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Abstract. A highway H is a line in the plane on which one can travel at a greater speed than in the
remaining plane. One can choose to enter and exit H at any point. The highway time distance between
a pair of points is the minimum time required to move from one point to the other, with optional use
of H.

The highway hull H(S,H) of a point set S is the minimal set containing S as well as the shortest
paths between all pairs of points in H(S,H), using the highway time distance.

We provide a Θ(n logn) worst-case time algorithm to find the highway hull under the L1 metric,
as well as an O(n log2 n) time algorithm for the L2 metric which improves the best known result of
O(n2) [15, 20]. We also define and construct the useful region of the plane: the region that a highway
must intersect in order that the shortest path between at least one pair of points uses the highway.

1 Introduction

In recent years, much work has been done on geometric problems that stem from Geographic Information
Systems or involve transportation networks. Various geometric models of transportation have been proposed,
and fundamental problems incorporating these models have been analyzed, such as Voronoi diagrams and
facility location.

A simple model of transportation in the plane is that of the highway, defined as a line on which one can
move at some speed v > 1, while the speed off the highway is 1. One can enter and exit the highway at any
point, and the distance between two points is defined as the minimum time to get from one to the other,
using the highway or not. Thus the shortest path between two points is either the line segment between
them, or a three-part piecewise linear path, the middle segment of which lies on the highway.

A natural notion to explore, first defined by Hurtado, Palop, and Sacristán [15], is that of the convex hull
in the presence of a highway. They define convexity with respect to the above definition of a shortest path.

Hence a set S will be convex in that sense if the shortest path between two points of S is contained in
the set. We define the highway hull H(S,H) of a set S and highway H as the closure of S with respect to the
inclusion of shortest paths. In other words, H(S,H) is defined recursively. When a new point x belonging
to a shortest path is added to H(S,H), we must also consider all shortest paths from x to other points in
H(S,H). This yields a minimal region containing the points and all shortest paths between any two points
of the region. H(S,H) is known [20] to be decomposable into convex pieces that partition the point set into
“clusters” along the highway. It is therefore a simple tool for exploring the formation of communities along
a straight path.

We present algorithms for computing the highway hull of n points in subquadratic time in two different
distance metrics. We first define the orthogonal highway hull using L1 geometry, and provide a simple incre-
mental O(n log n) time algorithm. In the Euclidean case, we show that crucial properties of the orthogonal
? Chargé de Recherches du F.R.S.-FNRS.
?? Mâıtre de Recherches du F.R.S.-FNRS.
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highway hull fail to hold. We provide an algorithm to compute the Euclidean highway hull in O(n log2 n)
time. Finally we propose an O(n log n) time algorithm for deciding whether a highway is useful for some pair
of points in a given set. This involves computing the “useful region” of the point set, such that a highway is
used if and only if it intersects this region.

1.1 Related Work

The notion of convex hull in the presence of a highway was recently studied by Yu and Lee [23], who
provided an incremental algorithm similar to ours. Unfortunately it does not yield a correct answer in all
circumstances, because a number of critical cases that make the problem more difficult were overlooked. We
give a precise description of those cases in Section 3, and explain how we can take them into account in the
incremental algorithm. The only previous correct algorithm we are aware of was proposed by Palop [20],
and constructs the Euclidean highway hull in O(n2) time.

Properties of several fundamental computational geometry structures within the presence of a trans-
portation network have been analyzed (e.g., Voronoi diagrams [1, 2], skeletons [6]). A systematic study on
this topic can be found in [20], which contains an analysis of convex hulls, disks and wedges, as well as the
aforementioned results. Other related works include [18, 7, 13].

A common issue in the contributions mentioned above is the use of time metrics, where the distance
between two points is a function of the time required to go from one point to the other. The model of
highways defined above is one example, and variants can be found in the literature (e.g., [3, 10, 8]).

Recently, efforts have been made [10, 8, 5] to solve the problem of optimally positioning transportation
devices (highways, walkways, elevators, etc.) in order to minimize the maximum travel time among a set of
points. For instance in [5], algorithms are given to optimally place a highway, when the travel speed on the
highway is infinite, or when the highway is restricted to be vertical. Moreover, an O(n2 log n) algorithm for
the general problem is given. Various other highway models are studied in [16, 17].

Finally, other questions related to highways are studied in [9]. For example, in highway pricing games,
the problem is to define a price that a customer has to pay to gain access to some part of a transportation
network. If the price on some path is too high, the customer might choose another route; the goal is to
maximize the total price paid by customers.

2 The Orthogonal Highway Hull

2.1 Model

Let the highway H be the x-axis. Thus we can abbreviate our notation for the highway hull to H(S). Even
without a highway, the shortest path in L1 is not necessarily unique. Given two points p and q with different
x and y-coordinates, an infinite number of shortest paths exist, all contained in the bounding box of p and
q. We will always choose the L-shaped shortest path whose corner is closest to H. Of course, this is just a
convention, but uniqueness is useful in solving this problem.

The input is a set S of n points and a real number v > 1. For any point p ∈ S, let p′ be its orthogonal
projection onto H.
The shortest path between two points a and b consists of either:

– the L1 segment between a and b oriented toward H, or
– the horizontal segment a′b′ and the vertical segments aa′ and bb′.

In the first case the distance is the sum of the lengths of the two segments (i.e., the L1 distance between
a and b). In the latter case it is the sum |aa′|+ |a′b′|/v + |bb′|, where |xy| denotes the length of the segment
xy. If the two distances are equal, we assume that H is not used. These conventions render the shortest path
between two points unique. Examples of shortest paths are given in Figure 1.

The orthogonal highway hull H1(S) of a point set S and a horizontal line H is the closure of S under the
operation of including the orthogonal shortest path between each pair of points. It is therefore a minimal
region containing the shortest paths between any pair of points in the region.
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H

(a) Shortest paths.

H

(b) The orthogonal highway hull.

Fig. 1. Illustration of the definitions of shortest paths and orthogonal highway hull for v = +∞.

2.2 Incremental Algorithm: Preliminary Observations and Lemmas

We start with a number of simple observations, inspired by similar observations for the L2 case from [20, 23].
First, note that H1(S) has no holes. The proof is by contradiction: without loss of generality, suppose there
is a hole h in H1(S) above H. Then, one can pick two points on the boundary of h with same x-coordinate.
The shortest path between these two points is then the vertical segment between them, which is contained
inside h, a contradiction.

If at least one pair of points uses the highway, H1(S) can be decomposed into two parts: one segment
along the highway, and a set of L1-convex connected components, which we call clusters. Since clusters are
disjoint, a path between two clusters will always use H.

If no pair of points use H, then the upper orthogonal hull is similar to the classical orthogonal convex
hull (see for instance [19]), while the lower orthogonal hull is the lower part of the bounding box of the the
point set. We will rule out this case for now, and assume that at least one pair of points uses H. At the end
of this section, we will show that our algorithm can be extended to also test if at least one pair uses the
highway. If this is not the case, we simply compute the upper orthogonal hull in Θ(n log n) time.

Another observation is that if the shortest path between two points a and b in S does not use H, then all
points that have an orthogonal projection between a′ and b′ belong to the same cluster. Indeed, the shortest
path from every point x on the segment ab to x′ does not use H. Thus every point below ab and above H
must belong to one cluster. Let y be a point above ab, and a′ ≺x y′ ≺x b′, where a′ ≺x y′ denotes that the
x-coordinate of a′ is less than that of y′. The shortest path from y to y′ intersects ab, which implies that y
belongs to the same cluster.

If at least one pair of points uses H, then the highway hull contains the projections of all n points on H.
This happens because at least one point x of the hull is on H, and the shortest path from x to any point
y ∈ S goes through y′.

Without loss of generality, and in order to simplify the exposition, we will suppose that all points are
above H and that at least one pair uses it. We give an incremental algorithm for constructing the orthogonal
highway hull, similar to the well-known Graham scan [14]. In a preprocessing step, all points are sorted along
the x axis. Then each point is considered successively in sorted order. Our algorithm is similar to the that
of Yu and Lee [23] for the Euclidean case.

The walking region of a point p is the set of points q such that the shortest path between p and q does
not use the highway (see Figure 2). Hence it is the set {q ∈ R2 : |pq| ≤ |pp′| + |p′q′|/v + |qq′|}. In the
orthogonal setting, the boundary of a walking region is composed of two line segments and two halflines.
The two segments meet at p′ and join the halflines at the horizontal line through p. The segments have
slopes (1 − 1/v)/2 and −(1 − 1/v)/2 respectively, independent of the position of p. We denote by ω(p) the
right boundary of the walking region of point p.

Similarly, we define the walking region of a set of points as the union of the walking regions of the points.
We denote by ω(C) the right boundary of the walking region of a cluster C. In general, the union of the
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H

p

Fig. 2. Walking region of a point p.

walking regions of a set of points might contain holes. We only take into account the rightmost component
of the boundary of the union of the walking regions.
A simple property of these walking regions allows us to simplify the problem:

Observation 1 If a is above and to the right of b, then ω({a, b}) = ω(a).

As a consequence, the walking region of a cluster is the union of the walking regions of all convex vertices
on the right side of the cluster. This is illustrated in Figure 3.

H

Fig. 3. Right boundaries of the walking regions of a set of clusters.

Consider an orthogonal highway hull and the corresponding partition of the points into clusters. The
clusters Ci are indexed from left to right along H.

Lemma 1. The right boundaries of the walking regions of two clusters Ci and Cj, with i < j, can only
intersect once. Furthermore, the intersection point lies on the vertical halfline of ω(Cj).

Proof. Since the segments of the walking regions are parallel to each other, the intersection between two
walking regions always takes place between a segment and a halfline. If there is an intersection between ω(Ci)
and ω(Cj), then Cj must be to the left of the rightmost vertical halfline of ω(Ci). Since they are different
clusters, Cj is entirely below ω(Ci). Thus the walking region of each point in Cj intersects ω(Ci) with its
vertical half-line, and so does ω(Cj). ut

Lemma 2. Consider a vertical ray r emanating upward from a point p. The ray crosses the boundaries ω(Ci)
in the right-to-left order of the clusters.

Proof. We can ignore the vertical halflines of the walking region boundaries since they are parallel to r. We
prove that r crosses sloped segments corresponding to the clusters in right-to-left order.
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Notice that all sloped segments are parallel (their slope only depends on the speed v, which is fixed).
Each segment is defined by one point x of the set, and the line though it crosses H at x′. As the lines are
parallel, they have the same sorted order as their corresponding points, i.e., the leftmost point corresponds
to the topmost line.

The ray crosses all the lines defined above in right-to-left order of the corresponding points. This implies
that r touches a subset of the segments, in the same order.

Finally, note that each cluster corresponds to an interval in the x-sorted order of the points, meaning
that the order of the points corresponds to the order the the clusters containing them. ut

2.3 Incremental Algorithm: Description

We focus on the task of partitioning the points into clusters {Ci}. We label the points p1, p2, . . . , pn in
increasing order of their x-coordinate. At the ith step, the algorithm considers pi. We decide whether pi will
be included in an existing cluster. If not, we create a new cluster consisting of a vertical segment between pi
and p′i.

ω(Ci) can be represented by a linked list Li of segments with slope (1− 1/v)/2 (we do not need to store
the vertical segments). We maintain a set L of non-empty lists, each associated with a cluster, representing
boundaries that have not yet been entirely scanned. Suppose that the rightmost cluster is Cj . The algorithm
starts by scanning the list Lj from left to right. At each step, we consider the relative position of pi to the
current line segment s in Lj . Let s′ be the projection of s onto H.

Four cases can occur:

1. If p′i is to the right of s′, we cannot decide yet whether pi is above or below ω(Cj). Thus we advance to
the next segment in Lj . The segment s will never be used again and can be deleted from Lj , since all
the other points are to the right of pi.

2. If pi is below s, we know from Lemma 2 that pi is also outside the boundary of the walking region of any
cluster to the left of Cj . Thus pi forms its own cluster. In this case, an entire prefix of Lj will be deleted.

3. If no segments remain in Lj , it still may be the case that pi belongs to another cluster to the left of Cj .
Therefore we start over with Lj−1 and remove Lj from L.

4. If pi lies above s, it must be merged with Cj . However, pi might also need to merge with a cluster that is
further to the left of Cj . We must identify which is the leftmost cluster with which pi will merge. Similar
to the previous case, we start over with Lj−1.

Once we have deleted the prefixes of the lists corresponding to all the clusters that we have to merge, it
remains to update the list structure. We create a list for the new cluster, that is composed of the points of
k previous clusters. Denote by C the leftmost cluster with which pi is merged.

Lemma 3. Let x be any convex vertex of C whose walking region contains pi. Then all the clusters between
C and pi are below the shortest path from pi to x.

Proof. Let t be the shortest path between pi and x, and suppose that t intersects two distinct clusters, at
two points a and b. By definition, t does not use H. A subpath of a shortest path is also a shortest path,
which means that the shortest path between a and b does not use H either. Hence a and b should belong to
the same cluster, a contradiction. ut

Merging the clusters involves removing the lists of the clusters below t from our set of available lists. This
takes O(k) time, where k is the number of clusters merged. Then we include the walking region of pi in the
list of ω(C). This step might involve deleting a prefix of that list and is illustrated in Figure 4.

The total time for deleting all segments is O(n), because each segment corresponds to a point and can
be deleted only once. We can use the current number of clusters as a potential function, to show that each
merging step takes O(1) amortized time. Hence the overall complexity of the sweep is O(n), provided that
the points are sorted on the x-axis beforehand.
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C

pi

H
(a) Before

C

pi

H
(b) After

Fig. 4. Creating a new cluster.

The procedure presented thus far groups the point set into clusters. To output the highway hull, we
compute the orthogonal convex hull of each cluster. It remains to determine if at least one pair uses the
highway. During the procedure described above, we also maintain at the same time the common intersection
of the walking regions of all points. This region is delimited on each side by one sloped segment and by one
vertical half-line; we can thus update it in O(1) time per point inserted. At the end of the procedure, we scan
the whole set of points a second time and check if every point was contained in that common intersection.
If this is the case, no pair uses the highway.

If at least one pair of points uses H, we attach all convex regions to H with vertical segments. If there
are points on both sides of H, we apply the algorithm to each side, and join both to H.

The complexity is thus O(n log n). Note that an easy lower bound of Ω(n log n) comes from the fact that
computing the highway hull is at least as hard as computing the standard L1 convex hull, because when no
pair of points uses the highway, both problems are equivalent.

Theorem 1. The orthogonal highway hull can be computed in Θ(n log n) worst-case time using Θ(n) space.

3 The Euclidean Highway Hull

Properties of the Euclidean highway hull are detailed in [20, 23]. We concentrate on the properties required
for our algorithm.

3.1 Model

Without loss of generality, and to simplify the exposition, we will assume that H is on the x-axis, all points
are above H, and that at least one pair uses it. The shortest path between two points is either the Euclidean
line segment or a three-part piecewise linear path (see Figure 5). A key property of shortest paths that use

a) b) c)

α

α = arcsin 1
v

Fig. 5. Shortest paths in the Euclidean highway model: (a) a path not using H, (b) a path using H with bounded
speed v, (c) a path using H with infinite speed.
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H is that they obey Snell’s law of refraction, and therefore the angle of incidence of the line segments and
the highway is equal to α = arcsin(1/v).

The definition of the Euclidean highway hull H2(S) of a point set S is similar to that of H1(S): it is the
minimal (under inclusion) set R ⊇ S containing all shortest paths between pairs of points of R (i.e., the
closure under the operation of including shortest paths). Figure 6 illustrates H2(S).

a) b)

H H

Fig. 6. Illustration of the L2 highway hull: (a) finite speed v, (b) infinite speed.

3.2 Observations

Many properties of the orthogonal highway hull are still true in the Euclidean case: it has no holes, and if at
least one pair uses H then H2(S) contains the “slanted” projections of all n points onto H, i.e., projections
in one of the directions given by Snell’s law of refraction.

An interesting new property is that H2(S) is not always a closed set. Consider the set of four points
(p1, p2, p3, p4) in Figure 7. H is not used between p1 and p2. The same is true for p2, p3 and for p3, p4. Thus
the highway hull must contain the polygonal path p1, p2, p3, p4. However H is used from p1 to p4. Since at
least one pair uses H and the hull has no holes, the region between the polygonal path and H (shown in
dark gray in the figure) is contained in the hull.

p1

p2 p3

p4

H

u

u′

Fig. 7. The Euclidean highway hull is not always a closed set. Here, v is infinite on H.

Since the highway hull is the closure under the operation of including shortest paths, the construction of
the hull in our example is incomplete. Consider any reflex vertex on the boundary of the convex hull, such
as p2. Take two points u and u′ on the boundary of the hull, arbitrarily close to p2, with u to the left of p2

and u′ to its right. If u and u′ are close enough, H is not used to go from one to the other. Thus the segment
uu′ belongs to the highway hull, as does the region between uu′ and H. This proves that the highway hull
has no reflex vertices (except at the junction of a cluster with H).

Our preceding arguments imply that the rectangle formed by p1, p
′
1, p4, p

′
4 is contained in the highway

hull. However the segment p1p4 is not in the highway hull. As mentioned, H is used between p1 and p4.
There is no pair of points u, u′ within the hull that have a shortest path intersecting the segment p1p4. Thus
the closure operation will never include points on the open segment p1p4. Every other point in the region

7



bounded by p1p4 and the polygonal path p1, p2, p3, p4 (i.e., the region in light gray in the figure) is added by
closure.

In what follows, we will ignore this issue about open and closed edges, i.e., we will propose an algorithm
which finds the correct hull, except that some of its boundary edges should be open. At the end of the
procedure, we will identify these open edges.

When the Euclidean metric is used, the walking region W (p) of a point p is delimited by parabolic
segments (see [20], Proposition 2.6.1). In the specific case of v = +∞, the right boundary of the walking
region ω(p) of a point is a single parabola tangent to H. To simplify the exposition, we focus on solving the
problem when the speed is infinite. A description of the algorithm for finite speed is given at the end of this
section.

In the orthogonal case, Observation 1 allowed us to restrict our attention to the extreme points of the
highway hull when partitioning the points in clusters. However, Figure 8 exhibits two situations that preclude
the application of the previous algorithm to the Euclidean case. These situations are not taken into account
in the algorithm of Yu and Lee [23].

In the first situation, shown in Figure 8(a), a new point p4 is outside the right boundary ω(C) of the
walking regions of vertices p2 and p3. Its walking region ω(p4) intersects segment p2p3, and so p4 should be
merged into the cluster of its two predecessors. This is not detected unless we correctly handle the walking
region of the entire segment p2p3.

In the symmetric situation of Figure 8(b), the newly considered point p3 has just been merged into a
cluster with p2. Both p2 and p3 are outside ω(p1).

p1

p2

p3
p4

C

ω(C)

(a) The walking region of a new point p4 happens
to intersect an edge of cluster C without containing
any of its vertices.

p3

p1
p2

C

(b) The interior of a new seg-
ment p2p3 intersects the walk-
ing region of p1.

Fig. 8. Two cases in which the algorithm in [23] fails.

Since a cluster is a convex set, we must include all points of edge p2p3 in the new cluster. However, at least
one such point x intersects ω(p1), and so the shortest path between p1 and x is a single line segment. Now
this segment p1x creates new points in the cluster, which must also be considered in the recursion that
computes the closure to obtain the new hull.

The first situation can be handled by considering the boundaries of the walking regions of the edges of
the hull, not only of the vertices. For v = +∞, the walking region of a segment is the convex hull of the
walking regions of its endpoints. The right boundary is a three-part convex curve, consisting of two parabolic
arcs joined by a segment that is tangent to both (see Figure 9). The curve is denoted by ω(ab), where a and
b are the points of tangency. A formal description of the walking region boundary structure is given in [20,
Lemma 2.1.9 to 2.1.12].

Other useful properties of the right boundary of a cluster’s walking region include [23]:

– the right boundary is x- and y-monotone.

8



Fig. 9. The boundary of the walking region of an edge.

– the indexing of parabolic segments along the right boundary is inverted with respect to their corre-
sponding points. In other words, the leftmost parabolic segment corresponds to the walking region of the
cluster’s rightmost point.

– Lemma 3 is still valid in the Euclidean case: if x is a convex vertex of C whose walking region contains
a point p, then all the clusters between C and p are below the shortest path from p to x.

3.3 Algorithm: Preliminary Lemmas

As in the orthogonal case, the algorithm is composed of two main loops. The outer loop considers
points pi in sorted order of their projections on H. The inner loop identifies the cluster with which pi
should be merged. In order to simplify the exposition, the algorithm for computing H2(S) will be based
on the algorithm for H1(S) (similar to that of Yu and Lee [23]). We will use an additional data struc-
ture to handle the problematic situation of Figure 8(b). We first explain how to apply the previous algorithm.

Each cluster C is associated with a boundary ω(C). This boundary is stored in a list, each element of
which encodes the boundary of the walking region of an edge of C. Observation 1 also holds in the Euclidean
case (a similar observation was made by Yu and Lee [23]). This implies that ω(C) is defined solely by the
walking regions of the negatively sloped segments of C.

The main issue, however, is that Lemma 2 (vertical ray crossing order) does not hold in the Euclidean
setting. In other words, we cannot just check if a new point belongs to the rightmost cluster to determine if
a new cluster must be created (see Figure 10).

q

C1 C2

Fig. 10. Although q is below the right boundary of the walking region of the rightmost cluster (C2), it is above the
right boundary of the walking region of C1. This implies that C1, C2, and q will all be merged into a single cluster.

9



Lemma 4. The right boundaries ω(Ci) and ω(Cj) of two walking regions of two clusters intersect at most
once.

Proof. For the purpose of contradiction, suppose that ω(Ci) and ω(Cj) intersect at least twice, at i1 and i2.
Let a ≺x b (a ≺y b respectively) denote that the x-coordinate (y-coordinate respectively) of a is less than
that of b. Without loss of generality, let i < j and i1 ≺x i2.

We can identify four points p1, p2, p3, p4 such that:

p1, p2 ∈ Ci

p3, p4 ∈ Cj

i1, i2 ∈ ω(Ci ∪ Cj)

ω(p1) ∩ ω(p3) = i1

ω(p2) ∩ ω(p4) = i2

The walking regions of these four points pass through i1 and i2 (see Figure 11). Note that p1 and p2 need
not be distinct (same for p3, p4). Since clusters are disjoint, we know that: p1 ≺x p3, p2 ≺x p3, p1 ≺x p4,
and p2 ≺x p4. Since walking region boundaries are x-monotone, and boundary segments have an inverted
ordering with respect to the points/segments that created them, we know that p2 �x p1, and p4 �x p3. Thus
we obtain the following order along the x-axis:

p2 �x p1 ≺x p4 �x p3

As i1 and i2 are distinct, p1 �y p2. Otherwise ω(p2) would be to the left of ω(p1) and thus left of ω(Ci).
Similarly, p3 �y p4. As ω(p1) intersects ω(p3), and p1 ≺x p3, we deduce that p3 ≺y p1. Similarly, p4 ≺y p2.

p2

p1

p4

p3

i1

i2

Ci

Cj

Fig. 11. Lemma 4 establishes that the right boundaries of the walking regions of two clusters intersect at most once.

Notice that ω(p1) cannot be to the left of ω(p4); this would imply that the intersection point i1 between
ω(p1) and ω(p3) is to the left of ω(p4), and thus to the left of ω(Cj), contradicting the fact that i1 ∈ ω(Cj).
We conclude that p4 ≺y p1, and thus

p3 �y p4 ≺y p1 �y p2

With these relationships established, consider the walking region of all four points, ω({p1, p2, p3, p4}). It
is composed of four parabolic segments, ordered inversely with respect to the points (see Figure 12). This
implies that the intersection i1 between ω(p3) and ω(p1) occurs strictly to the left of ω({p1, p2, p3, p4}), since
ω(p3) and ω(p1) do not appear consecutively on ω({p1, p2, p3, p4}). Thus i1 is to the left of ω(Ci ∪Cj), which
contradicts its definition of existing on that boundary. ut
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p2

p1

p4
p3 ω(p3)

ω(p4)

ω(p1)

ω(p2)

i1

Fig. 12. The right boundary of the walking region of the four points p1, p2, p3, p4.

We now have all the tools needed to prove an analogue of Lemma 2 for the Euclidean case. For a point p,
let the set R(p) be defined as follows:

R(p) = {ω(Ci)|∀i′ < i, p ≺x ω(Ci) ∩ ω(Ci′)}

R(p) is the set of all right boundaries whose intersections with previous boundaries are to the right of p.

Lemma 5. The boundaries in R(p) cross a vertical ray from p in a right-to-left order of the corresponding
clusters.

Proof. The proof is by induction. If there is only one cluster, and thus one boundary, our claim is trivially
true. Assume it is true up to the construction of cluster Ci. We add a cluster Cj to the right of Ci (see
Figure 13).

Ci′ Ci Cj

t

p

Ci′ Ci Cj

t

p

b)a)

Fig. 13. (a) p ≺x t and R(p) = {ω(Ci′), ω(Cj)}. (b) t ≺x p and R(p) = {ω(Ci′)}. R(p) is illustrated in bold.

By Lemma 4, ω(Cj) intersects the boundary of each of the previous clusters at most once. Let t be the
leftmost intersection of ω(Cj), and let Ci′ be the cluster whose boundary intersects that of Cj at t. Cj must
be below ω(Ci′), otherwise Ci′ and Cj would not be disjoint. Thus ω(Cj) is below ω(Ci′) to the left of t. By
the same reasoning, ω(Cj) is below every other boundary to the left of t. Now we have two cases :

Case 1: p ≺x t (see Figure 13(a)). The vertical ray emanating from p will first intersect the boundary of
the rightmost cluster ω(Cj). It will then intersect the boundaries of previous clusters. By induction, those in
R(p) will be intersected in right-to-left order, and we deduce the claim.

Case 2: t �x p (see Figure 13(b)). Then ω(Cj) is not in R(p), and thus by induction the claim is true, as
the new cluster can be ignored. ut

We modify the algorithm used for L1 as follows: for every new cluster, we compute the first intersection of
the right boundary of its walking region with the right boundaries of walking regions of all previous clusters.
The boundary ω(Ci) for a cluster Ci can be represented by a linked list Li of parabolic segments and line
segments. As before, we maintain a set L of non-empty lists, each associated with a cluster, representing
boundaries that have not yet been entirely scanned. We do not store the portions of boundaries to the right
of their first intersection point with the boundaries of previous clusters.

11



By Lemma 5, the segments in all cluster lists are crossed by any vertical ray in right-to-left order.
Excluding the right boundaries after the intersection point is not a problem: if a point p is above the right
boundary ω(Ci) of some cluster Ci after its intersection with ω(Ci′), where i′ < i, then the leftmost cluster
containing p is not Ci, but Ci′ . Thus, from that point onwards, the boundary of Ci can be discarded.

3.4 Algorithm Outline

Let Cj be the rightmost cluster. The algorithm starts by scanning the list Lj from left to right. At each step,
we consider the relative position of pi and the current segment s in the list, and we apply the same four-step
algorithm as for the orthogonal case. We end up with a point x corresponding to the segment in the leftmost
cluster which must be merged into Cj by the addition of edge xpi.

Since clusters are convex, if the edge we want to insert creates a reflex angle, we scan the boundary of the
cluster up to the point where we get a new convex cluster (see the dotted lines in Figure 14). We distinguish

i

x

p

(a) The new segment has negative slope.

p’i

x

i
p

(b) The new segment has positive slope.

Fig. 14. The two cases occurring as we insert a new segment.

two cases, depending on the slope of xpi. If the slope is negative, then it will never trigger the problematic
situation of Figure 8(b); a right parabolic walking region boundary can only cut into a positively sloped
segment. The only remaining task is to update the lists L by taking ω(xpi) into account.

On the other hand, if xpi has a positive slope, then we check if it intersects the walking region boundary
of another cluster, as in Figure 8(b). Note that in that case, the right boundary of the walking region of
the new cluster consists solely of ω(p′ipi) = ω(pi). This is because the new point will be above and to the
right of all previous points. Thus by the analogue of Observation 1, the boundary will be defined by the
upper-rightmost point (see [23]).

Also, note that adding one point results in the addition of at most one edge, since Lemma 3 is valid
in L2. This implies that we only need to add the edge between the new point and the leftmost cluster; all
intermediate clusters will be below the new edge, and will disappear.

In order to efficiently answer the segment intersection queries between xpi and the segments in L, we
maintain a data structure that will store a representation of ω = ω(

⋃
i Ci) (i.e., the right boundary of

the union of all walking regions). By Observation 1, this boundary only depends on the negatively sloped
segments of the hull. The data structure must be able to answer segment intersection queries to maintain
the representation of ω under the following two operations: rollback, which removes the rightmost negatively
sloped segment, and insertion, which adds a new segment to the right of the current hull.

Rollbacks are performed every time an edge is deleted during a merge operation. If the cost of a rollback
is T (n) in the worst case, then it costs only O(nT (n)) over the whole algorithm, since each time an edge is
deleted, either a point or its projection on H disappears. An insertion is performed when the new segment xpi
has a negative slope, in which case we insert xpi, or when xpi has positive slope but empty intersection with
ω, in which case we insert the segment p′ipi. We denote by Q(n) and I(n) the costs of a segment intersection
query and an insertion, respectively.
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When xpi intersects ω (i.e., when the intersection query returns a positive result), we identify the cluster
causing this intersection, and iterate with a new segment x′pi. This involves deleting more edges in the
boundary lists, and performing the corresponding rollbacks in the data structure for ω.

3.5 Segment Intersection Queries

Segment intersection queries can be performed using ray shooting. Instead of considering a segment xpi
itself, we consider the ray emanating from pi and containing xpi. If the ray intersects the boundary ω, we
can quickly check whether the intersection points belongs to xpi. Note that all queries consist of rays that
are directed down and to the left. We can also assume that pi is below ω.

General dynamic data structures exist for ray shooting (see for instance [12]). However, they are designed
for planar subdivisions with line segments only. We proceed to describe a static data structure for answering
ray shooting queries in our setting.

A ray shooting data structure. The input data is a sequence of parabolic arcs and segments that compose
the boundary ω. We decompose this sequence recursively and store the decomposition in a binary tree T of
height O(log n). Each node t ∈ T corresponds to a portion ω(t) of the curve ω, and is associated with the
lower convex hull CH(t) of ω(t). We use a suitable data structure for CH(t) that can answer ray shooting
queries in O(log n) time (see for instance [4]). The root of T is denoted by r(T ), and the left and right nodes
of t are denoted by left(t) and right(t). The left and right nodes correspond to the top and bottom part of
ω, respectively.

Ray shooting queries on ω are answered by a simple traversal of T . We first suppose that pi 6∈ CH(r(T )),
meaning the origin pi of the ray is not contained in the convex hull of ω. We iterate the following operations
starting from r(T ), until either we hit the curve or we conclude that the intersection is empty. Let t be
the current node. If the ray intersects CH(left(t)), we iterate with left(t), and we do not need to iterate
with right(t), because the intersection with left(t) will happen before that with right(t). Otherwise if it
intersects CH(right(t)), we iterate with right(t). If neither intersection occurs, we are done. Since T has
height O(log n) and each intersection test requires O(log n) time, the whole algorithm takes O(log2 n) time.

If pi ∈ CH(t) for some node t ∈ T , we cannot conclude that the ray intersects ω(t). Hence when
pi ∈ CH(r(T )) we first identify O(log n) subtrees of T such that: (i) pi does not belong to any of the
corresponding convex hulls, and (ii) if the ray intersects ω, then it intersects one of the convex hulls. We
choose these subtrees to correspond to convex hulls entirely contained in the halfplane below the horizontal
line through pi. There are O(log n) such maximal subtrees, the roots of which can be identified in O(log n)
time. For each root r, from left to right in the tree (hence from top to bottom on ω(t)), we check whether the
ray intersects CH(r). For the first intersection found, we run the previous algorithm on the corresponding
subtree. The remaining subtrees need not be examined since we know that the ray will first intersect a
portion of the curve contained in that subtree. Checking intersections takes O(log n) time, and since there
are O(log n) subtrees, we spend O(log2 n) time before finding an intersection. Running the previous algorithm
in the subtree takes O(log2 n) as well. Thus we have Q(n) = O(log2 n) in the worst case.

Insertion and rollback. Insertions in T occur when the walking region of a new segment xpi has to be
taken into account in the boundary ω. We must remove subtrees of T corresponding to the portion of ω that
is strictly contained in the new walking region, and update the convex hull CH(t) of each node t on the path
from the root to the new node. We show how to achieve this in O(log2 n) worst-case time while keeping T
balanced.

Instead of a dynamic balanced tree (such as red-black trees [12, 11, chapter 13]), we use an exponential
binary tree, as described in Figure 15. The tree is composed of a backbone of right children. The (i + 1)th
left subtree on the backbone is a complete binary tree with 2i leaves, except for the last subtree, the last
level of which may be incomplete. It is easy to check that the height of T is O(log n).

The insertion algorithm uses lazy deletion for parts of the curve ω masked by ω(xpi). We iterate the
following operations starting from r(T ). Let t be the current node. We first update CH(t) by finding the
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0
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2
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Fig. 15. The structure of the tree T .

common tangent with the new curve ω(xpi). Using a suitable data structure for CH(t), this can be done
in O(log n) time. Then we check whether ω(xpi) intersects CH(left(t)), which takes logarithmic time as
well. If it doesn’t, we simply let right(t) be the current node. Otherwise CH(right(t)) is completely masked
by ω(xpi), since it lies below the intersection (see Figure 16(b)). Thus we mark right(t) as empty, thereby
deleting the whole right subtree. We let left(t) be the current node.

When we are finished, the right subtrees corresponding to a whole “prefix” of ω are deleted, and T is a
smaller version of the exponential form described in Figure 15.

left(r(T))

H

right(r(T))

r(T)

(a) The boundary ω, with the con-
vex hulls CH(r(T )), CH(left(r(T ))), and
CH(right(r(T ))).

left(r(T))

H

r(T)

(b) Insertion: the right subtree rooted at
CH(right(r(T ))) is deleted.

Fig. 16. Representation of the boundary ω.

What remains is to insert the new leaf corresponding to ω(xpi) at the correct location in T , preserving
the structure of the tree. Note that in the ray shooting query algorithm, if one of the two children of a
node is marked empty, we directly jump to the valid node. All convex hull updates and intersection tests
take O(log n) time, and the total number of nodes traversed is O(log n) as well, yielding I(n) = O(log2 n)
worst-case running time.

Since the worst-case complexity is O(log2 n), rollbacks can be implemented by memorizing all updates,
and performing them in reverse order. This causes the space complexity to increase to O(n log n).
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Our algorithm only outputs the list of clusters. Section 4 deals with the problem of identifying whether
the highway is used for at least one pair of points. If this situation does not hold, we simply compute the
convex hull of the set of points. Otherwise, we compute the convex hulls of the clusters, and join them to the
highway with vertical segments. Details of this procedure can be found in [20, 23]. As previously mentioned,
the highway hull may have open boundaries. To determine if an edge on the convex hull of a cluster is part
of the highway hull, we check if H is used between its endpoints (we simply compare the time using the
highway or not between these two points).

Lemma 6. The Euclidean highway hull can be computed in O(n log2 n) worst-case time using O(n log n)
space when the speed v is infinite.

3.6 Finite speed

When v is bounded, the walking region of a point consists of a pair of half-parabolas tangent to H. To
generalize the infinite-speed algorithm, it suffices to verify that all the key properties used in the infinite
speed version still hold when v is bounded. Yu and Lee [23] provide many of the required details to generalize
the algorithm. In particular, the shape of the clusters must be adapted to take into consideration the fact
that shortest paths enter H at some angle α < π/2 instead of orthogonally.

Concerning the algorithm itself and the identification of clusters, nothing changes. The properties of
monotonicity [20, Lemma 2.1.11] of the right boundary of the clusters, as well as the ordering of the intersec-
tions between the boundaries of clusters and a vertical ray [23] are preserved. For the new steps introduced
in our algorithm (namely the ray shooting data structure for segment queries), our reasoning only uses the
assumption of monotonicity and thus remains valid in the general setup.

Once convex hulls are computed, they are to be joined to H with segments whose direction obey Snell’s
law of refraction. Detecting if the highway hull is open or closed can be handled as before.

Theorem 2. The Euclidean highway hull can be computed in O(n log2 n) worst-case time using O(n log n)
space.

4 Useful Highways

Let H be a highway such that H2(S,H) differs from the standard convex hull CH(S), for a fixed speed
v > 1. Now consider translating H continuously to infinity; it is clear that when H is far enough from the
point set both hulls coincide: H2(S,H) = CH(S). More generally, if we consider the set of all lines that are
parallel in any given direction, we obtain a strip of useful lines and two halfspaces of useless lines, in the
sense that no subset of a useless line serves as part of a shortest path between any points in S.

A highway on the bounding line L of the strip can be used by at least one pair of points, as part of a
path that is equally short as the line segment between the points.

If we repeat this construction for all possible directions, we obtain the useful region for S, denoted by
U(S) (see Figure 17): U(S) is the locus of the points in the plane such that if a highway does not intersect
U(S), this highway is not used for any pair in S. Hence, a line is useless as a highway if and only if it does
not intersect U(S). The lines supporting U(S) are precisely those that bound the strip of useful lines in some
direction.

For two points a and b, denote by `γ(a, b) the symmetric lens composed of two circular arcs of equal radii
joined at a and b, such that the segment ab is seen from every point on the boundary with aperture angle γ
(see Figure 18).

For a given speed v > 1 we denote by α the angle such that sinα = 1/v.

Lemma 7. The useful region for the point set {a, b} is U({a, b}) = `α+π/2(a, b).
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Fig. 17. The useful region of a point set S.
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Fig. 18. The lens `γ(a, b).
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Fig. 19. Proof of Lemma 7.
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Proof. Let H be a line tangent to the lens `α+π/2(a, b) at point c. We wish to prove that the time required
for travelling from a to b using H as a highway with speed v is equal to the Euclidean distance |ab| (refer to
Figure 19).

A counterclockwise rotation of the line through a perpendicular to H by angle α yields a line that crosses
H at a certain point p. Similarly, a clockwise rotation of the line through b perpendicular to H by angle α
yields a line that crosses H at a certain point g.

Construct the lines through c perpendicular to ap and bg, and let e and f be their respective intersections
with the lines through ap and bg. By construction, êcp = ĝaf = α.

Let β = b̂ac. The triangle 4cqa is isosceles, therefore âcq = q̂ac = α + β. As the lines qc and H are
perpendicular, we have p̂ca = π/2− α− β, and hence êac = π/2− [(π/2− α− β) + α] = β. Therefore, if we
denote by h the intersection point of the line through c perpendicular to ab, we see that triangles 4hca and
4eca are congruent, which implies that |ae| = |ah|.

Taking into account that |ae| = |ap|+ |pe| and that sinα = 1/v, we obtain

|ah| = |ae| = |ap|+ |pc|/v (1)

An identical argument leads to
|hb| = |bf | = |bg|+ |gc|/v (2)

and from equations (1) and (2) we obtain

|ab| = |ap|+ |pg|/v + |gb|

which means that the Euclidean distance between a and b is equal to the time required for traveling from a
to b using H, as claimed. ut

Lemma 8. The useful region for a point set S is U(S) = CH(∪a,b∈SU(a, b)).

Proof. Let R = ∪a,b∈S`α+π/2(a, b) be the union of the
(
n
2

)
lenses. By Lemma 7, a line H is useful if and only

if it intersects at least one of the lenses. Equivalently, H is useful if and only if H ∩ CH(R) 6= ∅. ut

Lemma 8 gives a brute-force algorithm for the computation of U(S): For every pair of points a, b ∈ S,
compute `α+π/2(a, b); then U(S) = CH(R) can easily be computed in O(n2 log n) time. It is clear that the(
n
2

)
lenses are not independent, as they arise from a set of n points. Thus we proceed to reduce the running

time:

Theorem 3. Let S be a set of n points in the plane, and let v > 1 be any given speed. Then the useful region
U(S) can be computed in O(n log n) time.

Proof. Notice that U(S) ⊃ CH(S), because U(S) = CH(∪a,b∈S`α+π/2(a, b)) ⊃ CH(S). If z ∈ U(S) is
outside CH(S), then there is a pair of points a, b ∈ S such that b̂za ≥ α + π/2. This implies that there is
also a pair of vertices p, q of CH(S) such that q̂zp ≥ α+ π/2. Therefore, in order to obtain U(S) it suffices
to construct cloudα+π/2(CH(S)), the set of points that see CH(S) with aperture angle α + π/2, because
then U(S) = CH(cloudα+π/2(CH(S))) (see Figure 20).

This cloud computation can be accomplished by taking a wedge of aperture α+ π/2 supporting CH(S)
and using the rotating callipers technique, as described in [21, 22]. The cloud consists of at most 2n circular
arcs (one for every time that an arm of the rotating wedge is flush with an edge of the polygon), and is
obtained in O(n) time once CH(S) is available. Notice that the region enclosed by the cloud is star-shaped
from any point inside CH(S), and remains that way when we bridge consecutive arcs by their common
tangent bridge. Therefore, once the cloud has been constructed, its convex hull U(S) is easily obtained via
divide and conquer in O(n log n) time. ut
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Fig. 20. Constructing the useful region of a point set S, for v = 1/ sin(20◦): Left: S and CH(S). Center:
cloudα+π/2(CH(S)). Right: U(S).

5 Discussion

We provided a Θ(n log n) algorithm for the orthogonal highway hull. If the input is a set of points sorted
along the direction of the highway, our algorithm takes only Θ(n) time. In the Euclidean case, we improved
the previous O(n2) algorithm in [15, 20] to O(n log2 n), but it remains open whether this is optimal. We
believe that by slightly modifying our approach and using fractional cascading, we could save a logarithmic
factor. A lower bound of Ω(n log n) is easily deduced from the fact that the output of the algorithm is CH(S)
if the highway is not useful.

A natural extension of this work would be to adapt these results to more realistic highways and road
networks. What if the highway is represented by a line segment (rather than an infinite line)? What if we
have a highway network, with multiple highways crossing one another?
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