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Cauchy’s Arm Lemma on a Growing Sphere

Zachary Abel∗ David Charlton† Sébastien Collette‡ Erik D. Demaine§¶

Martin L. Demaine§ Stefan Langerman‖ Joseph O’Rourke∗∗ Val Pinciu††

Godfried Toussaint‡‡

June 3, 2013

Abstract

We propose a variant of Cauchy’s Lemma, proving that when a convex chain on one sphere
is redrawn (with the same lengths and angles) on a larger sphere, the distance between its
endpoints increases. The main focus of this work is a comparison of three alternate proofs, to
show the links between Toponogov’s Comparison Theorem, Legendre’s Theorem and Cauchy’s
Arm Lemma.

1 Introduction

A chain is composed of a sequence of points v0, . . . , vn, where each consecutive pair is connected
by edges ei = vi−1vi, and the angle at vertex vi between ei and ei+1 is θi. A chain is convex if the
corresponding polygon (that is, if we add the edge v0vn to close the chain) is convex. These are
well defined in the plane as well as on the sphere. In the case of the sphere, the edges are arcs
of great circles. Cauchy’s lemma can be expressed in the following way (although this was not its
original statement):

Lemma 1 (Cauchy). Given a convex chain C, if we increase the value of some nonempty subset of the
angles θi, while keeping the length of the edges fixed and every θi ≤ π, then the distance between the
endpoints v0 and vn strictly increases.
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Although the original proof was flawed, this lemma was later proved correctly in the plane, as well
as when the chain is on the surface of a sphere [1, p. 228].

In this note, we consider the following question: what happens to the endpoints of a chain on
a sphere if, instead of choosing some angles to increase, we change the radius of the sphere while
preserving both the edge lengths and the angles?

Spherical geometry tells us that when convex polygons are drawn on the sphere, the sum of their
angles is larger than in the convex polygons with same edge lengths in the plane. This increment
is called the spherical excess. Its value decreases when the radius of the sphere grows, and also
depends on the area of the polygon. Intuitively, as the sum of the angles decreases when the sphere
gets larger, one might think that, given a convex chain C on the sphere S and a chain with same
angles and edge lengths C′ on a larger sphere S′, the endpoints of C′ should be farther from each
other than those of C.

However, this intuition alone does not suffice to reach this conclusion, because even though the
sum of the angles is larger in C, it is not certain that every angle individually grows. This is what
we show in the next sections, by analyzing the behavior of the angles of a triangle when drawn on
different kinds of surfaces.

Most results in this note follow from a theorem in Riemannian geometry, Toponogov’s Compar-
ison Theorem [4], which we discuss in Section 4. Toponogov’s version is strictly more general as
it covers arbitrary manifolds with positive curvature, of which our "growing sphere" version is a
special case.

However, we believe that the comparison of these approaches is of general interest because
(1) the available proofs of Toponogov’s Theorem rely on machinery in Riemannian geometry,
whereas our proof is elementary; and (2) the statement of Cauchy’s Arm Lemma in the alternate
form provided here might be useful in further research directions.

2 Cauchy’s Lemma from the Sphere to the Plane

In this section, we compare a chain drawn on a sphere to a similar chain drawn in the plane. Note
that the plane is equivalent to a sphere of infinite radius, so this is clearly a subproblem of the
original question. Our result is formally stated as follows:

Theorem 2. Let C be a convex chain embedded on the sphere S, and C′ be a convex chain with same
angles and edge lengths in the plane. Then the distance between the endpoints of C′ is greater than the
distance between the endpoints of C.

To derive this result, we first prove that given a triangle on the sphere S and a triangle with
the same edge lengths in the plane, the latter has smaller angles. A more general proof of this will
be provided in the next section. We believe, however, that this proof is interesting as it involves
neither Legendre’s Theorem nor Toponogov’s Comparison Theorem.

Lemma 3. Let 4abc be a geodesic triangle on a sphere, with side lengths A, B, and C opposite vertices a,
b, and c respectively. Let b′ and c′ be the midpoints of ab and ac respectively. Then the length A′ = |b′c′|
of this “midchord” is strictly greater than A/2.

Note that, in the plane, we would have A′ = A/2.
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Proof. Let the given triangle have angles α, β, γ at vertices a, b′, c′ respectively. Extend the geodesic
segment b′c′ to b′′ so that |c′b′′| = A′, and connect b′′ to c. See Figure 1. Then 4cb′′c′ is congruent

φ

α

π−β π−γ

β

θ

γ

γ

α

β

A´

B/2C/2

C/2

C/2

A

D

A´

B/2

a

b
c

b´
c´

b´´

Figure 1: 4cb′′c′ is congruent to 4ab′c′, and θ > φ.

to 4ab′c′, as it has the same angle γ at c′, included between the same side lengths A′ and B/2.
Now draw the geodesic diagonal bb′′, and call the angles on its opposite sides θ and φ as

illustrated. For the upper triangle 4bb′b′′, we have θ + (π − β) + (β − φ) > π (because the angles
of a spherical triangle sum to strictly greater than π), i.e., θ > φ. Now notice that the two sides of
the upper triangle determining θ have lengths D and C/2, and the two sides of the lower triangle
determining φ have the same lengths D and C/2. Therefore, θ > φ implies the same inequality in
the lengths of the opposite sides: 2A′ > A. This establishes the claim of the lemma. �

Lemma 4. Let a planar triangle have side lengths A, B, and C. Each angle of the (unique) spherical
triangle with the same side lengths is strictly larger than the corresponding planar angles.

Proof. Let the planar triangle be P = 4abc with angle α at a, and the spherical triangle be S = 4a′b′c′

with angle α′ at a′. We prove that α′ > α.
We draw midchords in both P = P0 and S = S0 as in Lemma 3, bisecting the sides of length B

and C. Call these midchords p1 and s1 in P0 and S0 respectively, and call the triangles above these
midchords P1 and S1 respectively. See Figure 2. We know that |p1| = A/2 because P is planar, and
that |s1| > A/2 by Lemma 3. Repeat the construction on P1 and S1, with midchords p2 and s2. We
have |p2| = |p1|/2 = A/4, and |s2| > |s1|/2 > A/4. Continuing in this manner, for any i, we obtain
|pi| = A/2i and |si| > A/2i.

Let Bi = B/2i and Ci = C/2i be the side lengths of the triangles Pi and Si after i iterations. Note
that these side lengths are the same by construction for the planar and spherical triangles. Applying

3



the law of cosines to the planar triangle, we have

α = arccos
[1
2

(
Bi/Ci + Ci/Bi − |pi|

2/(BiCi)
)]

Note that the length ratios in this expression are independent of i, as all the triangles Pi are similar
to the starting triangle P. As i → ∞, the spherical triangles Si approach planarity in the limit, so
we have

α′ = lim
i→∞

arccos
[1
2

(
Bi/Ci + Ci/Bi − |si|

2/(BiCi)
)]

Because the ratios Bi/Ci = B/C and Ci/Bi = C/B are constant, the only difference between the α
and α′ expressions occurs in the |pi| and |si| factors. But we know that |si| > |pi| for all i, and indeed
|si| − |pi| > |s1| − |p1| > 0, so

lim
i→∞
|si|

2/(BiCi)

is strictly greater than the constant |pi|
2/(BiCi) = A2/(BC). Because the arccos function is monoton-

ically decreasing, this implies that α′ > α, as claimed.
Repeating the argument for each angle of the triangle establishes the lemma. �

Thus, when a planar triangle is drawn on a sphere (with the same side lengths), all angles increase,
and correspondingly, when a spherical triangle is drawn in the plane, all angles decrease.

α´Bi CiBi Ci

pi si

p1

AA

a´

α

a

b c b´
c´

s1

Figure 2: pi is the i-th midchord in the planar triangle (left), and si in the spherical triangle (right).
|si| > |pi| and α′ > α.

Proof of Theorem 2. Starting with the convex chain C on the sphere, we triangulate it. We denote
the set of triangles obtained byA, which by the definition of a convex chain together form a convex
polygon (see Figure 3). We look at A′, the corresponding set of triangles in the plane, i.e, the set
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of triangles with same edge lengths, and with adjacency preserved. This is always achievable, as
the dual of a triangulation of a convex polygon is a tree.

We denote by C′′ the chain in A′ corresponding to the chain C in A. By Lemma 4, we know
that all the angles of the triangles are smaller, and thus all the angles on the boundary of A′ are
smaller. In particular C′′ has same edge length as C, but every angle is strictly smaller; the endpoint
of C and C′′ are at the same distance from each other. Note that C′′ is also a convex chain, because
the convex angles of C only decreased, and therefore no reflex vertex can occur.

Recall that C′ is a chain in the plane with same edge lengths and same angles as C. To transform
C
′′ into C′, all the angles of C′′ have to be increased. We apply Cauchy’s Lemma in the plane, and

deduce that the endpoints of C′ are farther apart than those of C′′ and thus than those of C. �

S A A′

C ′
C C ′′

C ′′

Figure 3: Illustration of the proof of Theorem 2.

3 Cauchy’s Lemma on the Growing Sphere

In this section we generalize the result stated above to the case where we move from a sphere S to
a larger sphere S′. To achieve this goal, we will make use of a theorem of Legendre dating back to
1798 [2]:

Theorem 5 (Legendre). Given a triangle T on a sphere S with angles θ1, θ2, θ3 and a triangle T ′ in
the plane with same edge lengths, and with corresponding angles θ′1, θ

′

2, θ
′

3, we have

∀i ∈ {1, 2, 3}, θ′i = θi −
δ
3
+ (4)

where δ is the spherical excess of the triangle T and (4) denotes a polynomial expression of the edge
lengths of degree at least 4.

In other words, for sufficiently small triangles, that is, where the fourth order terms are negli-
gible, the spherical excess is evenly split among the three angles. What the formula does not say,
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however, is if, for all triangles on the sphere – even large ones – all three angles are always larger
that their counterparts in the plane. A corollary of our results in the next section will show that this
is actually the case.

Note that Legendre’s Theorem is also valid if we compare the same triangle drawn on two
spheres S and S′ of radius r and r′ respectively, and with r < r′. In that case, its formulation is

∀i ∈ {1, 2, 3}, θ′i = θi −
δ − δ′

3
+ (4)

where δ and δ′ are the spherical excesses on both spheres. (δ − δ′) is always positive, as long as
r < r′.

Here is our main Theorem:

Theorem 6. Let C be a convex chain embedded on the sphere S of radius r, and C′ be a convex chain
with same angles and edge lengths on the sphere S′. Then the distance between the endpoints of C′ is
greater than the distance between the endpoints of C.

To prove it, we proceed as follows, using two technical lemmas: first we show that given a thin
triangle on a sphere S, and a triangle with same edge lengths on a larger sphere S′, the small angle
is strictly smaller on S′. Second, we generalize that to any triangle, showing that every angle is
smaller on S′. And finally, we combine these two results to prove our Theorem.

Lemma 7. Let T be a thin triangle embedded on the sphere S of radius r, meaning that the apex angle
θ1 < ε for some ε > 0. Let T ′ be a triangle with same edge lengths on the sphere S′ of radius r′ > r.
Then, θ1 > θ′1, where θ′1 is the angle corresponding to θ1 on the larger sphere.

Proof. Given the radius r of the sphere S, the parameter ε defines the largest possible length of the
smallest edge in T , i.e., the edge opposed to θ1. Let ` = f (ε, r) be that maximal possible length. By
adding Steiner vertices on the edges of T , we can triangulate it such that every triangle has edges
of lengths at most 2`. We denote by A the triangulation of T .

Let A′ be the same set of triangles on S′. As the spherical excess of every triangle on a sphere
is positive, and because we can pick ε as small as needed – and thus have ` and the sides of our
triangles as small as needed – the fourth order terms in Legendre’s Theorem are negligible. Thus,
every angle of each triangle of A′ is strictly smaller than the corresponding one in A. We also
obtain that A′ is a convex region, just as in the proof of Theorem 2, because all the angles of the
boundary of A became smaller in A′.

Now, consider the 2-chain L composed of the two longer edges of T . Let C be the chain on the
convex hull of A coinciding with L, i.e., C is the subdivision of L in a chain where all edges have
length less than 2`. Let C′ be the corresponding chain on the sphere S′, defined by the convex hull
of the set of triangles A′.

Starting with C′, we increase all the angles to obtain a 2-chain L′, with same edge lengths and
angles as in L. Recall that Cauchy’s Lemma is valid on a sphere, so we know that the endpoints
of L′ are farther apart than in C′. In other words, if we want to close the 2-chain L′ to obtain the
triangle T ′ with same edge length as in T , we need to shrink the small angle. Thus, we conclude
that θ1 > θ′1, which completes the proof. �

Lemma 8. Let T be a triangle embedded on the sphere S of radius r. Let T ′ be a triangle with same
edge lengths on the sphere S′ of radius r′ > r. Then, θi > θ′i for i ∈ {1, 2, 3}, where θ′i is the angle
corresponding to θi on the larger sphere.
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T

S ′

SS

A

A′

C

C ′

S ′
L′ L′

T ′

L

Figure 4: Illustration of the proof of Lemma 7.
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S ′

S

T ′

s′A′

A

T

L′

L′′
L

θ′
1

θ′
2

θ′
3

θ1

θ2θ3

γ

Figure 5: Illustration of the proof of Lemma 8.

Proof. Let s′ be the side of T ′ opposed to θ′1, and L′ denote the 2-chain composed by the two other
sides. Decompose s′ into as many subsegments as needed to make sure that each has length less
than `, which is a value depending on r and r′1. We denote by A′ the fan-triangulation based on
these subsegments.

Let A be the corresponding set of triangles on S, with edge lengths preserved. Let L′′ be the
2-chain corresponding to L′ in A, with angle γ. Note that s, the chain corresponding to s′ on S, is
not straight, because by Lemma 7, we know that the small angle of every triangle is smaller on S′

than on S. Also, we know that γ is strictly larger than θ′1, for the same reasons.
Because the sum of the length of the edges of s is exactly equal to the length of s′, and because

every angle in the chain is strictly less than π, the distance between the two endpoints of L′′ is
strictly smaller than s. This means that the angle θ1 is strictly larger than γ. We conclude that
θ′1 > θ1.

It only remains to note that we could have picked any of the three angles of T ′, and thus every
angle is strictly larger in T than in T ′. �

We now have all the tools required to prove Cauchy’s Lemma on the growing sphere.

Proof of Theorem 6. The proof is similar to that of Theorem 2. Starting with the chain C, we trian-
gulate it, obtaining A. We look at A′ the corresponding set of triangles on S′. By Lemma 8, we
know that all the angles of the triangles are smaller, and thus all the angles on the boundary of A′

are smaller. To make the boundary ofA′ and the chain C′ coincide, we have thus to increase all an-

1We do not need to know ` precisely, it should just be small enough so that we can apply Lemma 7 later on.
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gles. Using Cauchy’s Lemma on the sphere (which applies by the same reasoning as in Theorem 2),
we deduce that the endpoints of C′ are farther apart than those of C. �

In summary, when a convex chain on one sphere is redrawn (with the same lengths and angles)
on a larger sphere, the distance between its endpoints increases.

4 Generalization to Complete Riemannian Manifolds of Positive Sec-
tional Curvature

In this section we present a more general version of Lemma 8, and prove it by a simple appli-
cation of Toponogov’s Comparison Theorem [4]. Here is the part of the theorem relevant to our
application [3]:

Theorem 9 (Toponogov). Let M be a complete Riemannian manifold2 with sectional curvature3 K ≥
κ. Given points p0, p1, q in M satisfying p0 , q, p1 , q, a non constant geodesic4 c from p0 to p1 and
minimal geodesics ci, from pi to q, i = 0, 1, all parameterized by arc length. Suppose the triangle
inequality |c| ≤ |c1| + |c2| is satisfied and |c| ≤ π

√
κ

in the case κ ≥ 0. αi ∈ [0, π] denote the angles
at pi, α0 = ∠(ċ0(0), ċ(0)), α1 = ∠(ċ1(0),−ċ(|c|)). Then there exists a corresponding comparison triangle
p̃0, p̃1, q̃ in the model space M2

κ with corresponding geodesics c̃0, c̃1, c̃ which are all minimal of length
|c̃i| = |ci|, |c̃| = |c| and the corresponding angles α̃i satisfy α̃i ≤ αi.

The interesting part for the application we have in mind is to notice that the two spheres we
consider in the previous sections are actually model spaces M2

κ, with κ depending on the radius of
the sphere. So, we obtain directly a generalized version of the lemma used in previous sections:

Corollary 10. Let T be a triangle embedded on a complete Riemannian manifold Mκ with sectional
curvature κ and where the triangle inequality holds. Let T ′ be a triangle with same edge lengths on a
model space M2

κ′ with sectional curvature κ′ < κ, also satisfying the triangle inequality. Then, θi > θ′i
for i ∈ {1, 2, 3}, where θ′i is the angle corresponding to θi on R′.

We can use this to get an alternate proof of Theorem 6, with the same arguments, using the model
spaces M2

κ and M2
κ′ which are two spheres of radius r = 1

√
κ

and r′ = 1
√
κ′

.

Open Problem 1. What is the class of surfaces on which the original version of Cauchy’s Arm Lemma
(Lemma 1) is true?

The answer to this question would provide the class of surfaces on which we could generalize
Cauchy’s Lemma, i.e., redrawing the same chain (angles and lengths preserved) on two different
surfaces and deducting that the endpoints move farther apart. We can reuse the same reasoning
as long as (the original version of) Cauchy’s Arm Lemma and Toponogov’s Theorem apply to the
surfaces we consider.

2A Riemannian manifold is a differentiable manifold whose tangent spaces support a smoothy varying inner product,
which permits angles and lengths to be defined. It is complete if Cauchy sequences have limits.

3The sectional curvature measures the deviation of geodesics, and is the natural generalization of Gaussian curvature
for surfaces. A sphere has constant positive sectional curvature.

4A non constant geodesic is any geodesic of positive length.

9



Acknowledgments

This note was prepared in part during the 23rd Bellairs Winter Workshop on Computational Geometry
held February 1–8, 2008, and organized by Godfried Toussaint. We thank the participants of that
workshop, particularly Brad Ballinger, for helpful discussions.

References

[1] P. Cromwell. Polyhedra. Cambridge University Press, 1997.

[2] A.M. Legendre. Méthode pour déterminer la longueur exacte du quart du méridien d’après
les observations faites pour la mesure de l’arc compris entre dunkerque et barcelone, note iii:
Résolution des triangles sphériques dont des côtés sont très petits par rapport au rayon de la
sphère. Méthodes analytiques pour la détermination d’tun arc du méridien, pages 12–14, 1798.

[3] W. Meyer. Toponogov’s Theorem and Applications. College on Differential Geometry at Trieste,
1989.

[4] V.A. Toponogov. Riemannian spaces having their curvature bounded below by a positive num-
ber. Amer. Math. Soc. Transl. Serv., 37:291–336, 1964.

10


	Smith ScholarWorks
	4-7-2008

	Cauchy’s Arm Lemma on a Growing Sphere
	Zachary Abel
	David Charlton
	Sébastien Collette
	Erik D. Demaine
	Martin L. Demaine
	See next page for additional authors
	Recommended Citation
	Authors


	Introduction
	Cauchy's Lemma from the Sphere to the Plane
	Cauchy's Lemma on the Growing Sphere
	Generalization to Complete Riemannian Manifolds of Positive Sectional Curvature

