a smooth function on M , and [·, ·] is the Courant bracket. Using the

definition of the Courant bracket, (4.5) implies that

(4.6) CγαβPγ = LQα
Pβ − ιQβ

dPα,

which in coordinates becomes

(4.7) Cγαβpiγ = qjα∂j(piβ)− qjβ∂j(piα) + pjβ∂i(q
j
α) + qjβ∂i(pjα).

Recall from Section 4.1 that a point Ψ of G2(D) can be identified with a C2,1

Lie algebroid morphism from T∆2 to D. A C2,1 bundle map from T∆2 to D can be
locally described by a C2 map f : ∆2 → M and C1 elements ψα ∈ Ω1(∆2) where,
for v ∈ T∆2,

Ψ(v) = ψα(v)Θα.

Using the characterization of Lie algebroid morphisms in terms of differentials, we
have that a bundle map Ψ : T∆2 → D is a Lie algebroid morphism if and only if

df i = f∗(qiα)ψ
α,(4.8)

dψγ = −
1

2
f∗(Cγαβ)ψ

α ∧ ψβ .(4.9)

Given Ψ ∈ G2(D), the induced bundle map Ψ̂ := F2(Ψ) from T∆2 to T ∗M is given
by

Ψ̂ = (f i, f∗(piα)ψ
α).

A tangent vector on G2(D) at Ψ is given by a collection of C2 functions vi on
∆2, representing a vector field along f , and C1 1-forms µα, satisfying the following
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equations, which are obtained by differentiating (4.8) and (4.9):

dvi = vjf∗(∂jq
i
α)ψ

α + f∗(qiα)µ
α,(4.10)

dµγ = −
1

2
vjf∗(∂jC

γ
αβ)ψ

α ∧ ψβ − f∗(Cγαβ)µ
α ∧ ψβ .(4.11)

The induced tangent vector on C2(M) is given by (vi, χi), where

(4.12) χi = vkf∗(∂kpiα)ψ
α + f∗(piα)µ

α.

Putting this into (4.3), we obtain the formula

(F ∗
2 ω2)

(
(vi, µα), (v′i, µ′α)

)
=

∫

∆2

dΞ,

where

(4.13) Ξ = f∗(∂kpiα)ψ
α(viv′k − v′ivk) + f∗(piα)(v

iµ′α − v′iµα)

is a 1-form on ∆2. We claim that dΞ = 0, which will imply Theorem 4.4.
The proof will proceed as follows. First, we can use (4.8)–(4.11) to write dΞ in

terms of f , ψα, vi, v′i, µα, µ′α, and the various structure functions. Second, we
can collect terms that are of similar type with respect to the µ’s and ψ’s. We will
see that each group of terms vanishes as a result of (4.4)–(4.7).

4.2.1. Terms of type µ∧µ. In dΞ, the coefficient of µα ∧µ′β is f∗(piαq
i
β + piβq

i
α) =

f∗(〈Θα,Θβ〉), which vanishes by the isotropy condition (4.4).

4.2.2. Terms of type ψ ∧ µ. The coefficient of ψα ∧ µβ in dΞ is

f∗
(
∂j(piα)q

j
β − ∂i(pjα)q

j
β − qjα∂j(piβ)− pjβ∂i(q

j
α) + piγC

γ
αβ

)
v′i

=
(
CγαβPγ − LQα

Pβ + ιQβ
dPα

)
(v′),

which vanishes by the integrability condition (4.6)–(4.7). Because of skew-symmetry,
the coefficient of ψα ∧ µ′β will similarly vanish.

4.2.3. Terms of type ψ ∧ ψ. The coefficient of ψα ∧ ψβ is

f∗
(
qkα∂k∂j(piβ)− qkβ∂k∂j(piα)− ∂j(piγ)C

γ
αβ + ∂j(pkβ)∂i(q

k
α)

−∂j(pkα)∂i(q
k
β) + ∂k(piβ)∂j(q

k
α)− ∂k(piα)∂j(q

k
β)− piγ∂j(C

γ
αβ)

)
viv′j ,

plus terms that are antisymmetric in i, j. This is equal to

f∗∂j

(
qkα∂k(piβ)− qkβ∂k(piα) + pkβ∂i(q

k
α) + ∂i(pkα)q

k
β − piγC

γ
αβ

)
viv′j ,

again plus terms that are antisymmetric in i, j. We can recognize this expression
as

d
(
LQα

Pβ − ιQβ
dPα − CγαβPγ

)
(vi, v′j),

which vanishes by the integrability condition (4.6)–(4.7).

Remark 4.7. We observe that the proof of Theorem 4.4 does not rely on the assump-
tion that D is maximally isotropic. Therefore, the result applies to any isotropic
subbundle of TM ⊕ T ∗M satisfying the integrability condition (4.5). The next
section aims to address the question of what distinguishes the isotropic case from
the maximally isotropic case.
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5. Dirac structures and Lagrangian sub-2-groupoids

In Section 4, we considered the geometry of the inclusion F• : G•(D) →֒ C•(M),
when D is a Dirac structure. Consider the composition of this map with the trunca-
tion map τ≤2 : C(M) → LWX(M), and let LD be the image of G2(D) in LWX2(M).
The image LD determines a sub-2-groupoid LD of LWX(M), and the 1-truncation
of LD can be identified with the 1-truncation of G(D), which, as we noted in Section
4, recovers the Lie groupoid G integrating D. We would now like to consider the
geometry of the sub-2-groupoid LD ⊂ LWX(M).

For x ∈ M , the zero bundle map Ψx : T∆ → D over the constant map fx :
∆ → M , s 7→ x, defines a point in LD. This defines an embedding M →֒ LD ⊂
LWX2(M). We can think of this image of M as being the space of “units”, since it
is equal to the image of M under the “double degeneracy” maps.

Proposition 5.1. For all x ∈M , TxLD is a Lagrangian subspace of TxLWX2(M).

Proof. By Theorem 4.4, we already know that LD is isotropic. It remains to show
that TxLD is coisotropic.

We use the local description and notation from Section 4.2. Choose coordinates
on M for which x = 0. Then, if we write Ψx = (f i, ψα) as in Section 4.2, we have
f i = 0 and ψα = 0.

Let (vi, µα) be a tangent vector on G2(D) at Ψx. In this case, (4.10) and (4.11)
reduce to

dvi = qiα(0)µ
α,(5.1)

dµα = 0.(5.2)

Any solution to (5.1)–(5.2) can be written in the form

vi = qiα(0)g
α + ci,(5.3)

µα = dgα,(5.4)

for some C2 functions gα on ∆2 and constants ci. From (4.12), we have that the
induced tangent vector on C2(M) has

(5.5) χi = piα(0)µ
α = piα(0)dg

α.

At the level of tangent vectors, the truncation map τ≤2 has the effect of pulling
back to ∂∆2. In what follows, let j : ∂∆2 → ∆2 be the natural inclusion map.

To prove that TxLD is coisotropic, we will show that, if any tangent vector
(v′i, χ′

i) ∈ TxC2(M) is such that ωH2 ((vi, χi), (v
′i, χ′

i)) = 0 for all (vi, χi) of the form
(5.3),(5.5), then (j∗v′i, j∗χ′

i) takes the same form.
We compute

ωH2
(
(vi, χi), (v

′i, χ′
i)
)
=

∫

∆2

d
(
(qiα(0)g

α + ci)χ′
i − v′ipiα(0)dg

α
)

=

∫

∂∆2

ciχ′
i +

∫

∂∆2

(
qiα(0)χ

′
i + piα(0)dv

′i
)
gα.

The requirement that this vanishes for all gα and ci implies that
∫
∂∆2 χ

′
i vanishes for

all i, and that j∗(qiα(0)χ
′
i + piα(0)dv

′i) vanishes for all α. From the first condition,
we have that j∗χ′

i is exact, so let Λi be functions on ∂∆2 such that j∗χ′
i = dΛi.
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From the latter condition, we then have that

0 = d(qiα(0)Λi + piα(0)j
∗v′i)

= d〈Θα(0), j
∗v′i∂i + Λidx

i〉.
(5.6)

Let 0 denote the 0th vertex of ∆2, and let ei = v′i(0), εi = Λi(0). Then (5.6)
implies that

(j∗v′i − ei)∂i + (Λi − εi)dx
i

annihilated D. Using the fact that D is maximally isotropic, we deduce that there
exist unique functions Φα on ∂∆2 such that

(j∗v′i − ei)∂i + (Λi − εi)dx
i = ΦαΘα(0),

implying that

j∗v′i = qiα(0)Φ
α + ei,(5.7)

Λi = piα(0)Φ
α + εi.(5.8)

Differentiating the latter equation, we have

(5.9) j∗χ′
i = piα(0)dΦ

α.

From (5.7) and (5.9), we see that j∗v′i and j∗χ′
i indeed take the desired form of

(5.3) and (5.5). �

Proposition 5.1 suggests the following conjecture.

Conjecture 5.2. LD is a Lagrangian sub-2-groupoid of the symplectic 2-groupoid
LWX(M), i.e. LD is a Lagrangian submanifold of LWX2(M).

It is well-known that, if B ∈ Ω2(M) is a closed 2-form on M , then the graph of
B♭ : TM → T ∗M is a Dirac structure (with H = 0). We prove Conjecture 5.2 in
this special case.

Proposition 5.3. Let B be a closed 2-form on M , and let D ⊂ TM ⊕T ∗M be the
graph of B♭. Then LD is a Lagrangian sub-2-groupoid of LWX(M).

Proof. Because of Theorem 4.4, we only need to show that LD is coisotropic. In
the notation of Section 4.2, we can take the local trivialization of D to be given by
Θi = ∂i+Bijdx

j , where B = 1
2Bijdx

i ∧ dxj . In this frame, the structure functions

Ckij vanish.

Using (4.8), (4.9), and the above description of Θi, we have that a point Ψ ∈
G2(D) is given by (f i, ψi), where df i = ψi and ψi = 0 (of course, the latter condition
is redundant). Similarly, equations (4.10) and (4.11), describing a tangent vector
(vi, µi) at Ψ, reduce to dvi = µi, dµi = 0. From (4.12), we have that the induced
tangent vector on C2(M) is of the form

(5.10) χi = vkf∗(∂kBij)ψ
j + f∗(Bij)µ

j = vkf∗(∂kBij)df
j + f∗(Bij)dv

j .

As in the proof of Proposition 5.1, let j : ∂∆2 → ∆2 be the natural inclusion
map. To prove that LD is coisotropic, we will show that, if any tangent vector
(v′i, χ′

i) is such that ω2((v
i, χi), (v

′i, χ′
i)) = 0 for all vi, with χi of the form (5.10),

then j∗χ′
i takes the same form. We compute
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ω2

(
(vi, χi), (v

′i, χ′
i)
)
=

∫

∂∆2

viχ′
i − v′i

(
vkf∗(∂kBij)df

j + f∗(Bij)dv
j
)

=

∫

∂∆2

vi
(
χ′
i − v′kf∗(∂iBkj)df

j − d(v′jf∗(Bij))
)
.

The requirement that this vanish for all vi implies that

j∗χ′
i = j∗

(
v′kf∗(∂iBkj)df

j + d(v′jf∗(Bij))
)

= j∗
(
v′kf∗(∂iBkj)df

j + v′jf∗(∂kBij)df
k + f∗(Bij)dv

′j
)
.

(5.11)

Using the fact that B is closed, we may rewrite (5.11) as

j∗χ′
i = j∗

(
v′kf∗(∂kBij)df

j + f∗(Bij)dv
′j
)
,

showing that j∗χ′
i takes the desired form. �

References

1. Henrique Bursztyn, Marius Crainic, Alan Weinstein, and Chenchang Zhu, Integration of

twisted Dirac brackets, Duke Math. J. 123 (2004), no. 3, 549–607.
2. Ted Courant and Alan Weinstein, Beyond Poisson structures, Action hamiltoniennes de
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