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Maximizing Network Lifetime on the Line with
Adjustable Sensing Ranges

Amotz Bar-Noy and Ben Baumer

The Graduate Center of the City University of New York
365 Fifth Avenue, New York, NY 10016.

amotz@sci.brooklyn.cuny.edu,bbaumer@gc.cuny.edu

Abstract. Given n sensors on a line, each of which is equipped with a
unit battery charge and an adjustable sensing radius, what schedule will
maximize the lifetime of a network that covers the entire line? Trivially,
any reasonable algorithm is at least a 1

2
-approximation, but we prove

tighter bounds for several natural algorithms. We focus on developing
a linear time algorithm that maximizes the expected lifetime under a
random uniform model of sensor distribution. We demonstrate one such
algorithm that achieves an average-case approximation ratio of almost
0.9. Most of the algorithms that we consider come from a family based
on RoundRobin coverage, in which sensors take turns covering predefined
areas until their battery runs out.

Keywords: wireless sensor networks, adjustable range, restricted strip
cover, lifetime, area coverage

1 Introduction

We consider the following disaster-relief scenario: Suppose you have a highway,
supply line, or fence that you want to cover with a wireless sensor network (WSN)
for as long as possible. Each sensor has a fixed location along the highway and a
unit battery charge that drains in inverse proportion to its sensing radius, which
you control. Given a deployment of sensors, what schedule will maximize the
lifetime of the network? We analyze both the case where the sensors are placed
by an adversary, and the case where they are deployed uniformly at random (e.g.
- perhaps they have been dropped from an airplane).

Formally, let U = [0, 1] be a line, and suppose that n sensors are deployed
on U with locations X = {x1, ..., xn}. For any time t ≥ 0, we associate with
each sensor i a sensing radius ri(t) ∈ [0, 1] and a corresponding coverage interval
Ri(t) = [xi − ri(t), xi + ri(t)], and say that U is covered at time t if for every
x ∈ U , there exists an 1 ≤ i ≤ n such that x ∈ Ri(t). We impose the constraint
that each sensor has a unit battery charge that drains at the rate (ri(t))

1/α for
some fixed α > 0. Our goal is to construct a sensing schedule S = {ri(t)}ni=1 that
covers U for as long as possible, and call this value the lifetime of the network.
That is, the lifetime T of a network is the largest time value t such that for every
point (x, t) ∈ U × [0, T ], there exists some sensor i such that x ∈ Ri(t).
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Problem 1 (Adjustable Range Restricted Strip Cover). Given a set of
sensor locations X and a battery drainage rate α, compute a schedule S =
{ri(t)}ni=1, where ri(t) is the sensing radius of sensor i at time t, that maximizes
T , subject to the constraints that for all pairs (x, t) ∈ U × [0, T ], there exists an

i such that x ∈ Ri(t), and for all i,
∫ T
0

(ri(t))
1/α dt ≤ 1.

In this paper, we provide both worst case (adversarial deployment) and av-
erage case (random deployment) analysis of several natural algorithms, for the
particular situation in which α = 1.

1.1 Previous Research

A closely related (and known NP-hard) problem is Restricted Strip Cover
(RSC) [4], in which each sensor has a fixed sensing radius and a fixed duration
indicating the length of time that it can be active. Our problem extends RSC
by replacing the notion of duration with a that of a finite battery charge, and
converting the sensing radius from a fixed input to a variable to be optimized.
This introduces considerable complexity to the problem.

To see this, note that in RSC, each sensor can be represented in space-time by
a single rectangle of fixed dimensions whose center has a fixed x-coordinate. The
only variable to consider is the time (t-coordinate) at which the sensor becomes
activated (e.g. - the rectangles can only be moved up and down). In our problem,
the regions of space-time occupied by each sensor still have a fixed central x-
coordinate and a fixed area, but the height and width may vary as a continuous
function of time, so they are not even necessarily rectangles. Furthermore, in
general we allow pre-emptive scheduling, meaning that a sensor can activate and
deactivate more than once, splitting a region into multiple non-contiguous parts.
In some cases, pre-emptive scheduling can increase the achievable lifetime. We
show one such example in Figure 1.

Buchsbaum et al. [4] proved the NP-hardness of RSC and gave anO(log log log n)-
approximation algorithm. Recently, a constant factor approximation algorithm
for RSC was discovered by Gibson and Varadarajan [7].

Much of the related work on network lifetime has focused on duty cycling,
wherein the goal is to maximize the number of covers k, rather than explicitly
maximizing the network lifetime T . The notion of decomposability of multiple
coverings can be found in Pach [10]. The connection to sensor networks was made
more recently, but it has brought with it increased attention and results. Pach
and Tóth [11] showed that a k-fold cover of translates of a centrally-symmetric
open convex polygon can be decomposed into Ω(

√
k) covers. This result was

improved to the optimal Ω(k) covers by Aloupis et al. [1]. Gibson and Varadara-
jan [7] showed the same result without the centrally-symmetric restriction.

In the plane, Berman et al. [3] gave the first provably goodO(log n)-approximation
algorithm for the Maximum Lifetime problem with fixed sensing ranges. Wu and
Yang [12] initiated the study of area coverage with adjustable sensing ranges, and
Cardei et al. [5] pursued a duty cycling approach involving set covers. Dhawan
et al. [6] extended the work of [3] to the adjustable range setting.
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Fig. 1. Illustration of the advantages of pre-emptive scheduling for X = { 1
8
, 1
2
, 7
8
}. The

lifetime of the network is shown on the vertical axis, while location is shown on the
horizontal axis. Each sensor is indicated by a red dot, and each rectangle represents
a coverage assignment. The dashed arrows indicate periods of activity. Note that the
total area of space-time consumed by each sensor is exactly 2.

In the one-dimensional setting, Peleg and Lev-Tov [8] found an optimal poly-
nomial time solution to the one-time target coverage problem using dynamic
programming. However, this question was about coverage efficiency, and not ex-
plicitly about network lifetime. The running time of the one-dimensional target
coverage algorithm was later improved to O(n+m), where m is the number of
target points to be covered [2]. A PTAS is known for the area coverage version
of the problem (again, for coverage efficiency, not lifetime), but no NP-hardness
result is known. These results may offer optimal solutions for one moment in
time, but do not necessarily lead to an optimal lifetime.

1.2 Our Contribution

Our extension of Restricted Strip Cover is the first to consider the true
lifetime for area coverage on the line with adjustable sensing ranges. For the
special case where α = 1, any reasonable algorithm is at least a 1

2 -approximation,
but we prove tigher bounds for several natural algorithms. However, since a
constant factor approximation is trivial, most of our efforts are focused on raising
the approximation ratio in the average case, which in an application scenario,
is likely to be of greater value. Our main result is a constructive proof that a
linear time algorithm exists that achieves an approximation ratio of nearly 0.9
in the average case. We accomplish this by employing RoundRobin coverage on a
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hierarchical system of pre-defined coverage areas. Although we allow pre-emptive
scheduling, we do not explicitly use it in our algorithms. Thus, our results are
also valid for the special case in which pre-emptive scheduling is not allowed. A
summary of our results is shown in Table 1.

Algorithm E[T ] V ar[T ] AC WC

RoundRobin 1.386 0.078 0.693 2/3
k-RoundRobin 1.386 0.078 0.693 2/3

log2-RoundRobin 1.738 0.022 0.869 2/3
Optimized log2-RoundRobin 1.791 0.896 2/3

Table 1. Summary of lifetime results for RoundRobin algorithms. T is a random variable
describing the per sensor lifetime under uniform random deployment.AC andWC show
lower bounds for the average-case and upper bounds for the worst-case approximation
ratios, respectively.

2 Preliminaries

For any set of sensor locations X, we assume that there exists some optimal
schedule S = {ri(t)}ni=1 that will produce the longest possible lifetime TOPT . As
the battery charges are finite, we can bound this value.

Proposition 1. If n sensors are deployed, then n ≤ TOPT ≤ 2n.

Proof. The lower bound is immediate since any reasonable algorithm achieves
T ≥ n. Consider the case where all of the sensors were located at 0; each could
cover U for exactly 1 time unit.

For any time t, each sensor i covers a subinterval of U of width 2ri(t). The
total energy consumed is given by

∫∞
0
ri(t) dt, which is at most 1 since the

battery has unit capacity. Thus, if Vi is the region of space-time consumed by
the sensor i, then |Vi| =

∫∞
0

2ri(t) dt ≤ 2. The total area of space-time consumed
then satisfies ∣∣∣∣∣

n⋃
i=1

Vi

∣∣∣∣∣ ≤
n∑
i=1

|Vi| ≤ 2n .

It is easy to see in this geometric setting that the goal of maximizing T is
equivalent to the goal of minimizing coverage overlap (i.e. - intersections Vi∩Vj),
and any extraneous coverage outside of U .

In some cases, we can bound TOPT away from 2n. For any subset Y =
{x1, ..., xm} ⊆ X, let f(Y ) = − 1

2 +
∑m
j=1(−1)m−jxj . We show (see the Appendix

for a full proof) that if f(Y ) = 0, then the sensors in Y have the proper spacing
to create a pinned disk coverage assignment, which has no wasted coverage.

Proposition 2. A radial assignment that gives perfect coverage over [0, 1] at
time t exists if and only if there is a subset Y ⊆ X such that f(Y ) = 0.

Corollary 1. If no subset Y ⊆ X satisfies f(Y ) = 0, then TOPT (X) < 2n.
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Our work in this paper is focused on RoundRobin algorithms, but we show
a worst-case approximation bound for Greedy, which iteratively schedules the
least-wasteful assignment of radii until a sensor runs out of battery life.

Observation 1 The approximation ratio of Greedy is at most 5
6 .

Proof. Consider X = { 16 − ε,
1
2 ,

5
6}, for some ε > 0. Greedy chooses to activate

the middle sensor by itself on U first, since that is the only perfect assigment
possible. This produces a T approaching 5 as ε→ 0, but TOPT = 6 is achievable
in the limit (see Figure 2).
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(b) TGreedy → 5

Fig. 2. Proof that Greedy is at best a 5
6
-approximation. Both diagrams show what

happens as ε→ 0.

3 Analysis of RoundRobin Algorithms

Let T̄ = T/n ∈ [0, 2] be the average network lifetime per sensor. For a group of
sensors working simultaneously, it is often convenient to discuss the normalized
lifetime T̂ , which is scaled so that T̂ ∈ [0, 2]. 1

3.1 RoundRobin

In its simplest incarnation, RoundRobin simply forces each sensor to successively
cover all of U for as long as possible. That is, each sensor i is assigned a radius
of ri = max(xi, 1 − xi), and is pushed onto a single queue. It is easy to show
that this algorithm is at best a 2

3 -approximation of TOPT .

Lemma 1. RoundRobin is at best a 2
3 -approximation.

1 This distinction will be made clear in Section 3.2.
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Proof. Consider X = { 14 ,
3
4}. The only two sensible assignments are shown in

Figure 3. But while TOPT = 4, RoundRobin achieves a lifetime of only 2 2
3 .
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Fig. 3. Proof that RoundRobin is at best a 2
3
-approximation.

A more complicated argument (presented in the Appendix) shows that RoundRobin
is at least a 0.548-approximation of TOPT .

Clearly, RoundRobin performs best when sensors are located close to 1/2,
where the lifetime is close to 2, and poorly for sensors near 0 and 1, where the
lifetime is 1. We analyze the average case by assuming that X is a uniform
random variable over [0, 1]. Then the function T0,1(X) = 1

max (X,1−X) yields a

new r.v. giving the lifetime of an individual sensor. It is easy to calculate its
mean

µT , E[T0,1(X)] =

∫ 1

0

dx

max(x, 1− x)
= 2

∫ 1

1
2

dx

x
= 2 lnx

∣∣∣∣1
1
2

= 2 ln 2 , (1)

and variance

σ2
T , E[T 2

0,1(X)]− µ2
T =

∫ 1

0

dx

(max(x, 1− x))2
− µ2

T = 2− 4 ln2 2 . (2)

We will develop algorithms that improve on this expected lifetime of µT .

Central Limit Theorem. Of course, with n sensors, we are more interested in
the distribution of T̄ , as opposed to that of T . Since we know µT and σ2

T , the
Central Limit Theorem implies that the distribution of T̄ approaches a normal
distribution with mean µT and variance σ2

T /n as n → ∞. For this reason we
report the variance but focus most of our attention on the expected average
lifetime of each algorithm.

Theorem 1. The approximation ratio of RoundRobin is between 0.548 and 2/3,
but it achieves at least a 0.693-approximation ratio in the average case.
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3.2 k-RoundRobin

A natural extension of RoundRobin is to partition U into k equally-spaced subin-
tervals, and run it independently on each of those. Somewhat surprisingly, the
performance is no better in either the worst or the average case.

Let k be a fixed positive integer, and let Uk(i) = [ i−1k , ik ] for i = 1, ..., k de-
fine a partition of U . We define k-RoundRobin to be the algorithm that runs
RoundRobin independently on each subinterval Uk(i); maintaining k parallel
queues. However, over any subinterval [a, b] ⊆ U , the r.v. giving the lifetime
of a sensor in Uk(i) is simply a rescaling of T from the original RoundRobin.

Remark 1. For any interval [a, b] ⊆ U , the expected lifetime Ta,b(X) of a sensor
running RoundRobin on [a, b] is µT

b−a with variance ( σT

b−a )2.

With b − a = 1/k, the expected lifetime of each sensor in k-RoundRobin is
E[T ] = kµT , with a maximum lifetime of 2k. However, in order to cover the
whole line, we have to run k parallel queues, so that the expected normalized
lifetime of each sensor is E[T̂ ] = µT . For a set of n sensors, the total expected
lifetime is nµT , so the expected average network lifetime E[T̄ ] is µT . Similar
calculations show that the variance of each sensor’s lifetime is (kσT )2, while the
normalized variance is σ2

T and the variance of the mean is V ar(T̄ ) = σ2
T /n.

Load Balancing. Since we are maintaining k parallel queues that must work
together to cover U , our calculations are sensitive to the requirement that the
lifetime be the same in each queue.

Following [9], we can think of the observation of each sensor location as an
independent Poisson trial, and use a Chernoff bound to ensure that the prob-
ability of a sub-interval Uk(i) getting too few sensors is o(1). Let Ni be a r.v.
denoting the number of sensors in Uk(i). Then for any k < n

3 lnn , we have that

Pr

[∣∣∣Ni − n

k

∣∣∣ ≥√3n lnn

k

]
≤ 2 exp

{
−1

3

n

k

3k lnn

n

}
=

2

n
.

In our case, we need to bound the probability that some Uk(i) has too few sensors
in it, but using a union bound, the probability of this is at most 2k

n , which still
goes to 0 as n → ∞ for a fixed k. This shows that with high probability, the
deviations from the mean number of sensors in each interval are on the order of
O(
√
n lnn) for a fixed k.

Set n = n1 + n2, where n1 = k · min1≤i≤kNi. Our scheduler allows the
n1 sensors to run k-RoundRobin on perfectly balanced stacks, and then throws
the n2 leftover sensors away. Thus, the actual expected average lifetime of the
algorithm is

E[T̄actual] =
n1
n
· E[T̄ ] +

n2
n
· 0→ E[T̄ ] = µT , as n→∞ ,

since n2 = O(
√
n lnn) and thus n2

n → 0 as n→∞.

Observation 2 k-RoundRobin provides the same worst-case and average-case
performance as RoundRobin.
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3.3 log2-RoundRobin

Nevertheless, clever applications of RoundRobin can yield efficient algorithms.
While the expected lifetime of a sensor in RoundRobin is independent of the
length of the interval it covers, it still performs better when it is near the center
of the interval. Specifically, the expected lifetime of a sensor covering an interval
[a, b], that is located within a subinterval Ua,b(c) = [ b+a2 − c,

b+a
2 + c] ⊆ [a, b] for

some c ∈ [0, b−a2 ], is given by

E[Ta,b(X; c)] =
1

2c

∫ b+a
2 +c

b+a
2 −c

dx

max(x− a, b− x)
=

1

c
ln

(
1 +

2c

b− a

)
. (3)

Since the maximum lifetime is 2/(b − a), the expected normalized lifetime is

E[T̂a,b(X; c)] = b−a
c ln

(
1 + 2c

b−a

)
, and the normalized variance is:

V ar(T̂a,b(X; c)) = 4

[
1− 1

1 + b−a
2c

−
(
b− a

2c
· ln
(

1 +
2c

b− a

))2
]
. (4)

Within the framework of using RoundRobin on subintervals [a, b], but select-
ing only those sensors that are closest to the midpoints of those intervals, an algo-
rithm emerges naturally: partition U into subintervals, but employ RoundRobin

only on those sensors that are close to the midpoint of each subinterval. To make
efficient use of each sensor, we construct a hierarchical series of such partitions.
We call this algorithm log2-RoundRobin, and it is indexed by a depth parameter
k, which indicates the number of partitions it employs.

Formally, for a fixed positive integer k, we partition U into 2k+1 subintervals
Uk(i) = [ i

2k
− 1

2k+1 ,
i
2k

+ 1
2k+1 ] ∩ U for i = 0, 1, ..., 2k. 2 If sensor x ∈ Uk(i),

then x is responsible for covering the interval around i/2k with radius gcd(i,2k)
2k

.

For example, any sensor that lies within 2−k−1 of 1
2 is assigned to cover all

of U . Similarly, sensors within 2−k−1 of either 1
4 or 3

4 are assigned to cover the
subintervals [0, 12 ] and [ 12 , 1], respectively. A graphical depiction of the normalized
sensor network lifetime as a function of location in shown in Figure 4.

For j = 1, ..., k, we define Γk(j) to the be the set of intervals that comprise
the jth level of the algorithm. Formally, we denote

Γk(j) =


2k−1⋃
i=1

Uk(i) : log2 (gcd(i, 2k)) = k − j

 .

Note that Γk(j) consists of 2j−1 disjoint intervals, each of width 2−k.3 Thus
Γk(j) occupies 2j−k−1 of U . We can compute the expected normalized lifetime

2 Note that the first and last intervals, Uk(0) = [0, 2−k−1] and Uk(2k) = [1−2−k−1, 1],
respectively, are only half as wide as the others, all of which have width 2−k.

3 We let Γk(0) be the set of sensors assigned to Uk(0) or Uk(2k), and have those cover
their respective half-intervals. Their contribution to the network lifetime becomes
negligible as k →∞, so we omit it from our calculations.
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Fig. 4. Normalized Sensor Network Lifetime for k = 1, 2, 3, 4 using the log2-RoundRobin
algorithm. Each color represents the lifetime of the sensors in Γk(j). Note that while
the actual lifetime of a sensor in Γk(j) may reach 2j , it must run in parallel with 2j−1

partners, so the normalized lifetime of the group is at most 2. The expected average
lifetime of the network approaches 1.737752 as k →∞.

for Γk(j) using Equation 3

E[T̂k(j)] = E[T̂0,2−j+1(X; 2−k−1)] = 2k−j+2 ln
(
1 + 2j−k−1

)
,

and the variance using Equation 4:

V ar(T̂k(j)) = 4

[
1− 1

1 + 2k−j+1
−
(
2k−j+1 · ln

(
1 + 2j−k−1

))2]
.

Summing over the Γk(j)’s to find the total expected normalized lifetime, we
obtain

E[T̂k] =

k∑
j=1

E[T̂k(j)]

2k−j+1
= 2 ln

k∏
j=1

(
1 + 2j−k−1

)
= 2 ln

k∏
`=1

(
1 + 2−`

)
. (5)

The analogous infinite product is a q-series [13], denoted here by
(
−1; 1

2

)
∞, for

which we can compute an approximate limiting value. This leads directly to the
expected average lifetime:

µ∗T , E[T̂ ] = lim
k→∞

E[T̂k] = 2 ln

( ∞∏
`=1

1 + 2−`

)
≈ 1.737752 .
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The mean normalized variance satisfies

E[V ar(T̂k)] =

k∑
j=1

V ar(T̂k(j))

2k−j+1
= 4

[
k∑
`=1

1

1 + 2`
− 2` · ln2

(
1 + 2−`

)]
,

which has the approximate limit of 0.02202547 as k → ∞. Computation of the
total variance is omitted, but it will converge to the above as k →∞.

Furthermore, it is clear from Figure 4 that the worst-case lifetime occurs
when a sensor in Γk(k) lies near one of the endpoints of the interval on which it
is active. The normalized lifetime at this point is 4/3, a constant. This provides
the same worst-case performance as RoundRobin.

Load Balancing, revisited. In log2-RoundRobin, each set Γk(j) for j = 1, ..., k
maintains 2j−1 parallel queues. Proper functioning of our algorithm requires bal-
anced loads across these queues, but the hierarchical structure of log2-RoundRobin
alleviates the load balancing issue if the Γk(j)’s are pushed onto a central stack
in ascending order of j. To see this, suppse that the left half of Γk(2) runs out,
while the right half is still going. U remains covered if the left half of Γk(3) starts
running alongside the right half of Γk(2). In this manner load imbalances are
averaged out over the k levels of the algorithm.

Nevertheless, a Chernoff bound analogous to the one used above for k-
RoundRobin will show that for k < lnn, with high probability Ni will deviate
from its mean of n

2k
by O(

√
n lnn). Setting n1 = 2k ·min1≤i≤2k−1Ni yields

E[T̄actual] ≥
n1
n
· µ∗T +

n2
n
· 0→ µ∗T , as n→∞ .4

Theorem 2. The log2-RoundRobin algorithm is at best a 2
3 -approximation of

TOPT , but for sufficiently large n, achieves an average-case 0.869-approximation
ratio with high probability.

3.4 Optimizations

Still, it is clear from Figure 4 that efficiency is highest in Γk(1) and lowest in
Γk(k). We can show that in fact, the relative efficiency of Γk(k) is the constant
2 ln 3

2 ≈ 0.81. On the other hand, it is easy to see that the relative efficiency of
Γk(1) approaches 1 as k →∞. Therefore, we can improve the efficiency of log2-
RoundRobin by shrinking the intervals over which Γk(k) is active. Note that since
every Γk(j) for j = 1, ..., k−1 borders Γk(k) on both sides, we maintain balanced
loads across each Γk(j) even as we shrink the width of Γk(k). Let ε(k) ∈ [0, 1] be
a parameter measuring the inward shift of the boundaries of Γk(k). Then using
Equation 3, the expected normalized lifetime becomes

E[T̂k(j, ε)] = E
[
T̂0,2−j+1

(
X;

1 + ε

2k+1

)]
=

2k−j+2

1 + ε
ln
(
1 + (1 + ε)2j−k−1

)
4 The inequality is justified by the preceding argument that in practice, the actual

load balancing will work at least this well.
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for j = 1, ..., k − 1, and

E[T̂k(k, ε)] = E
[
T̂0,2−k+1

(
X;

1− ε
2k+1

)]
=

4

1− ε
ln

(
3− ε

2

)
.

Taking the weighted average again, we have a generalization of Equation 5 that
can be expressed as another q-series:

E[T̂k(k, ε)] = 2 ln

(
3− ε

2

) ∞∏
i=2

1 + (1 + ε)2−i = 2 ln
(3− ε)

(
−(1 + ε); 1

2

)
∞

(ε+ 3)(ε+ 2)
.

We can find the optimal ε(k) using elementary calculus, but unfortunately a
general solution requires factoring a polynomial of degree k − 1:

T ′k(ε) = 0⇒ 1

3− ε
=

k−1∑
j=1

1

2j+1 + 1 + ε
. (6)

However, since T ′k(0) > 0 for k > 3, and T ′k(1) < 0 for k > 0, the derivative has
a root between 0 and 1 for k > 3 by the Intermediate Value Theorem. Moreover
the Second Derivative Test confirms that for k > 1, each of these roots is a local
maximum.

Numerical approximations of some relevant roots of this polynomial are
shown in Table 2, alongside the expected network lifetime of the optimized al-
gorithm. Our optimizations improve the expected average network lifetime by
more than 3% above that of log2-RoundRobin.

k ε Tk(0) Tk(ε) Gain % |Uk(k; ε)|%
2 0 1.492783 1.492783 0 50.00
3 0 1.614033 1.614033 0 50.00
4 0.211103 1.675576 1.696157 1.23 39.44
5 0.371297 1.706584 1.743439 2.16 31.44
6 0.448178 1.722149 1.767123 2.61 27.59
7 0.485871 1.729946 1.778990 2.84 25.71
8 0.504537 1.733848 1.784931 2.95 24.77
10 0.518459 1.736777 1.789391 3.03 24.08
12 0.521929 1.737509 1.790506 3.05 23.90
15 0.522941 1.737723 1.790831 3.06 23.85
20 0.523081 1.737752 1.790876 3.06 23.85

Table 2. Numerical Approximations for Optimal Choice of ε. Note that T20(0) equals
T∞(0) = µ∗T to six digits. The rightmost column shows the percentage of U that is
covered by Γk(k; ε).

Theorem 3. For sufficiently large n, the optimized log2-RoundRobin algorithm
achieves an average-case approximation ratio of 0.895 with high probability.

Convergence. The Ratio Test, combined with L’Hôpital’s Rule, will show that
both series Tk(ε) and T ′k(ε) converge as k → ∞ for any fixed ε ∈ [0, 1]. As we
have not found a closed functional form for either limit, we cannot prove that
the optimal ε converges to a limit.
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4 Open Problems

One obvious variation on this problem is to change the battery drainage rate. If
α > 1 then larger coverage regions become more expensive, so that, for example,
the performance of Γ1 would decline. Secondly, the average-case analysis could
be studied for any probability distribution with finite support.

Another avenue for exploration would be to extend the analysis to higher
dimensions, including one in which the sensors are not necessarily located on
the line, but rather in the plane, and one in which the sensors remain on the
line, but the coverage region extends into the plane.

Lastly, while we allow for pre-emptive scheduling in our definition, we did
not actually use it in the case of random deployment. We hope to tackle some
of these questions in future research.
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Appendix

Pinned Disks. For a fixed time t, let Y = {x1, ..., xm} ⊆ X be the locations of
active sensors, so that ri > 0 for all 1 ≤ i ≤ m. The unique radial assignment
function R∗(Y ) corresponding to pinned disks is then given recursively by

(R∗(Y ))i = ri =

{
x1 if i = 1

xi − (xi−1 + ri−1) if 2 ≤ i ≤ m
.

Setting xm + rm = 1 to ensure a perfect fit yields

1 = 2

m∑
j=1

(−1)m−jxj .

We then define the polynomial f(Y ) = − 1
2 +

∑m
j=1(−1)m−jxj , and use it in the

proof of Lemma 2.

Proof. (of Proposition 2) ⇒ From our previous argument, a radial assignment
that gives perfect coverage necessarily consists of pinned disks that satisfy f(Y ) =
0.

⇐ Suppose that there exists Y ⊆ X satisfying f(Y ) = 0. Then R∗(Y ) gives
perfect coverage.

RoundRobin. We present the proof of the lower appoximation bound for RoundRobin
given in Lemma 1.

Proof. (of Lemma 1) To prove the lower bound, let β ∈ (0, 14 ) be a parameter
to be determined later. Let A = [0, β], B = [β, 1 − β], and C = [1 − β, 1] be a
division of I into three closed intervals. Let t(1,0,0) denote any block of time in
OPT in which sensors from A are active (i.e. - have non-zero radius), but no
sensors from B or C are active. Note that in t(1,0,0) (respectively t(0,0,1)), exactly
one sensor is active in A (resp. C). Thus, for any such time block, RoundRobin
gives the same solution as OPT. Furthermore, any non-empty time interval in
OPT in which only one sensor is active gives the same solution as RoundRobin.

It remains to consider the following situations:

– t(0,1,0): The worst position for the sensors are at β and 1−β, where the radii
must be set to at least 1 − β. So the total network lifetime of RoundRobin

in this situation is T ≥ n
1−β . Since the maximum network lifetime is 2n, we

know that RoundRobin is at least a 1
2(1−β) -approximation in this case.

– t(1,1,0) ∼ t(0,1,1): The worst case here is to have n
2 pairs of sensors at 0

and β, which then must be assigned radii of 1 and 1−β, respectively, under
RoundRobin. The lifetime of RoundRobin is thus at least T ≥ n

2 ·1+ n
2 ·

1
1−β =

2−β
2(1−β)n. The approximation ratio of RoundRobin is thus at least 2−β

4(1−β) .
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– t(1,0,1): With no sensors active in B, the worst case scenario for RoundRobin
is a lifetime of n, with all n sensors at either 0 or 1. However, note that since
β < 1

4 , OPT cannot achieve a lifetime of 2n under these conditions. [Note
in light of Corollary 1, that no subset Y ⊆ X satisfies fk(Y ) = 0.] In fact,
the maximum network lifetime for OPT occurs when there are n

2 pairs of
sensors at β and 1 − β, each with radii set to 1

2 − β. Thus, the lifetime of
OPT is at most n

2 ·
1

1
2−β

= n
1−2β . The approximation ratio of RoundRobin is

thus at least 1− 2β.
– t(1,1,1): Here the worst case is to have n

3 sensors at β or 1 − β, and corre-
sponding pairs at 0 and 1. The lifetime of RoundRobin under this scenario
is T ≥ n

3 ·
1

1−β + 2n
3 · 1 = 3−2β

3(1−β)n. The approximation ratio of RoundRobin

is then at least 3−2β
6(1−β) .

Thus, for any possible arrangement of active sensors, the approximation ratio
of RoundRobin is at least

ρ(β) ≥ min
{

1,
1

2(1− β)
,

2− β
4(1− β)

, 1− 2β,
3− 2β

6(1− β)

}
Since 1 ≥ 1

2(1−β) ≥
2−β

4(1−β) ≥
3−2β
6(1−β) for any 0 < β < 1

4 , the optimal choice of β

occurs when 1− 2β = 3−2β
6(1−β) ⇒ β = 4−

√
7

6 ≈ 0.226. The minimum value of ρ is

thus
√
7−1
3 ≈ 0.54857.
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