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A demonstration of phonons that implements the linear theory

Dietrich LiierBen,® Nalini Easwar, Ayesha Malhotra, Libby Hutchins, Kim Schulze,

and Brandi Wilcox
Department of Physics, Smith College, Northampton, Massachusetts 01063

(Received 7 August 2002; accepted 23 September)2003

Beads on a vibrating wire are used to simulate the discrete structure of a solid-state material. The
novel idea of the experiment is to use very small oscillation amplitudes of the wire to avoid
nonlinearities in the interaction. We achieve a good signal-to-noise ratio using a lock-in technique.
We find quantitative agreement between theory and experiment for not only a mono- and a diatomic
chain, but also for the bare wire. The latter agreement is the crucial aspect that distinguishes our
experiment from previous ones. This agreement assures that the fundamental assumption of the
theory (Hooke’s law is satisfied. We show that the properties of phonon dispersion curves are not
special, and that the same band structures occur when the wavelength of any wave becomes
comparable to the length scale of a discrete periodicity.2084 American Association of Physics Teachers.
[DOI: 10.1119/1.1625923

[. INTRODUCTION present in lattice vibrations can help students realize the fun-
damental concept that leads to these features: a spatial peri-
Lattice vibrations are covered to some extent in every textodicity that is comparable to the wavelength of the excita-
book on solid state physics® They are important for under- tion. ‘In addition, other interesting phenomena such as
standing phenomena as diverse as the specific heat and thigorder-induced localization of wave packésderson lo-
inelastic scattering of neutrons. Because the underlying phezalization can be realized?*2
nomena and calculations are entirely mechanical in nature, The demonstration we propose specifically addresses the
the treatment of lattice vibrations also provides a relativelytransition from the linear dispersion relation to a more com-
simple means of introducing the concepts of energy bandglicated one. The expected proportionality between fre-
and forbidden gaps. quency and wave number for a simple stretched wire is
The theoretical tool of a linear chain calculatids cov-  found in our experiment. This agreement ensures that the
ered in classical mechanics textbooks because students haleeindation for both the theory and the demonstration is the
a good background in mechanics at this point, and the cakame, and that we can therefore expect reasonable consis-
culations that lead to the solution are familiar. More impor-tency between theory and experiment for the complex cases
tant, this tool is invaluable for many applications, for ex-that can be studied, of which only a few are explored in this
ample, the calculation of phonon dispersion curves inpaper.
crystals. For more advanced students, the theoretical tools Some of the pedagogical uses of the experiment are that it
provided by quantum mechanics can be successfully used tan be used to show the difference between a linear and
describe the behavior of waves in macroscopic, periodic menonlinear dispersion relation, the cut-off frequency of a lin-
dia, and detailed band structures can be calcufated. ear chain, and the forbidden gap for a diatomic lattice. It is
It is helpful for students to not only see the theoreticalbest used in an advanced undergraduate laboratory setting. In
derivation of, for example, phonon dispersion curves in theaddition, the experimental setup is of potential interest in
classroom, but also to do some associated experiments. Uihdergraduate research projects.
the past, there have been several efforts to visualize lattice
vibrations in large-scale demonstratiéhs.However, there
is one aspect that has not been addressed satisfactorily in THEORY
Refs. 6-9. Although the theory relies on the assumption that
the interaction between adjacent beads/atoms is linear, earlier The properties of phonons are usually introduced using a
demonstrations either do not check the linearity of the intermodel that is based on two assumptiofiy: The interaction
action or show explicitly that the interaction is not linear. In between neighboring atoms is based on Hooke’s law: the
the following, we propose a demonstration that shows exforce is proportional to the displacement of the atons.
plicitly that the interaction is linear and in accordance withOnly the interaction between adjacent atoms is taken into
the fundamental assumption of the theory. account. In addition, the “springs” that connect the atoms
If the subject of lattice vibrations is introduced properly, are assumed to be massless.
students can obtain additional insight into complex phenom- The benefits of this theoretical approach for lattice vibra-
ena such as the behavior of a single electron in a periodions are easy to see. First of all, these assumptions lead to
potential as well as photonic band gHbsind acoustic simple solutions for the phonon dispersion relatiofk)
crystals'! The underlying idea of all these phenomena is thatvhich are in qualitative agreement with phonon dispersion
the wavelength of the excitation is comparable to the lengtlturves measured in real crystals. For the purpose of the dem-
scale of the periodicity of the medium in which the wave onstration proposed in this paper, there is a second and often
travels. We can start from a familiar experimegifior ex-  overlooked benefit: students are already familiar with the
ample, standing waves on a stringnd then impose a peri- continuous casévibrations of a stretched stringand they
odicity comparable to the wavelength on the system. Thevill be able to verify that the first assumption is satisfied in
transition from the familiar dispersion relation to one thatthe demonstration.
shows the bending of the dispersion relation and band gaps We will consider only one polarization of the transverse
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waves. Hence, the number of modes is reduced by a factor of dw(k) 4T 1 T
3 in comparison with a solid, where there are one longitudi-  lim ik~ Vmaz a= a (5)
nal and two transverse modes. k—0 ma m/a

The resonance frequenciesof the system are extracted |t e assumes that the string is massless, and if the mass

from the' measured data. They are then _paireq with th? Cordensity,u is identified withm/a, then the group speeds are
responding wave vectdk to obtain the dISpeS'O” relation jyentical for the bare string and the monoatomic lattice.
w(k). The wave vectors are calculated knowing the geom- For the “diatomic lattice” (two different bead masses,

etry of the experimental setup. For a stretched Sttt@-  gyring joaded uniformly, there are two solutions for the dis-
tinuum of lengthL, they can be found easily. The allowed e gjon relation corresponding to the acoustic and the optical
wave vectors are given by branch of the dispersion relation:

1+ \/1——4mM ir?(k
+ (M+m)25| (ka) |.

where the integen does not have an upper limit. ©

If the bare string is loaded with beads made of split §hot In Eq. (6), M andm are the masses of the two beddms.
special kind of fishing leadwith a well-checked periodicity, The two branches are separated by a gap, the size of which is
we call this arrangement a “uniformly loaded string.” This determined by the square root of the ratio of the two masses.
uniformly loaded string can be used to simulate vibrations There are two important properties that need to be dis-
of, for example, a crystalline lattice. For such an arrangecussed with students:
ment, we want to look at vibrations that can be distinguishe - Y- . .
from each other by looking only at the amplitudesgof the({l) The word “linear” is used in two different contexts. The
individual beads in contrast to looking at the strifgCon- interaction is always linear, meaning that the displace-
sequently, the number of beads gives the number of vibra- MENtis proportional to the force. Thitspersion relation

can be lineafbare string or nonlinear(loaded string

tional patterns that can be distinguished, and the wave vect b ; . .
P ; : : - : The only reason for the change of the dispersion relation
has an upper limit. FaN identical beads with spacirattice ? : from Iin{zar to nonlinear is tr?at the waveplength of the

constant a, the wave vector& can be expressed as L -
X P excitation becomes comparable to the periodicity of the
experiment.

T 1
k,.=—Xn, n=1.23,.., (1) wi(K)=—|=+—

L T a

a a

ki=—n=-——-—-—n, n=123,..N. (2

"L (N+1)a The dispersion relation of a simple string is linear, and the
. : frequency is proportional to the wave vector. But as soon as
If there is more than one bead per unit cell, some of thes?ne medium is discretéfor example, if beads are addehd
wq\t/e vliag:tors a:je.;jﬁgenera}t?. If the nlgrr;ber of[hbeads in thee wavelength of the excitations is comparable to its peri-
unit cell 1sp, and IV 1S an integer muitiple Op' € wave odicity, the dispersion relation becomes nonlinear and shows
vectors within the first Brillouin zone are still given as in Eq. features such as band gaps or localization. However, the in-
(2). The only change is that has the upper limiN/p. For  eraction between the beads is still linear. Band gaps and
each wave vector there apecorresponding resonance fre- nonlinear dispersion relations are not only present for vibra-

quencies. _ L _tional waves in crystals and on wires, but also for electrons
The restriction of a uniformly loaded string is importantin j, metals and semiconductors, electromagnetic waves in

order to calculate the wave vectors. If disorder were prese”bhotonic crystals, and acoustic waves in sonic crystals. On

there would be localized vibrational mode#nderson e gther hand, if the wavelength is much larger than the

H H 9,12,13 i . . . . . . .
localizatio). These localized modes cannot be modeled,qiggicity, the dispersion relation of the systems with and
using simple normal modes. The wave profile is then a line

i ithout beads is identicdsee Eq(5)].

superposition of more than one normal mode, and the con- There may be circumstances that require a more sophisti-

cept of one single wave vector per resonance frequencyaied theory, for example, when the string tension changes

breaks down. , _ _ because of large oscillation amplitudeBhe force is then no
The three examples we will consider are the bare string, fbnger linearly dependent on the displacement. This nonlin-

monatomic lattice, and a diatomic lattice. For the bare stringe ity of the response has nothing to do with the nonlinearity

the dispersion relation is given by of the dispersion relation which occurs even for a linear in-

teraction. An excellent overview of different ways to account
w(k)= \/jk, &) for nonlinear interactions can be found in Ref. 9.

whereu is the mass per unit length of the string ahé the lll. EXPERIMENTAL SETUP

tension in the string. . _ There are many experiments that demonstrate the phonon
For a string loaded uniformly with one type of beads properties of solids. Most demonstrations focus on one
(monatomic latticg the dispersion relation is given by dimensior®®® but there also are experiments for two-

dimensional systemslin these experiments, either the as-
[4T sumption of a linear interaction between adjacent “atoms”
w(k)= ma ! 4) cannot be demonstrated, or the assumed linear dispersion
relation shows nonlinear behavib¥When using such a dem-
wherem is the mass of théidentica) beads. In the limit of onstration as a teaching tool, the discussion becomes difficult
long wavelengths, the dispersion relation reduces to that df students ask questions such as: “If there already is a dis-
the simple string: crepancy between the theory and the demonstration for the

1

sin Eka
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Fig. 1. Schematic of the experimental setup. A wire is stretched over two k(m?)

knife-edges with a well-defined tension. This force is achieved through a

mass that is attached to the wire via a pulley. At the core of the experimenf!9- 2. Plot of the dispersion relation for a simple stretched wire. The pro-
is a lock-in amplifier that provides both the frequency for the magneticPOrtionality between the wave number and the angular frequency agrees

driver and the signal detection with a low noise level. Computer control 0fwith theory. This linear relation might hold for frequencies higher than what
the experiment is possible but not necessary. are shown, but no measurements were taken for higher frequencies.

simple case, how can we be certain that the experimentgutomate the entire experiment. We are ab}e to scan a speci-
results for the more complex case are meaningful?” fiable frequency range and record the amplitude and phase of
Our experimental approach displays quantitative agreethe oscillation while averaging s_evera_ll measurements. Th|s
ment between theory and experiment for both the simple ang_rocedure alsc_) allows us to obtain their respective uncertain-
the Comp|ex cases. This agreement makes it easier to undé}es. Also the line Shap_e of the resonance curves can be stud-
stand the results of the demonstration and allows one to fded, and the phase shift at the resonance can be analyzed.
cus on the challenge of understanding why the lattice vibra- For the automation, we use the software package DDDA
tions have their specific properties. fro_m St_anford Research_. The data collec'_uon program was
To study the vibrations of a wire, we stretch the wire overWritten in the programming language provided by this soft-
two knife-edges using a hanging ma8ég. 1). The distance Wware. The source code and programming tips are available
between the two knife-edges is the effective length of thedn the authors’ website.
wire L and determines the possible vibrational normal modes
of the wire through the boundary conditions. This wire can]v. SAMPLE RESULTS AND ANALYSIS
be loaded with additional masses, for which we use split . ] ) )
shots. The spot beads are fishing accessories that can beAs mentioned, the crucial point we want to show is that
bought in different sizes from a sporting good, store. the results for the bare string are in agreement with theoret-
To excite and detect the vibrations of the wire, we use dcal predictions, that is, the vibrational frequensy and the
pair of magnetic transducet®PASCO, WA-9613 driver and Wwave numberk are proportional. This relation can be ex-
detecto). A lock-in amplifier (Stanford Research SR-83@  pressed in terms of the mode numiver
not only used to obtain a reliable signal with very little noise, + [T
but also to provide the time varying voltage for the excitation wp=— \ﬁ n.
via the internal oscillator output. The use of the lock-in am- L Vu
plifier for the signal detection allows the use of small ampli-
tude oscillations to minimize nonlinearities.
The use of the magnetic transducers requires addition:%l

thought about the excitation and the detection of the Vlbrafound,u:(s.7573t 0.0014)< 10~ kg/m. For the steel wire

tions of the wire. If the driver is supplied with a sinusoidal that we used in the setufiameter 0.38:0.01 mm) this

voltage, it attracts the wire for positive as well as for nega- ) 3 :
tive voltages. Hence, the wire is not excited at the frequency/Ue corresponds to a densjiy- (8100500 kg/mr’, which
grees quantitatively with tabulated valties(between

f1 of the driving voltage, but atf3 . Accordingly, the detec- % X B
tion frequency of the lock-in amplifier needs to be set to th ni:lzglogteke%/n% for chromium steel ang=8130 kg/n for

second harmonic of the frequency of the internal oscillator. From Eia. 2 it is clear that the oroportionality between
The setup can be operated at several levels of automation, n g N prop y
The easiest use of the setup involves nothing else but man@d K iS strictly maintained up to an angular frequenoy
ally changing the frequency and adjusting the sensitivity of = 1-8% 10* rad/s, the largest frequency we measured. The
the lock-in amplifier, and reading and writing down the reso-mode number is as high as=53, which corresponds to a
nance frequencies based on the observed amplitudes. In thgvelengthh<<10 cm. This wavelength is less than half of -
way, students can see the dramatic effect of a resonance aH distance between two adjacent beads in the other experi-
can obtain a good feeling for the signal-to-noise ratio. Thisnents we will show. Itis therefore sufficient to show that the
procedure is most useful for studying the eigenfrequencies diteraction is linear for all wavelengths that will be used
the individual modes. later.
In a more sophisticated setup, we use a computer to con- The uncertainty of the linear fit parametef(T/u)

trol the lock-in amplifier via a serial interface, allowing us to =(319.58+0.08) rad/s is a mere 0.025%. This result is very

(7
The tension was chosen to Be=58.8 N, the length of the

ire was measured to He=2.486 m, and the mass per unit
ngth, u, was determined by a fit to the datgig. 2. We
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mode # is about seven orders of magnitude smaller. The curvature of
the dispersion relation toward a horizontal slope due to
Bragg reflection occurs at the edges of the Brillouin zone.
That is, the deviation from linear dispersion is noticeable
only when the wavelength is comparable to the lattice con-
stant. Because the measured wavelengths are much larger
than the interatomic distance, we could not observe any evi-
dence of this curvature in our data for the bare string; how-
ever, we could observe this curvature for the loaded string.
, | | | | | | To demonstrate a monoatomic chain, we used 10 beads
00 05 10 15 a4 20 25 30 , with an average mags=(1.860+0.003) g, lattice constant
a=22.6 cm, and tension=58.8 N. We fit the measured dis-
Fig. 3. Measured data for the resonance frequencies vs the calculated Wapersion relations using the function
vectors of the normal modes for a monoatomic chain with 10 beads. The
continuous line is the result of a fit using E®).

800 [~ I I ! I T —]

600 — —

400 |- .

o (rad/s)

200 —

T n
211
different from the one reported in Ref. 9, where a significantwe found thatA= (744.6+ 2.5) rad/s, which is in reasonable
curvature of the dispersion relation of the bare string Wagreement with the expected valug(4T/ma)=(748.0
found because of a change in the tenslorThis change in g 5) raq/s. The slight difference between the two values

the tension is due to the large amplitudes at which the stringan be explained by taking into account that the wire is not

had to be driven to obtain reliable results. Here, using Fnassless. The quality of the fit to the experimental data can

lock-in amplifier, we were able to avoid this effect because,q ¢, nfirmed in Fig. 3. There is no notable discrepancy be-
the detection technique permits us to use very small V'brafween theory and experiment

tional amplitudes and still obtain a good signal-to-noise ratio. ; . . —

We next loaded the string with the split shot beads. we FOr the diatomic chain, the beads had average madses
studied both mono- and diatomic latticéSigs. 3 and 4, re- = (2.53£0.02) g andm=(0.553-0.002) g. Five beads of
spectively. From these graphs it is obvious that the data carfach kind were used to obtain a lattice constantaof
no longer be fit by a linear function. It should be pointed out=45.2cm, which was chosen to maintain the same bead
to students that this difference is due only to the periodicitypositions as in the monoatomic setup. The tension also was
that is imposed by the beads: nothing else about the experiept constant.
ment has changed. As fitting functions for the optical and acoustic branch of

For the monoatomic and diatomic lattices, the cut-offthe dispersion relation, we used
wave numberk,=mr/a of the first Brillouin zone is finite.
Here, the lattice constants aae=22.6 and 45.2 cm, respec- © = \/A[lt \/1_ B sinz(z l)
tively. They are the smallest lengths over which a spatial

w=Asin

), n=12,...,10. (8)

, nh=12..5

255
periodicity is observed. For the bare strirlg, is virtually 9

infi_nite in comparison vyith the monoatomic and _diatomi(_:which corresponds to Eq6). We fitted the optical and
lattices because the lattice constant of the atoms in the wirgqqstic branches simultaneously because the fit parameters
A and B are identical for both branches. We fourid
=(5.175-0.023)x 10Prac’s > and B=(0.626+0.007).
The error for bothA and B is 1% or less. The quantitative
1000 = Optical branch | i agreement between the data and the fit is very good, and we

_\% conclude that Eq4) represents the measured data visdle
also Fig. 4. In the inset of Fig. 4 we show a sample mea-
surement of the amplitudes versus the angular frequency.
The meaning of the term “forbidden gap” is clear here be-
600~ 4 . cause the amplitude trace is flat between ald@tand 900
rad/s

Even though the shape of the fit function allows one to
model the data with great precision, there is a slight discrep-
ancy between the fitted parameté&randB, and their equiva-
lents that can be calculated from known parametienssion,
bead masses, and lattice constamhis discrepancy is sum-
g marized in Table |. However, the discrepancy can be lifted if

! the assumption of a massless string is not made. The masses

of the beads in Eq(6) can be replaced by effective bead
Fig. 4. Left: Measured data for the resonance frequencies vs the calculatélasses. These effective masses can be calculated from the fit
wave vectors of the normal modes for a diatomic chain with 5 bead pairsparametersA and B and can be compared with a corrected
The continuous curve is the result of a fit using EtQ). The fitted curve bead mass. The lower limit for the corrected bead mass is its
represents the data well. To find the fit, only two parameters were variedpaq5red mass, and the upper limit is the sum of the bead

and the fitting was done for both branches of the dispersion relation simul- . .
taneously. Right: The measured amplitude of the oscillation at one detect: ass and the mass of the string between two adjacent beads

location as a function of the angular frequency. The band gap can be o J_Were,.,ua/2= 0.139). The results of this ana'}’Si§ are summa-
served between 400 and 900 rad/s, where the oscillation amplitude is zersized in Table | and show that there is quantitative agreement

1200 T T T T T

800 -t -

 (rad/s)

I

400 —

Acoustic branch

200 — — —

ka Amplitude
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Table I. From the masses of the beads on the sttgggond and third
columng, the characteristic parameters of the dispersion reldtast two
columns can be calculated and vice verfghe conversion iA=(2T/a)

X(1/M +1/m) andB=(2T/a)(1/M + 1/m)], with the experimentally given
parameter§ =58.8 N anda=45.2 cm. The measured/fitted parameters are

in italic, while the calculated ones are not italic. This comparison provides

an important diagnostic tool for the comparison of experiment and theory: = 1
although the fitted curve can represent the data well, there still does not have
to be quantitative agreement between the measured bead masses and the Position 1 Position 2
ones calculated from the fit parameters. Only if we consider that the string

has a mass dd.13 g between two adjacent beads and allow for this addi-

tional mass in the calculation is there quantitative agreement between the fit

parameters and the theoretical predictioompare the lower two rows

A (from the fif +
M (g) m (g) (10°rac?s™?) B (from the fit

Measured 2.53t0.02 0.55%0.002 5.733-0.025  0.58%0.002

)
bead masses 2

Fit 2.59+0.03 0.624:0.005 5.175-0.023  0.626:0.007 "
Bead and  2.60+0.09 0.62-0.07  5.2+0.4 0.62:0.05 Position? Position 2
wire mass

Fig. 5. Sketches of the modes on a string with 2 beads. With the positions of
between the effective bead masses and the corrected ond beads marked on the profile of the string, it can be easily seen for
This agreement is important because the same assumptig'ﬁ‘erent wavelengths if the beads are oscillating in or out of phase.
(linear interactiopwas used in the theory and the experiment
and leads to quantitative agreement. This agreement confirms
that also the second assumption of the thdaxt-neighbor

interaction is valid. _ shifts are in agreement with the sketches, we can be certain
One point still needs to be addressed: the comparison qhat we have observed the normal modes of a perfectly or-
the vibrational patterns of the atoms between theory and exgered system. If, however, there were a slight disorder in the
periment. Because the amplitudes of the vibrations are interhead positions, the normal modes can be distinguished from
tionally very small, we cannot observe the oscillations visu-ocalized ones because the amplitude and phase characteris-
ally. But the lock-in amplifier can record thehaseof the tjcs of the waveform are different, and sketches like Fig. 5

signal in addition to the amplitude. The phase can be used tqising sinusoidal waveformsre representations of the nor-
determine the vibrational profile of the string if the detectorma| modes only.

is placed close to each of the beads along the string.

To illustrate how we can find the vibrational pattern of the
beads from a measurement of the phase of the oscillation
relative to the driving frequency, we use the simple example
of just two beads on the string. The expected vibrational 500 -
patterns are easy to sket¢ee Fig. 5 The two beads will
either vibrate in phasélow frequency and longer wave-
length or out of phasehigher frequency and shorter wave-

Iength).
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amplitude versus frequency for both beads. At the lower fre-< 459
guency,wq, it can be clearly seen that both beads oscillate in
phase and behave identically. They also oscillate in the way 100 150 200 250 300 350
that is expected for any mechanical system close to a reso o (rads)
nance: at the resonance frequency, there is a phase shift c
180°. Detectlzrin positiorI12 -Io- ampl2 lm_ 1%0
Near the frequency,, the two beads have a phase dif- -® phase2
ference of 180°, which means that the beads are always or
opposite sides of the equilibrium position. From Fig. 5 we &
can see that for higher frequenciéshorter wavelengths E
this change in the relative phase could have been expecteds
With more beads, the phase shift for all the beads can still~
be predicted easily from the sketches of the vibrational pat- y .
tern of the string for all eigenfrequencies of the string. As 100 150 200
preparation before using this demonstration, students coulc o (radfs)
be asked to draw ":hese sketches and predict Fhe phase Shllttla. 6. Data corresponding to the loaded string shown in FigabThe
for a", beads relative to one reference beathich _'n ,the detector is placed at the position of beadH); the results of the detector at
experiment would be the one closest to the excitation angosition 2. It can be seen that for the lower frequency the oscillation is in
therefore always in phagelf in the experiment the phase phase and is out of phase for the higher frequency.
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V. CONCLUSION “Herbert GoldsteinClassical MechanicgAddison—Wesley, Reading, MA,
1980, 2nd ed.

We have discussed an experiment that is useful for teach2David J. Griffiths and Carl A. Steinke, “Waves in locally periodic media,”
ing undergraduate students the concepts of band gaps andm- J. Phys69, 137-153(2001. . _
nonlinear dispersion relations. The novel feature of our dem- E)-r ?éttiinzslgé;mss‘?"'& n"’q‘”j’ %h;-sgAl”gi?fg'Zl(Al ;%tg’ratory linear analog
Ons.tratlon IS tha}t the assumption of Hques law can be e_x'7Christian Lehmann, “Structure and vibrational behavior of interstitial at-
perimentally validated. The demonstration can be set up With 5ms in metals: An air table demonstration,” Am. J. Phg3, 539541
relative ease because of its simplicity. The experiment can be(1979.
used to emphasize that band structures with nonlinear dispefManica Silva Santos, Eduardo Soares Rodrigues, and Paulo Murilo Castro
sion relations and band gaps are not unique features of vi-de Oliveira, “Spring-mass chains: Theoretical and experimental studies,”
brations in crystals, but can occur whenever the wavelength2™- - tF;]hVSP58' 9723—$28<1§98-_ * Ter Clough. Anthony Perer-il
of an excitation becomes comparable to the length scale of g>2ma"a Farmiey, fom ~oprst, ferry Llough, Anthony "erez-tner,

. A h . . ark Makela, and Roger Yu, “Vibrational properties of a loaded string,”
discrete periodicity in the medium in which the wave travels. apy, ; phys63 547_353(1995. prop 9

It has not been discussed here, but the setup also can Bene web site(http://focus.aps.orgiv2/st14.hiyréxplains the idea of pho-
used to show Anderson localization in weakly disordered tonic crystals by comparison with discrete electronic states like the ones
media, the influence of stacking faults in an otherwise per- found in a molecule.
fect crystal, and the phenomenon known from superlatticelslThe Web gite(htt‘p://focus.aps.org/vl/stZO.ht)'rdompare; photonic band
and quantum wells that “confined” optical phonons are not gap materials with the newer phenomenon of acoustic band gaps, where

. . . . . certain sound frequencies cannot travel through a periodic structure com-
really confined in their respective layer, but penetrate into the posed of iron rods.

barriers. 12C. Hodges and J. Woodhouse, “Vibration isolation from irregularity in a
nearly periodic structure: Theory and measurements,” J. Acoust. Soc. Am.
dpresent affiliation of corresponding author: Department of Physics, Mount 74, 894—905(1983.
Holyoke College, South Hadley, MA 01075; electronic mail: **S. He and J. Maynard, “Detailed measurement of inelastic scattering in

Dlueerss@MtHolyoke.edu Anderson localization,” Phys. Rev. Le7, 3171-3174(1986.
ICharles Kittel, Introduction to Solid State Physio&Viley, New York, The reason is that in a crystal only the motion of the atoms can be ob-
1986, 6th ed. served because there is no physical medigtning that transmits the
?Harald Ibach and Hanslthi, Solid State Physics: An Introduction to Prin-  interaction.

ciples and Materials Sciend@&pringer, Berlin, 1996 5The program is listed ahttp://www.mtholyoke.edutdlueerss/lop.html
3Neil W. Ashcroft and N. David MerminSolid State PhysicéSaunders,  ®Horst Kuchling, Taschenbuch der Physi¢EB Fachbuchverlag, Leipzig,
Philadelphia, 1976 1989, 12th ed., p. 582.
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